Articles | Volume 19, issue 4
https://doi.org/10.5194/os-19-1315-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-1315-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Regional modeling of internal-tide dynamics around New Caledonia – Part 1: Coherent internal-tide characteristics and sea surface height signature
Arne Bendinger
CORRESPONDING AUTHOR
Université de Toulouse, LEGOS (CNES/CNRS/IRD/UPS), Toulouse, France
Sophie Cravatte
Université de Toulouse, LEGOS (CNES/CNRS/IRD/UPS), Toulouse, France
IRD, Centre IRD de Nouméa, New Caledonia
Lionel Gourdeau
Université de Toulouse, LEGOS (CNES/CNRS/IRD/UPS), Toulouse, France
Laurent Brodeau
Université Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, Institut des Géosciences de l'Environnement, Grenoble, France
now at: DATLAS, Grenoble, France
Aurélie Albert
Université Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, Institut des Géosciences de l'Environnement, Grenoble, France
Michel Tchilibou
Université de Toulouse, LEGOS (CNES/CNRS/IRD/UPS), Toulouse, France
now at: CLS, Ramonville-Saint-Agne, France
Florent Lyard
Université de Toulouse, LEGOS (CNES/CNRS/IRD/UPS), Toulouse, France
Clément Vic
Laboratoire d’Océanographie Physique et Spatiale, Univ. Brest, CNRS, Ifremer, IRD, Plouzané, France
Related authors
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Luc Rainville, Clément Vic, Guillaume Sérazin, Fabien Durand, Frédéric Marin, and Jean-Luc Fuda
Ocean Sci., 20, 945–964, https://doi.org/10.5194/os-20-945-2024, https://doi.org/10.5194/os-20-945-2024, 2024
Short summary
Short summary
A unique dataset of glider observations reveals tidal beams south of New Caledonia – an internal-tide-generation hot spot in the southwestern tropical Pacific. Observations are in good agreement with numerical modeling output, highlighting the glider's capability to infer internal tides while assessing the model's realism of internal-tide dynamics. Discrepancies are in large part linked to eddy–internal-tide interactions. A methodology is proposed to deduce the internal-tide surface signature.
Quentin Devresse, Kevin W. Becker, Arne Bendinger, Johannes Hahn, and Anja Engel
Biogeosciences, 19, 5199–5219, https://doi.org/10.5194/bg-19-5199-2022, https://doi.org/10.5194/bg-19-5199-2022, 2022
Short summary
Short summary
Eddies are ubiquitous in the ocean and alter physical, chemical, and biological processes. However, how they affect organic carbon production and consumption is largely unknown. Here we show how an eddy triggers a cascade effect on biomass production and metabolic activities of phyto- and bacterioplankton. Our results may contribute to the improvement of biogeochemical models used to estimate carbon fluxes in the ocean.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Romain Le Gendre, David Varillon, Sylvie Fiat, Régis Hocdé, Antoine De Ramon N'Yeurt, Jérôme Aucan, Sophie Cravatte, Maxime Duphil, Alexandre Ganachaud, Baptiste Gaudron, Elodie Kestenare, Vetea Liao, Bernard Pelletier, Alexandre Peltier, Anne-Lou Schaefer, Thomas Trophime, Simon Van Wynsberge, Yves Dandonneau, Michel Allenbach, and Christophe Menkes
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-394, https://doi.org/10.5194/essd-2024-394, 2024
Preprint under review for ESSD
Short summary
Short summary
Due to ocean warming, coral reef ecosystems are strongly impacted with dystrophic events and corals experiencing increasing frequencies of bleaching events. In-situ observation remains the best alternative for accurate characterization of trends and extremes in these shallow environments. This paper presents the coastal temperature dataset of the ReefTEMPS monitoring network which spreads over multiple Pacific Island Countries and Territories (PICTS) in the Western and Central South Pacific.
Sophie Hage, Megan L. Baker, Nathalie Babonneau, Guillaume Soulet, Bernard Dennielou, Ricardo Silva Jacinto, Robert G. Hilton, Valier Galy, François Baudin, Christophe Rabouille, Clément Vic, Sefa Sahin, Sanem Açikalin, and Peter J. Talling
Biogeosciences, 21, 4251–4272, https://doi.org/10.5194/bg-21-4251-2024, https://doi.org/10.5194/bg-21-4251-2024, 2024
Short summary
Short summary
The land-to-ocean flux of particulate organic carbon (POC) is difficult to measure, inhibiting accurate modeling of the global carbon cycle. Here, we quantify the POC flux between one of the largest rivers on Earth (Congo) and the ocean. POC in the form of vegetation and soil is transported by episodic submarine avalanches in a 1000 km long canyon at up to 5 km water depth. The POC flux induced by avalanches is at least 3 times greater than that induced by the background flow related to tides.
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Luc Rainville, Clément Vic, Guillaume Sérazin, Fabien Durand, Frédéric Marin, and Jean-Luc Fuda
Ocean Sci., 20, 945–964, https://doi.org/10.5194/os-20-945-2024, https://doi.org/10.5194/os-20-945-2024, 2024
Short summary
Short summary
A unique dataset of glider observations reveals tidal beams south of New Caledonia – an internal-tide-generation hot spot in the southwestern tropical Pacific. Observations are in good agreement with numerical modeling output, highlighting the glider's capability to infer internal tides while assessing the model's realism of internal-tide dynamics. Discrepancies are in large part linked to eddy–internal-tide interactions. A methodology is proposed to deduce the internal-tide surface signature.
Michel Tchilibou, Loren Carrere, Florent Lyard, Clément Ubelmann, Gérald Dibarboure, Edward D. Zaron, and Brian K. Arbic
EGUsphere, https://doi.org/10.5194/egusphere-2024-1857, https://doi.org/10.5194/egusphere-2024-1857, 2024
Short summary
Short summary
This study is based on sea level observations along the swaths of the new SWOT altimetry mission during its Calibration / Validation period. Internal tides are characterised off the Amazon shelf in the tropical Atlantic. SWOT observes internal tides over a wide range of spatial scales and highlights structures between 50–2 km, which are very intense and difficult to predict. Compared to the reference used to correct the altimetry data, the internal tide derived from SWOT performs very well.
Stephanie Leroux, Jean-Michel Brankart, Aurélie Albert, Laurent Brodeau, Jean-Marc Molines, Quentin Jamet, Julien Le Sommer, Thierry Penduff, and Pierre Brasseur
Ocean Sci., 18, 1619–1644, https://doi.org/10.5194/os-18-1619-2022, https://doi.org/10.5194/os-18-1619-2022, 2022
Short summary
Short summary
The goal of the study is to evaluate the predictability of the ocean circulation
at a kilometric scale, in order to anticipate the requirements of the future operational forecasting systems. For that purpose, ensemble experiments have been performed with a regional model for the Western Mediterranean (at 1/60° horizontal resolution). From these ensemble experiments, we show that it is possible to compute targeted predictability scores, which depend on initial and model uncertainties.
Quentin Devresse, Kevin W. Becker, Arne Bendinger, Johannes Hahn, and Anja Engel
Biogeosciences, 19, 5199–5219, https://doi.org/10.5194/bg-19-5199-2022, https://doi.org/10.5194/bg-19-5199-2022, 2022
Short summary
Short summary
Eddies are ubiquitous in the ocean and alter physical, chemical, and biological processes. However, how they affect organic carbon production and consumption is largely unknown. Here we show how an eddy triggers a cascade effect on biomass production and metabolic activities of phyto- and bacterioplankton. Our results may contribute to the improvement of biogeochemical models used to estimate carbon fluxes in the ocean.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Sophie Cravatte, Guillaume Serazin, Thierry Penduff, and Christophe Menkes
Ocean Sci., 17, 487–507, https://doi.org/10.5194/os-17-487-2021, https://doi.org/10.5194/os-17-487-2021, 2021
Short summary
Short summary
The various currents in the southwestern Pacific Ocean contribute to the redistribution of waters from the subtropical gyre equatorward and poleward. The drivers of their interannual variability are not completely understood but are usually thought to be related to well-known climate modes of variability. Here, we suggest that oceanic chaotic variability alone, which is by definition unpredictable, explains the majority of this interannual variability south of 20° S.
Guillaume Sérazin, Frédéric Marin, Lionel Gourdeau, Sophie Cravatte, Rosemary Morrow, and Mei-Ling Dabat
Ocean Sci., 16, 907–925, https://doi.org/10.5194/os-16-907-2020, https://doi.org/10.5194/os-16-907-2020, 2020
Fabrice Ardhuin, Yevgueny Aksenov, Alvise Benetazzo, Laurent Bertino, Peter Brandt, Eric Caubet, Bertrand Chapron, Fabrice Collard, Sophie Cravatte, Jean-Marc Delouis, Frederic Dias, Gérald Dibarboure, Lucile Gaultier, Johnny Johannessen, Anton Korosov, Georgy Manucharyan, Dimitris Menemenlis, Melisa Menendez, Goulven Monnier, Alexis Mouche, Frédéric Nouguier, George Nurser, Pierre Rampal, Ad Reniers, Ernesto Rodriguez, Justin Stopa, Céline Tison, Clément Ubelmann, Erik van Sebille, and Jiping Xie
Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, https://doi.org/10.5194/os-14-337-2018, 2018
Short summary
Short summary
The Sea surface KInematics Multiscale (SKIM) monitoring mission is a proposal for a future satellite that is designed to measure ocean currents and waves. Using a Doppler radar, the accurate measurement of currents requires the removal of the mean velocity due to ocean wave motions. This paper describes the main processing steps needed to produce currents and wave data from the radar measurements. With this technique, SKIM can provide unprecedented coverage and resolution, over the global ocean.
Related subject area
Approach: Numerical Models | Properties and processes: Internal waves, turbulence and mixing
Seasonal variability in the semidiurnal internal tide – a comparison between sea surface height and energetics
Internal and forced ocean variability in the Mediterranean Sea
Non-negligible impact of Stokes drift and wave-driven Eulerian currents on simulated surface particle dispersal in the Mediterranean Sea
Numerical investigation of interaction between anticyclonic eddy and semidiurnal internal tide in the northeastern South China Sea
Internal tides off the Amazon shelf – Part 1: The importance of the structuring of ocean temperature during two contrasted seasons
Harpreet Kaur, Maarten C. Buijsman, Zhongxiang Zhao, and Jay F. Shriver
Ocean Sci., 20, 1187–1208, https://doi.org/10.5194/os-20-1187-2024, https://doi.org/10.5194/os-20-1187-2024, 2024
Short summary
Short summary
This study examines the seasonal variability in internal tide sea surface height in a global model simulation. We also compare this with altimetry and the seasonal variability in the internal tide energy terms. Georges Bank and the Arabian Sea show the strongest seasonal variability. This study also reveals that sea surface height may not be the most accurate indicator of the true seasonal variability in the internal tides because it is modulated by the seasonal variability in stratification.
Roberta Benincasa, Giovanni Liguori, Nadia Pinardi, and Hans von Storch
Ocean Sci., 20, 1003–1012, https://doi.org/10.5194/os-20-1003-2024, https://doi.org/10.5194/os-20-1003-2024, 2024
Short summary
Short summary
Ocean dynamics result from the interplay of internal processes and external inputs, primarily from the atmosphere. It is crucial to discern between these factors to gauge the ocean's intrinsic predictability and to be able to attribute a signal under study to either external factors or internal variability. Employing a simple analysis, we successfully characterized this variability in the Mediterranean Sea and compared it with the oceanic response induced by atmospheric conditions.
Siren Rühs, Ton van den Bremer, Emanuela Clementi, Michael C. Denes, Aimie Moulin, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-1002, https://doi.org/10.5194/egusphere-2024-1002, 2024
Short summary
Short summary
Simulating the transport of floating particles on the ocean surface is crucial for solving many societal issues. Here, we investigate how the representation of wind-generated surface waves impacts particle transport simulations. We find that different wave-driven processes can alter the transport patterns, and that commonly adopted approximations are not always adequate. This implies that ideally coupled ocean-wave models should be used for surface particle transport simulations.
Liming Fan, Hui Sun, Qingxuan Yang, and Jianing Li
Ocean Sci., 20, 241–264, https://doi.org/10.5194/os-20-241-2024, https://doi.org/10.5194/os-20-241-2024, 2024
Short summary
Short summary
Understanding internal tide generation and propagation is crucial for predicting large-scale circulation and climate change. Internal tides are prone to interacting with background currents with similar spatial scales during propagation. This paper investigates the physical mechanism of the interaction between semidiurnal internal tides and an anticyclonic eddy in the northeastern South China Sea using a numerical model with high spatial and temporal resolution.
Fernand Assene, Ariane Koch-Larrouy, Isabelle Dadou, Michel Tchilibou, Guillaume Morvan, Jérôme Chanut, Alex Costa da Silva, Vincent Vantrepotte, Damien Allain, and Trung-Kien Tran
Ocean Sci., 20, 43–67, https://doi.org/10.5194/os-20-43-2024, https://doi.org/10.5194/os-20-43-2024, 2024
Short summary
Short summary
Twin simulations, with and without tides, are used to assess the impact of internal tides (ITs) on ocean temperature off the Amazon mouth at a seasonal scale. We found that in the surface layers, ITs and barotropic tides cause a cooling effect on sea surface temperature, subsequently leading to an increase in the net heat flux between the atmosphere and ocean. Vertical mixing is identified as the primary driver, followed by vertical and horizontal advection.
Cited articles
Alford, M. H.: Redistribution of energy available for ocean mixing by
long-range propagation of internal waves, Nature, 423, 159–162,
https://doi.org/10.1038/nature01628, 2003. a
Alford, M. H., MacKinnon, J. A., Nash, J. D., Simmons, H., Pickering, A.,
Klymak, J. M., Pinkel, R., Sun, O., Rainville, L., Musgrave, R., et al.:
Energy flux and dissipation in Luzon Strait: Two tales of two ridges, J.
Phys. Ocean., 41, 2211–2222, https://doi.org/10.1175/JPO-D-11-073.1, 2011. a
Alford, M. H., Simmons, H. L., Marques, O. B., and Girton, J. B.: Internal tide
attenuation in the North Pacific, Geophys. Res. Lett., 46,
8205–8213, https://doi.org/10.1029/2019GL082648, 2019. a
Ansong, J. K., Arbic, B. K., Simmons, H. L., Alford, M. H., Buijsman, M. C.,
Timko, P. G., Richman, J. G., Shriver, J. F., and Wallcraft, A. J.:
Geographical distribution of diurnal and semidiurnal parametric subharmonic
instability in a global ocean circulation model, J. Phys.
Ocean., 48, 1409–1431, https://doi.org/10.1175/JPO-D-17-0164.1, 2018. a
Arbic, B. K., Alford, M. H., Ansong, J. K., Buijsman, M. C., Ciotti, R. B.,
Farrar, J. T., Hallberg, R. W., Henze, C. E., Hill, C. N., Luecke, C. A.,
Menemenlis, D., Metzger, E. J., Muller, M., Nelson, A. D., Nelson, B. C., Ngodock, H. E., Ponte, R. M., Richman, J. G., Savage, A. C., Scott, R. B., Shriver, J. F., Simmons, H. L., Souopgui, I., Timko, P. G., Wallcraft, A. J., Zamudio, L., and Zhao, Z.: Primer on global internal tide and internal gravity wave continuum
modeling in HYCOM and MITgcm, New Front. Operat. Oceanogr.,
307–392, https://doi.org/10.17125/gov2018.ch13,
2018. a, b
Baker, L. E. and Sutherland, B. R.: The evolution of superharmonics excited by
internal tides in non-uniform stratification, J. Fluid Mech.,
891, https://doi.org/10.1017/jfm.2020.188, 2020. a
Balidakis, K., Sulzbach, R., Shihora, L., Dahle, C., Dill, R., and Dobslaw, H.:
Atmospheric contributions to global ocean tides for satellite gravimetry,
J. Adv. Model. Earth Syst., 14, e2022MS003193,
https://doi.org/10.1029/2022MS003193, 2022. a
Ballarotta, M., Ubelmann, C., Pujol, M.-I., Taburet, G., Fournier, F., Legeais, J.-F., Faugère, Y., Delepoulle, A., Chelton, D., Dibarboure, G., and Picot, N.: On the resolutions of ocean altimetry maps, Ocean Sci., 15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, 2019. a, b
Balmforth, N., Ierley, G., and Young, W.: Tidal conversion by subcritical
topography, J. Phys. Ocean., 32, 2900–2914,
https://doi.org/10.1175/1520-0485(2002)032<2900:TCBST>2.0.CO;2, 2002. a, b
Bell Jr., T.: Topographically generated internal waves in the open ocean,
J. Geophys. Res., 80, 320–327, https://doi.org/10.1029/JC080i003p00320,
1975. a
Buijsman, M. C., Klymak, J. M., Legg, S., Alford, M. H., Farmer, D., MacKinnon,
J. A., Nash, J. D., Park, J.-H., Pickering, A., and Simmons, H.:
Three-dimensional double-ridge internal tide resonance in Luzon Strait,
J. Phys. Ocean., 44, 850–869, https://doi.org/10.1175/JPO-D-13-024.1,
2014. a
Buijsman, M. C., Arbic, B. K., Richman, J. G., Shriver, J. F., Wallcraft,
A. J., and Zamudio, L.: Semidiurnal internal tide incoherence in the
equatorial p acific, J. Geophys. Res.:-Oceans, 122,
5286–5305, https://doi.org/10.1002/2016JC012590, 2017. a
Buijsman, M. C., Stephenson, G. R., Ansong, J. K., Arbic, B. K., Green, J. M.,
Richman, J. G., Shriver, J. F., Vic, C., Wallcraft, A. J., and Zhao, Z.: On
the interplay between horizontal resolution and wave drag and their effect on
tidal baroclinic mode waves in realistic global ocean simulations, Ocean
Modell., 152, 101656, https://doi.org/10.1016/j.ocemod.2020.101656, 2020. a, b
Callies, J., Ferrari, R., Klymak, J., et al.: Seasonality in submesoscale turbulence, Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862, 2015. a
Carrere, L., Arbic, B. K., Dushaw, B., Egbert, G., Erofeeva, S., Lyard, F., Ray, R. D., Ubelmann, C., Zaron, E., Zhao, Z., Shriver, J. F., Buijsman, M. C., and Picot, N.: Accuracy assessment of global internal-tide models using satellite altimetry, Ocean Sci., 17, 147–180, https://doi.org/10.5194/os-17-147-2021, 2021. a, b
Carter, G. S., Merrifield, M., Becker, J. M., Katsumata, K., Gregg, M., Luther,
D., Levine, M., Boyd, T. J., and Firing, Y.: Energetics of M2
barotropic-to-baroclinic tidal conversion at the Hawaiian Islands, J. Phys. Ocean., 38, 2205–2223, https://doi.org/10.1175/2008JPO3860.1, 2008. a, b, c, d, e, f, g
Chapman, S. and Lindzen, R. S.: Atmospheric tides: thermal and gravitational,
Vol. 15, Springer Science & Business Media, https://doi.org/10.1007/978-94-010-3399-2,
1969. a
Couvelard, X.: Structure et dynamique des jets barotropes créés pas les
îles du Pacifique Sud-Ouest., PhD thesis, Université Paul
Sabatier-Toulouse III, 2007. a
Couvelard, X., Marchesiello, P., Gourdeau, L., and Lefèvre, J.: Barotropic
zonal jets induced by islands in the southwest Pacific, J. Phys.
Ocean., 38, 2185–2204, https://doi.org/10.1175/2008JPO3903.1, 2008. a
Cravatte, S., Kestenare, E., Eldin, G., Ganachaud, A., Lefèvre, J., Marin,
F., Menkes, C., and Aucan, J.: Regional circulation around New Caledonia from
two decades of observations, J. Mar. Syst., 148, 249–271,
https://doi.org/10.1016/j.jmarsys.2015.03.004, 2015. a, b
de Lavergne, C., Falahat, S., Madec, G., Roquet, F., Nycander, J., and Vic, C.:
Toward global maps of internal tide energy sinks, Ocean Modell., 137,
52–75, https://doi.org/10.1016/j.ocemod.2019.03.010, 2019. a, b, c, d
de Lavergne, C., Vic, C., Madec, G., Roquet, F., Waterhouse, A. F., Whalen, C.,
Cuypers, Y., Bouruet-Aubertot, P., Ferron, B., and Hibiya, T.: A
parameterization of local and remote tidal mixing, J. Adv. Model. Earth Syst., 12, e2020MS002065, https://doi.org/10.1029/2020MS002065,
2020. a, b, c
Debreu, L., Vouland, C., and Blayo, E.: AGRIF: Adaptive grid refinement in
Fortran, Comput. Geosci., 34, 8–13,
https://doi.org/10.1016/j.cageo.2007.01.009, 2008. a
Derville, S., Torres, L. G., Zerbini, A. N., Oremus, M., and Garrigue, C.:
Horizontal and vertical movements of humpback whales inform the use of
critical pelagic habitats in the western South Pacific, Sci. Rep.,
10, 4871, https://doi.org/10.1038/s41598-020-61771-z, 2020. a
Dufau, C., Orsztynowicz, M., Dibarboure, G., Morrow, R., and Le Traon, P.-Y.:
Mesoscale resolution capability of altimetry: Present and future, J. Geophys. Res.-Oceans, 121, 4910–4927, https://doi.org/10.1002/2015JC010904,
2016. a
Dunphy, M. and Lamb, K. G.: Focusing and vertical mode scattering of the first
mode internal tide by mesoscale eddy interaction, J. Geophys. Res.-Oceans, 119, 523–536, https://doi.org/10.1002/2013JC009293, 2014. a
Dunphy, M., Ponte, A. L., Klein, P., and Le Gentil, S.: Low-mode internal tide
propagation in a turbulent eddy field, J. Phys. Ocean., 47,
649–665, https://doi.org/10.1175/JPO-D-16-0099.1, 2017. a
Durand, F., Marin, F., Fuda, J.-L., and Terre, T.: The east caledonian current:
a case example for the intercomparison between altika and in situ
measurements in a boundary current, Mar. Geodesy, 40, 1–22,
https://doi.org/10.1080/01490419.2016.1258375, 2017. a, b
Dushaw, B. D., Howe, B. M., Cornuelle, B. D., Worcester, P. F., and Luther,
D. S.: Barotropic and baroclinic tides in the central North Pacific Ocean
determined from long-range reciprocal acoustic transmissions, J.
Phys. Ocean., 25, 631–647,
https://doi.org/10.1175/1520-0485(1995)025<0631:BABTIT>2.0.CO;2, 1995. a
d’Ovidio, F., Pascual, A., Wang, J., Doglioli, A. M., Jing, Z., Moreau, S.,
Grégori, G., Swart, S., Speich, S., Cyr, F., et al.: Frontiers in
fine-scale in situ studies: Opportunities during the swot fast sampling
phase, Front. Mar. Sci., 6, 168, https://doi.org/10.3389/fmars.2019.00168,
2019. a
Falahat, S., Nycander, J., De Lavergne, C., Roquet, F., Madec, G., and Vic, C.:
Global estimates of internal tide generation rates at 1/30∘ resolution, SEANOE [data set], https://doi.org/10.17882/58153, 2018. a
Fu, L.-L. and Ferrari, R.: Observing oceanic submesoscale processes from space,
EOS T. Am. Geophys. Un., 89, 488–488,
https://doi.org/10.1029/2008EO480003, 2008. a
Fu, L.-L. and Ubelmann, C.: On the transition from profile altimeter to swath
altimeter for observing global ocean surface topography, J.
Atmos. Ocean. Tech., 31, 560–568,
https://doi.org/10.1175/JTECH-D-13-00109.1, 2014. a
Fu, L.-L., Alsdorf, D., Morrow, R., Rodriguez, E., and Mognard, N.: SWOT: the
Surface Water and Ocean Topography Mission: wide-swath altimetric elevation
on Earth, Tech. rep., Pasadena, CA: Jet Propulsion Laboratory, National
Aeronautics and Space, http://hdl.handle.net/2014/41996 (last access: 16 May 2023),
2012. a
Ganachaud, A., Vega, A., Rodier, M., Dupouy, C., Maes, C., Marchesiello, P.,
Eldin, G., Ridgway, K., and Le Borgne, R.: Observed impact of upwelling
events on water properties and biological activity off the southwest coast of
New Caledonia, Mar. Pollut. Bull., 61, 449–464,
https://doi.org/10.1016/j.marpolbul.2010.06.042, 2010. a
Gardes, L., Tessier, E., Allain, V., Alloncle, N., Baudat-Franceschi, J.,
Butaud, J., Collot, J., Etaix-Bonnin, R., Hubert, A., Jourdan, H., Loisier A., Menkès, C., Rouillard, P., Samadi, S., Vidal, E., and Yokohama, Y.:
Analyse stratégique de l'Espace maritime de la
Nouvelle-Calédonie–vers une gestion intégrée, Nouméa: Agence
des aires marines protégées, https://doi.org/10.13140/RG.2.1.2888.0803, 2014. a
Garrett, C. and Kunze, E.: Internal tide generation in the deep ocean, Annu.
Rev. Fluid Mech., 39, 57–87, https://doi.org/10.1146/annurev.fluid.39.050905.110227,
2007. a
Gaspar, P., Grégoris, Y., and Lefevre, J.-M.: A simple eddy kinetic energy
model for simulations of the oceanic vertical mixing: Tests at station Papa
and Long-Term Upper Ocean Study site, J. Geophys. Res.-Oceans, 95, 16179–16193, https://doi.org/10.1029/JC095iC09p16179, 1990. a
GEBCO, B.: The GEBCO_2019 Grid–a Continuous Terrain Model of the Global
Oceans and Land, BODC [data set], 2019. a
Gerkema, T.: Internal and interfacial tides: beam scattering and local
generation of solitary waves, J. Mar. Res., 59, 227–255,
https://doi.org/10.1357/002224001762882646, 2001. a, b
Gill, A. E.: Atmosphere-ocean dynamics, Vol. 30, Academic press, ISBN 9780122835223, 1982. a
Hendershott, M. C.: Long waves and ocean tides, in: Warren, B., Wunsch, C. (Eds.), Evolution of Physical Oceanography, Scientific Surveys in Honor of Henry Stommel, MIT Press, Cambridge, MA, 292–341, 1981. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Jeon, C.-H., Buijsman, M. C., Wallcraft, A. J., Shriver, J. F., Arbic, B. K.,
Richman, J. G., and Hogan, P. J.: Improving surface tidal accuracy through
two-way nesting in a global ocean model, Ocean Modell., 137, 98–113,
https://doi.org/10.1016/j.ocemod.2019.03.007, 2019. a, b
Kelly, S., Nash, J., and Kunze, E.: Internal-tide energy over topography,
J. Geophys. Res.-Oceans, 115, https://doi.org/10.1029/2009JC005618,
2010. a
Kelly, S., Jones, N., Nash, J., and Waterhouse, A.: The geography of
semidiurnal mode-1 internal-tide energy loss, Geophys. Res. Lett.,
40, 4689–4693, https://doi.org/10.1002/grl.50872, 2013. a
Keppler, L., Cravatte, S., Chaigneau, A., Pegliasco, C., Gourdeau, L., and
Singh, A.: Observed characteristics and vertical structure of mesoscale
eddies in the southwest tropical Pacific, J. Geophys. Res.-Oceans, 123, 2731–2756, https://doi.org/10.1002/2017JC013712, 2018. a
Kunze, E.: Internal-wave-driven mixing: Global geography and budgets, J. Phys. Ocean., 47, 1325–1345, https://doi.org/10.1175/JPO-D-16-0141.1,
2017a. a
Kunze, E.: The internal-wave-driven meridional overturning circulation, J. Phys. Ocean., 47, 2673–2689, https://doi.org/10.1175/JPO-D-16-0142.1,
2017b. a
Lahaye, N., Gula, J., and Roullet, G.: Sea surface signature of internal tides,
Geophys. Res. Lett., 46, 3880–3890, https://doi.org/10.1029/2018GL081848,
2019. a
Lahaye, N., Gula, J., and Roullet, G.: Internal Tide Cycle and Topographic
Scattering Over the North Mid-Atlantic Ridge, J. Geophys.
Res.-Oceans, 125, e2020JC016376, https://doi.org/10.1029/2020JC016376, 2020. a, b, c
Lamb, K. G. and Dunphy, M.: Internal wave generation by tidal flow over a
two-dimensional ridge: Energy flux asymmetries induced by a steady surface
trapped current, J. Fluid Mech., 836, 192–221,
https://doi.org/10.1017/jfm.2017.800, 2018. a
Laurent, L. C. S. and Nash, J. D.: An examination of the radiative and
dissipative properties of deep ocean internal tides, Deep-Sea Res. Pt. I, 51, 3029–3042,
https://doi.org/10.1016/j.dsr2.2004.09.008, 2004. a, b
Laurent, L. S., Stringer, S., Garrett, C., and Perrault-Joncas, D.: The
generation of internal tides at abrupt topography, Deep-Sea Res. Pt. I, 50, 987–1003,
https://doi.org/10.1016/S0967-0637(03)00096-7, 2003. a
Le Traon, P.-Y., Klein, P., Hua, B. L., and Dibarboure, G.: Do altimeter
wavenumber spectra agree with the interior or surface quasigeostrophic
theory?, J. Phys. Ocean., 38, 1137–1142,
https://doi.org/10.1175/2007JPO3806.1, 2008. a
Legg, S. and Huijts, K. M.: Preliminary simulations of internal waves and
mixing generated by finite amplitude tidal flow over isolated topography,
Deep-Sea Res. Pt. II, 53, 140–156,
https://doi.org/10.1016/j.dsr2.2005.09.014, 2006. a, b, c
Leichter, J. J., Stewart, H. L., and Miller, S. L.: Episodic nutrient transport
to Florida coral reefs, Limnol. Oceanogr., 48, 1394–1407,
https://doi.org/10.4319/lo.2003.48.4.1394, 2003. a
Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L., and Picot, N.: FES2014 global ocean tide atlas: design and performance, Ocean Sci., 17, 615–649, https://doi.org/10.5194/os-17-615-2021, 2021. a, b
MacKinnon, J. A., Zhao, Z., Whalen, C. B., Waterhouse, A. F., Trossman, D. S.,
Sun, O. M., Laurent, L. C. S., Simmons, H. L., Polzin, K., Pinkel, R.,
Pickering, A., Norton, N. J., Nash, J. D., Musgrave, R., Merchant, L. M., Melet, A. V., Mater, B., Legg, S., Large, W. G., Kunze, E., Klymak, J. M., Jochum, M., Jayne, S. R., Hallberg, R. W., Griffies, S. M., Diggs, S., Danabasoglu, G., Chassignet, E. P., Buijsman, M. C., Bryan, F. O., Briegleb, B. P., Barna, A., Arbic, B. K., Ansong, J. K., and Alford, M. H.: Climate process team on internal wave–driven ocean mixing, B. Am. Meteorol. Soc., 98, 2429–2454,
https://doi.org/10.1175/BAMS-D-16-0030.1, 2017. a
Madec, G. and Team, N. S.: NEMO ocean engine, no. 27 in Scientific Notes of
Climate Modelling Center, Zenodo, https://doi.org/10.5281/zenodo.1464816, backup
Publisher: Institut Pierre-Simon Laplace (IPSL) ISSN 1288-1619, 2023. a
Mazloff, M. R., Cornuelle, B., Gille, S. T., and Wang, J.: The Importance of
Remote Forcing for Regional Modeling of Internal Waves, J. Geophys. Res.-Oceans, 125, e2019JC015623, https://doi.org/10.1029/2019JC015623, 2020. a
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs
Seawater (GSW) oceanographic toolbox, Scor/Iapso WG, 127, 1–28, 2011. a
Melet, A., Hallberg, R., Legg, S., and Polzin, K.: Sensitivity of the ocean
state to the vertical distribution of internal-tide-driven mixing, J.
Phys. Ocean., 43, 602–615, https://doi.org/10.1175/JPO-D-12-055.1, 2013. a
Menkès, C. E., Allain, V., Rodier, M., Gallois, F., Lebourges-Dhaussy, A.,
Hunt, B. P., Smeti, H., Pagano, M., Josse, E., Daroux, A., Lehodey, P., Senina, I., Kestenare, E., Lorrain, A., and Nicol, S.: Seasonal
oceanography from physics to micronekton in the south-west Pacific, Deep-Sea Res. Pt. II, 113, 125–144,
https://doi.org/10.1016/j.dsr2.2014.10.026, 2015. a
Merrifield, M. A. and Holloway, P. E.: Model estimates of M2 internal tide
energetics at the Hawaiian Ridge, J. Geophys. Res.-Oceans,
107, 5–1, https://doi.org/10.1029/2001JC000996, 2002. a, b
Morrow, R., Fu, L.-L., Ardhuin, F., Benkiran, M., Chapron, B., Cosme, E.,
d’Ovidio, F., Farrar, J. T., Gille, S. T., Lapeyre, G., Le Traon, P.-Y., Pascual, A., Ponte, A., Qiu, B., Rascle, N., Ubelmann, C., Wang, J., Zaron, and E. D.: Global
observations of fine-scale ocean surface topography with the Surface Water
and Ocean Topography (SWOT) mission, Front. Mar. Sci., 6, 232,
https://doi.org/10.3389/fmars.2019.00232, 2019. a, b, c
Munk, W. and Wunsch, C.: Abyssal recipes II: Energetics of tidal and wind
mixing, Deep-Sea Res. Pt. I, 45,
1977–2010, https://doi.org/10.1016/S0967-0637(98)00070-3, 1998. a
Nelson, A., Arbic, B., Menemenlis, D., Peltier, W., Alford, M., Grisouard, N.,
and Klymak, J.: Improved internal wave spectral continuum in a regional ocean
model, J. Geophys. Res.-Oceans, 125, e2019JC015974,
https://doi.org/10.1029/2019JC015974, 2020. a
Niwa, Y. and Hibiya, T.: Numerical study of the spatial distribution of the M2
internal tide in the Pacific Ocean, J. Geophys. Res.-Oceans,
106, 22441–22449, https://doi.org/10.1029/2000JC000770, 2001. a, b
Niwa, Y. and Hibiya, T.: Three-dimensional numerical simulation of M2 internal
tides in the East China Sea, J. Geophys. Res.-Oceans, 109,
https://doi.org/10.1029/2003JC001923, 2004. a
Nugroho, D.: The tides in a general circulation model in the indonesian sras,
PhD thesis, Université Paul Sabatier-Toulouse III, 2017. a
Nycander, J.: Generation of internal waves in the deep ocean by tides, J. Geophys. Res.-Oceans, 110, https://doi.org/10.1029/2004JC002487, 2005. a
Olbers, D., Pollmann, F., and Eden, C.: On PSI interactions in internal gravity
wave fields and the decay of baroclinic tides, J. Phys. Ocean., 50, 751–771, https://doi.org/10.1175/JPO-D-19-0224.1, 2020. a
Payri, C. E., Allain, V., Aucan, J., David, C., David, V., Dutheil, C.,
Loubersac, L., Menkes, C., Pelletier, B., Pestana, G., and Samadi, S.: New caledonia,
in: World Seas: An Environmental Evaluation, Elsevier, 593–618,
https://doi.org/10.1016/B978-0-08-100853-9.00035-X, 2019. a
Pelletier, B.: Geology of the New Caledonia region and its implications for the
study of the New Caledonian biodiversity, Compendium of marines species from
New Caledonia, Dossiers Scientifiques et Techniques, II7, 19–32, 2007. a
Ponte, A. L., Klein, P., Dunphy, M., and Le Gentil, S.: Low-mode internal tides
and balanced dynamics disentanglement in altimetric observations: Synergy
with surface density observations, J. Geophys. Res.-Oceans,
122, 2143–2155, https://doi.org/10.1002/2016JC012214, 2017. a
Qiu, B. and Chen, S.: Seasonal modulations in the eddy field of the South
Pacific Ocean, J. Phys. Ocean., 34, 1515–1527,
https://doi.org/10.1175/1520-0485(2004)034<1515:SMITEF>2.0.CO;2, 2004. a, b, c
Qiu, B., Scott, R. B., and Chen, S.: Length scales of eddy generation and
nonlinear evolution of the seasonally modulated South Pacific Subtropical
Countercurrent, J. Phys. Ocean., 38, 1515–1528,
https://doi.org/10.1175/2007JPO3856.1, 2008. a
Qiu, B., Chen, S., and Kessler, W. S.: Source of the 70-day mesoscale eddy
variability in the Coral Sea and the North Fiji Basin, J. Phys. Ocean., 39, 404–420, https://doi.org/10.1175/2008JPO3988.1, 2009. a, b, c, d
Qiu, B., Chen, S., Klein, P., Wang, J., Torres, H., Fu, L.-L., and Menemenlis,
D.: Seasonality in transition scale from balanced to unbalanced motions in
the world ocean, J. Phys. Ocean., 48, 591–605,
https://doi.org/10.1175/JPO-D-17-0169.1, 2018. a
Qu, T. and Lindstrom, E. J.: A climatological interpretation of the circulation
in the western South Pacific, J. Phys. Ocean., 32,
2492–2508, https://doi.org/10.1175/1520-0485(2002)032<2492:ACIOTC>2.0.CO;2, 2002. a
Rainville, L. and Pinkel, R.: Propagation of low-mode internal waves through
the ocean, J. Phys. Ocean., 36, 1220–1236,
https://doi.org/10.1175/JPO2889.1, 2006. a
Ray, R. D. and Zaron, E. D.: M2 internal tides and their observed wavenumber
spectra from satellite altimetry, J. Phys. Ocean., 46,
3–22, https://doi.org/10.1175/JPO-D-15-0065.1, 2016. a, b
Renault, L., Molemaker, M. J., McWilliams, J. C., Shchepetkin, A. F.,
Lemarié, F., Chelton, D., Illig, S., and Hall, A.: Modulation of wind
work by oceanic current interaction with the atmosphere, J. Phys. Ocean., 46, 1685–1704, https://doi.org/10.1175/JPO-D-15-0232.1, 2016. a
Ridgway, K. and Dunn, J.: Mesoscale structure of the mean East Australian
Current System and its relationship with topography, Prog. Oceanogr., 56, 189–222, https://doi.org/10.1016/S0079-6611(03)00004-1, 2003. a
Ridgway, K., Dunn, J., and Wilkin, J.: Ocean interpolation by four-dimensional
weighted least squares–Application to the waters around Australasia,
J. Atmos. Ocean. Tech., 19, 1357–1375,
https://doi.org/10.1175/1520-0426(2002)019<1357:OIBFDW>2.0.CO;2, 2002. a
Rocha, C. B., Gille, S. T., Chereskin, T. K., and Menemenlis, D.: Seasonality of submesoscale dynamics in the Kuroshio Extension, 43, 11304–11311, https://doi.org/10.1002/2016GL071349, 2016. a
Roger, J., Pelletier, B., Duphil, M., Lefèvre, J., Aucan, J., Lebellegard, P., Thomas, B., Bachelier, C., and Varillon, D.: The Mw 7.5 Tadine (Maré, Loyalty Islands) earthquake and related tsunami of 5 December 2018: seismotectonic context and numerical modeling, Nat. Hazards Earth Syst. Sci., 21, 3489–3508, https://doi.org/10.5194/nhess-21-3489-2021, 2021. a
Samadi, S., Bottan, L., Macpherson, E., De Forges, B. R., and Boisselier,
M.-C.: Seamount endemism questioned by the geographic distribution and
population genetic structure of marine invertebrates, Mar. Biol., 149,
1463–1475, https://doi.org/10.1007/s00227-006-0306-4, 2006. a
Savage, A. C., Arbic, B. K., Alford, M. H., Ansong, J. K., Farrar, J. T.,
Menemenlis, D., O'Rourke, A. K., Richman, J. G., Shriver, J. F., Voet, G.,
Wallcraft, A. J., and Zamudio, L.: Spectral decomposition of internal gravity wave sea surface height in
global models, J. Geophys. Res.-Oceans, 122, 7803–7821,
https://doi.org/10.1002/2017JC013009, 2017. a
Sérazin, G., Marin, F., Gourdeau, L., Cravatte, S., Morrow, R., and Dabat, M.-L.: Scale-dependent analysis of in situ observations in the mesoscale to submesoscale range around New Caledonia, Ocean Sci., 16, 907–925, https://doi.org/10.5194/os-16-907-2020, 2020. a
Shakespeare, C. J. and Hogg, A. M.: On the momentum flux of internal tides,
J. Phys. Ocean., 49, 993–1013,
https://doi.org/10.1175/JPO-D-18-0165.1, 2019. a
Simmons, H. L., Hallberg, R. W., and Arbic, B. K.: Internal wave generation in
a global baroclinic tide model, Deep-Sea Res. Pt. II, 51, 3043–3068, https://doi.org/10.1016/j.dsr2.2004.09.015, 2004. a
Siyanbola, O. Q., Buijsman, M. C., Delpech, A., Renault, L., Barkan, R.,
Shriver, J. F., Arbic, B. K., and McWilliams, J. C.: Remote internal wave
forcing of regional ocean simulations near the US West Coast, Ocean
Modell., 181, 102154, https://doi.org/10.1016/j.ocemod.2022.102154, 2023. a
Smith, S. G. L. and Young, W.: Conversion of the barotropic tide, J. Phys. Ocean., 32, 1554–1566,
https://doi.org/10.1175/1520-0485(2002)032<1554:COTBT>2.0.CO;2, 2002. a
St. Laurent, L. and Garrett, C.: The role of internal tides in mixing the deep
ocean, J. Phys. Ocean., 32, 2882–2899,
https://doi.org/10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2, 2002. a
St. Laurent, L., Simmons, H., and Jayne, S.: Estimating tidally driven mixing
in the deep ocean, Geophys. Res. Lett., 29, 21-1-21-4,
https://doi.org/10.1029/2002GL015633, 2002. a
Sutherland, B. R. and Dhaliwal, M. S.: The nonlinear evolution of internal
tides, Part 1: the superharmonic cascade, J. Fluid Mech., 948,
A21, https://doi.org/10.1017/jfm.2022.689, 2022. a
Tchilibou, M., Gourdeau, L., Lyard, F., Morrow, R., Koch Larrouy, A., Allain, D., and Djath, B.: Internal tides in the Solomon Sea in contrasted ENSO conditions, Ocean Sci., 16, 615–635, https://doi.org/10.5194/os-16-615-2020, 2020. a, b, c
Tchilibou, M., Koch-Larrouy, A., Barbot, S., Lyard, F., Morel, Y., Jouanno, J., and Morrow, R.: Internal tides off the Amazon shelf during two contrasted seasons: interactions with background circulation and SSH imprints, Ocean Sci., 18, 1591–1618, https://doi.org/10.5194/os-18-1591-2022, 2022. a, b
Thakur, R., Arbic, B. K., Menemenlis, D., Momeni, K., Pan, Y., Peltier, W. R.,
Skitka, J., Alford, M. H., and Ma, Y.: Impact of vertical mixing
parameterizations on internal gravity wave spectra in regional ocean models,
Geophys. Res. Lett., 49, e2022GL099614,
https://doi.org/10.1029/2022GL099614, 2022. a
Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M., and DiMarco,
S. F.: True colors of oceanography: Guidelines for effective and accurate
colormap selection, Oceanography, 29, 9–13, https://doi.org/10.5670/oceanog.2016.66,
2016. a
Ubelmann, C., Carrere, L., Durand, C., Dibarboure, G., Faugère, Y., Ballarotta, M., Briol, F., and Lyard, F.: Simultaneous estimation of ocean mesoscale and coherent internal tide sea surface height signatures from the global altimetry record, Ocean Sci., 18, 469–481, https://doi.org/10.5194/os-18-469-2022, 2022. a
van der Velden, E.: CMasher: Scientific colormaps for making accessible,
informative and 'cmashing' plots, The Journal of Open Source Software, 5,
2004, https://doi.org/10.21105/joss.02004, 2020. a
Vergara, O., Morrow, R., Pujol, M.-I., Dibarboure, G., and Ubelmann, C.: Global submesoscale diagnosis using alongtrack satellite altimetry, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1073, 2022. a, b
Vic, C., Garabato, A. C. N., Green, J. M., Spingys, C., Forryan, A., Zhao, Z.,
and Sharples, J.: The lifecycle of semidiurnal internal tides over the
northern Mid-Atlantic Ridge, J. Phys. Ocean., 48, 61–80,
https://doi.org/10.1175/JPO-D-17-0121.1, 2018. a, b
Vic, C., Naveira Garabato, A. C., Green, J. M., Waterhouse, A. F., Zhao, Z.,
Melet, A., de Lavergne, C., Buijsman, M. C., and Stephenson, G. R.:
Deep-ocean mixing driven by small-scale internal tides, Nat.
Commun., 10, 2099, https://doi.org/10.1038/s41467-019-10149-5, 2019.
a, b, c, d, e, f, g, h, i, j
Waterhouse, A. F., MacKinnon, J. A., Nash, J. D., Alford, M. H., Kunze, E.,
Simmons, H. L., Polzin, K. L., Laurent, L. C. S., Sun, O. M., Pinkel, R.,
Talley, L. D., Whalen, C. B., Huussen, T. N., Carter, G. S., Fer, I., Waterman, S., Naveira Garabato, A. C., Sanford, T. B., and Lee, C. M.: Global patterns of diapycnal mixing from measurements of the
turbulent dissipation rate, J. Phys. Ocean., 44, 1854–1872,
https://doi.org/10.1175/JPO-D-13-0104.1, 2014. a
Wolanski, E. and Pickard, G.: Long-term observations of currents on the central
Great Barrier Reef continental shelf, Coral Reefs, 4, 47–57, 1985. a
Wyatt, A. S., Leichter, J. J., Toth, L. T., Miyajima, T., Aronson, R. B., and
Nagata, T.: Heat accumulation on coral reefs mitigated by internal waves,
Nat. Geosci., 13, 28–34, https://doi.org/10.1038/s41561-019-0486-4, 2020. a
Wyatt, A. S., Leichter, J. J., Washburn, L., Kui, L., Edmunds, P. J., and
Burgess, S. C.: Hidden heatwaves and severe coral bleaching linked to
mesoscale eddies and thermocline dynamics, Nat. Commun., 14, 25,
https://doi.org/10.1038/s41467-022-35550-5, 2023. a
Zaron, E. D.: Baroclinic tidal sea level from exact-repeat mission altimetry,
J. Phys. Ocean., 49, 193–210,
https://doi.org/10.1175/JPO-D-18-0127.1, 2019. a, b, c
Zaron, E. D. and Egbert, G. D.: Estimating open-ocean barotropic tidal
dissipation: The Hawaiian Ridge, J. Phys. Ocean., 36,
1019–1035, https://doi.org/10.1175/JPO2878.1, 2006. a, b
Zhao, Z., Alford, M. H., MacKinnon, J. A., and Pinkel, R.: Long-range
propagation of the semidiurnal internal tide from the Hawaiian Ridge, J. Phys. Ocean., 40, 713–736, https://doi.org/10.1175/2009JPO4207.1, 2010. a
Zhao, Z., Alford, M. H., Girton, J. B., Rainville, L., and Simmons, H. L.:
Global observations of open-ocean mode-1 M 2 internal tides, J. Phys. Ocean., 46, 1657–1684, https://doi.org/10.1175/JPO-D-15-0105.1, 2016. a, b, c
Zilberman, N., Becker, J., Merrifield, M., and Carter, G.: Model estimates of
M2 internal tide generation over Mid-Atlantic Ridge topography, J. Phys. Ocean., 39, 2635–2651, https://doi.org/10.1175/2008JPO4136.1, 2009. a, b
Zilberman, N., Merrifield, M., Carter, G., Luther, D., Levine, M., and Boyd,
T. J.: Incoherent nature of M2 internal tides at the Hawaiian Ridge, J. Phys. Ocean., 41, 2021–2036, https://doi.org/10.1175/JPO-D-10-05009.1,
2011. a, b
Short summary
New Caledonia is a hot spot of internal-tide generation due to complex bathymetry. Regional modeling quantifies the coherent internal tide and shows that most energy is converted in shallow waters and on very steep slopes. The region is a challenge for observability of balanced dynamics due to strong internal-tide sea surface height (SSH) signatures at similar wavelengths. Correcting the SSH for the coherent internal tide may increase the observability of balanced motion to < 100 km.
New Caledonia is a hot spot of internal-tide generation due to complex bathymetry. Regional...