Articles | Volume 18, issue 5
https://doi.org/10.5194/os-18-1321-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1321-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-platform study of the extreme bloom of the barrel jellyfish Rhizostoma pulmo (Cnidaria: Scyphozoa) in the northernmost gulf of the Mediterranean Sea (Gulf of Trieste) in April 2021
Nydia Catalina Reyes Suárez
CORRESPONDING AUTHOR
Oceanography Department, National Institute of Oceanography and Applied Geophysics – OGS, Trieste, Italy
Oceanography Department, National Institute of Oceanography and Applied Geophysics – OGS, Trieste, Italy
Laura Ursella
Oceanography Department, National Institute of Oceanography and Applied Geophysics – OGS, Trieste, Italy
Matjaž Ličer
Slovenian Environment Agency, Ljubljana, Slovenia
National Institute of Biology, Marine Biology Station, Piran, Slovenia
Massimo Celio
Regional Environmental Protection Agency of Friuli Venezia Giulia – FVG, Palmanova, Udine, Italy
Vanessa Cardin
Oceanography Department, National Institute of Oceanography and Applied Geophysics – OGS, Trieste, Italy
Related authors
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Matjaž Ličer, Solène Estival, Catalina Reyes-Suarez, Davide Deponte, and Anja Fettich
Nat. Hazards Earth Syst. Sci., 20, 2335–2349, https://doi.org/10.5194/nhess-20-2335-2020, https://doi.org/10.5194/nhess-20-2335-2020, 2020
Short summary
Short summary
In 2018 windsurfer’s mast broke about 1 km offshore during a scirocco storm in the northern Adriatic. He was drifting in severe conditions until he eventually beached alive and well in Sistiana (Italy) 24 h later. We conducted an interview with the survivor to reconstruct his trajectory. We simulate his trajectory in several ways and estimate the optimal search-and-rescue area for a civil rescue response. Properly calibrated virtual drifter properties are key to reliable rescue area forecasting.
Amirhossein Barzandeh, Marko Rus, Matjaž Ličer, Ilja Maljutenko, Jüri Elken, Priidik Lagemaa, and Rivo Uiboupin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3691, https://doi.org/10.5194/egusphere-2024-3691, 2024
Short summary
Short summary
We evaluated a deep-learning model, HIDRA2, for predicting sea levels along the Estonian coast and compared it to traditional numerical models. HIDRA2 performed better overall, offering faster forecasts and valuable uncertainty estimates using ensemble predictions.
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Paulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, Alfredo Izquierdo, Miguel Bruno, and Ingunn Skjelvan
Earth Syst. Sci. Data, 16, 5333–5356, https://doi.org/10.5194/essd-16-5333-2024, https://doi.org/10.5194/essd-16-5333-2024, 2024
Short summary
Short summary
As part of the ATL2MED demonstration experiment, two autonomous surface vehicles undertook a 9-month mission from the northeastern Atlantic to the Adriatic Sea. Biofouling affected the measurement of variables such as conductivity and dissolved oxygen. COVID-19 limited the availability of discrete samples for validation. We present correction methods for salinity and dissolved oxygen. We use model products to correct salinity and apply the Argo floats in-air correction method for oxygen
Marko Rus, Hrvoje Mihanović, Matjaž Ličer, and Matej Kristan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2068, https://doi.org/10.5194/egusphere-2024-2068, 2024
Short summary
Short summary
HIDRA3 is a novel deep-learning model for predicting sea levels and storm surges, offering significant improvements over previous models and numerical simulations. It utilizes data from multiple tide gauges, enhancing predictions even with limited historical data and during sensor outages. With its advanced architecture, HIDRA3 outperforms the current state-of-the-art models by achieving up to 15 % lower mean absolute error, proving effective for coastal flood forecasting in diverse conditions.
Peter Mlakar, Antonio Ricchi, Sandro Carniel, Davide Bonaldo, and Matjaž Ličer
Geosci. Model Dev., 17, 4705–4725, https://doi.org/10.5194/gmd-17-4705-2024, https://doi.org/10.5194/gmd-17-4705-2024, 2024
Short summary
Short summary
We propose a new point-prediction model, the DEep Learning WAVe Emulating model (DELWAVE), which successfully emulates the Simulating WAves Nearshore model (SWAN) over synoptic to climate timescales. Compared to control climatology over all wind directions, the mismatch between DELWAVE and SWAN is generally small compared to the difference between scenario and control conditions, suggesting that the noise introduced by surrogate modelling is substantially weaker than the climate change signal.
Felipe L. L. Amorim, Julien Le Meur, Achim Wirth, and Vanessa Cardin
Ocean Sci., 20, 463–474, https://doi.org/10.5194/os-20-463-2024, https://doi.org/10.5194/os-20-463-2024, 2024
Short summary
Short summary
Analysis of a high-frequency time series of thermohaline data measured at the EMSO-E2M3A regional facility in the southern Adriatic Pit (SAP) reveals a significant change in the double-diffusive regime in 2017 associated with the intrusion of extremely salty waters into the area, suggesting salt fingering as the dominant regime. The strong heat loss at the surface during this winter allowed deep convection to transport this high-salinity water from the intermediate to deep layers of the pit.
Sofia Flora, Laura Ursella, and Achim Wirth
Nonlin. Processes Geophys., 30, 515–525, https://doi.org/10.5194/npg-30-515-2023, https://doi.org/10.5194/npg-30-515-2023, 2023
Short summary
Short summary
An increasing amount of data allows us to move from low-order moments of fluctuating observations to their PDFs. We found the analytical fat-tailed PDF form (a combination of Gaussian and two-exponential convolutions) for 2 years of sea surface current increments in the Gulf of Trieste, using superstatistics and the maximum-entropy principle twice: on short and longer timescales. The data from different wind regimes follow the same analytical PDF, pointing towards a universal behaviour.
Marko Rus, Anja Fettich, Matej Kristan, and Matjaž Ličer
Geosci. Model Dev., 16, 271–288, https://doi.org/10.5194/gmd-16-271-2023, https://doi.org/10.5194/gmd-16-271-2023, 2023
Short summary
Short summary
We propose a new fast and reliable deep-learning architecture HIDRA2 for sea level and storm surge modeling. HIDRA2 features new feature encoders and a fusion-regression block. We test HIDRA2 on Adriatic storm surges, which depend on an interaction between tides and seiches. We demonstrate that HIDRA2 learns to effectively mimic the timing and amplitude of Adriatic seiches. This is essential for reliable HIDRA2 predictions of total storm surge sea levels.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Miroslav Gačić, Laura Ursella, Vedrana Kovačević, Milena Menna, Vlado Malačič, Manuel Bensi, Maria-Eletta Negretti, Vanessa Cardin, Mirko Orlić, Joël Sommeria, Ricardo Viana Barreto, Samuel Viboud, Thomas Valran, Boris Petelin, Giuseppe Siena, and Angelo Rubino
Ocean Sci., 17, 975–996, https://doi.org/10.5194/os-17-975-2021, https://doi.org/10.5194/os-17-975-2021, 2021
Short summary
Short summary
Experiments in rotating tanks can simulate the Earth system and help to represent the real ocean, where rotation plays an important role. We wanted to show the minor importance of the wind in driving the flow in the Ionian Sea. We did this by observing changes in the water current in a rotating tank affected only by the pumping of dense water into the system. The flow variations were similar to those in the real sea, confirming the scarce importance of the wind for the flow in the Ionian Sea.
Lojze Žust, Anja Fettich, Matej Kristan, and Matjaž Ličer
Geosci. Model Dev., 14, 2057–2074, https://doi.org/10.5194/gmd-14-2057-2021, https://doi.org/10.5194/gmd-14-2057-2021, 2021
Short summary
Short summary
Adriatic basin sea level modelling is a challenging problem due to the interplay between terrain, weather, tides and seiches. Current state-of-the-art numerical models (e.g. NEMO) require large computational resources to produce reliable forecasts. In this study we propose HIDRA, a novel deep learning approach for sea level modeling, which drastically reduces the numerical cost while demonstrating predictive capabilities comparable to that of the NEMO model, outperforming it in many instances.
Dagmar Hainbucher, Marta Álvarez, Blanca Astray Uceda, Giancarlo Bachi, Vanessa Cardin, Paolo Celentano, Spyros Chaikalis, Maria del Mar Chaves Montero, Giuseppe Civitarese, Noelia M. Fajar, Francois Fripiat, Lennart Gerke, Alexandra Gogou, Elisa F. Guallart, Birte Gülk, Abed El Rahman Hassoun, Nico Lange, Andrea Rochner, Chiara Santinelli, Tobias Steinhoff, Toste Tanhua, Lidia Urbini, Dimitrios Velaoras, Fabian Wolf, and Andreas Welsch
Earth Syst. Sci. Data, 12, 2747–2763, https://doi.org/10.5194/essd-12-2747-2020, https://doi.org/10.5194/essd-12-2747-2020, 2020
Short summary
Short summary
We report on data from an oceanographic cruise in the Mediterranean Sea (MSM72, March 2018). The main objective of the cruise was to contribute to the understanding of long-term changes and trends in physical and biogeochemical parameters, such as the anthropogenic carbon uptake, and further assess the hydrographical situation after the Eastern and Western Mediterranean Transients. Multidisciplinary measurements were conducted on a predominantly
zonal section throughout the Mediterranean Sea.
Matjaž Ličer, Solène Estival, Catalina Reyes-Suarez, Davide Deponte, and Anja Fettich
Nat. Hazards Earth Syst. Sci., 20, 2335–2349, https://doi.org/10.5194/nhess-20-2335-2020, https://doi.org/10.5194/nhess-20-2335-2020, 2020
Short summary
Short summary
In 2018 windsurfer’s mast broke about 1 km offshore during a scirocco storm in the northern Adriatic. He was drifting in severe conditions until he eventually beached alive and well in Sistiana (Italy) 24 h later. We conducted an interview with the survivor to reconstruct his trajectory. We simulate his trajectory in several ways and estimate the optimal search-and-rescue area for a civil rescue response. Properly calibrated virtual drifter properties are key to reliable rescue area forecasting.
Alexander Barth, Aida Alvera-Azcárate, Matjaz Licer, and Jean-Marie Beckers
Geosci. Model Dev., 13, 1609–1622, https://doi.org/10.5194/gmd-13-1609-2020, https://doi.org/10.5194/gmd-13-1609-2020, 2020
Short summary
Short summary
DINCAE is a method for reconstructing missing data in satellite datasets using a neural network. Satellite observations working in the optical and infrared bands are affected by clouds, which obscure part of the ocean underneath. In this paper, a neural network with the structure of a convolutional auto-encoder is developed to reconstruct the missing data based on the available cloud-free pixels in satellite images.
Christian Ferrarin, Andrea Valentini, Martin Vodopivec, Dijana Klaric, Giovanni Massaro, Marco Bajo, Francesca De Pascalis, Amedeo Fadini, Michol Ghezzo, Stefano Menegon, Lidia Bressan, Silvia Unguendoli, Anja Fettich, Jure Jerman, Matjaz̆ Ličer, Lidija Fustar, Alvise Papa, and Enrico Carraro
Nat. Hazards Earth Syst. Sci., 20, 73–93, https://doi.org/10.5194/nhess-20-73-2020, https://doi.org/10.5194/nhess-20-73-2020, 2020
Short summary
Short summary
Here we present a shared and interoperable system to allow a better exchange of and elaboration on information related to sea storms among countries. The proposed integrated web system (IWS) is a combination of a common data system for sharing ocean observations and forecasts, a multi-model ensemble system, a geoportal, and interactive geo-visualization tools. This study describes the application of the developed system to the exceptional storm event of 29 October 2018.
M. Ličer, P. Smerkol, A. Fettich, M. Ravdas, A. Papapostolou, A. Mantziafou, B. Strajnar, J. Cedilnik, M. Jeromel, J. Jerman, S. Petan, V. Malačič, and S. Sofianos
Ocean Sci., 12, 71–86, https://doi.org/10.5194/os-12-71-2016, https://doi.org/10.5194/os-12-71-2016, 2016
Short summary
Short summary
We compare the northern Adriatic response to an extreme bora event, as simulated by one-way and two-way (i.e. with ocean feedback to the atmosphere) atmosphere-ocean coupling. We show that two-way coupling yields significantly better estimates of heat fluxes, most notably sensible heat flux, across the air-sea interface. When compared to observations in the northern Adriatic, two-way coupled system consequently leads to a better representation of ocean temperatures throughout the event.
D. Hainbucher, V. Cardin, G. Siena, U. Hübner, M. Moritz, U. Drübbisch, and F. Basan
Earth Syst. Sci. Data, 7, 231–237, https://doi.org/10.5194/essd-7-231-2015, https://doi.org/10.5194/essd-7-231-2015, 2015
Short summary
Short summary
We report on data from an oceanographic cruise in the Mediterranean in April 2014. Data were taken on a west-east section starting at the Strait of Gibraltar and ending south-east of Crete, as well on sections in the Ionian and Adriatic Sea. The measurements include salinity, temperature, oxygen and currents. We study the mesoscale eddy field and support long-term investigations of the hydrography in the Mediterranean Sea.
V. Cardin, G. Civitarese, D. Hainbucher, M. Bensi, and A. Rubino
Ocean Sci., 11, 53–66, https://doi.org/10.5194/os-11-53-2015, https://doi.org/10.5194/os-11-53-2015, 2015
Short summary
Short summary
The results of this study reveal that the thermohaline properties in the study area in 2011 lie between the thermohaline characteristics of the EMT and those of the pre-EMT phase, indicating a possible slow return towards the latter. It highlights the relationship between the hydrological property distribution of the upper layer in the Levantine basin and the alternate circulation regimes in the Ionian, which modulates the salinity distribution in the Eastern Mediterranean Sea.
D. Hainbucher, A. Rubino, V. Cardin, T. Tanhua, K. Schroeder, and M. Bensi
Ocean Sci., 10, 669–682, https://doi.org/10.5194/os-10-669-2014, https://doi.org/10.5194/os-10-669-2014, 2014
M. Gačić, G. Civitarese, V. Kovačević, L. Ursella, M. Bensi, M. Menna, V. Cardin, P.-M. Poulain, S. Cosoli, G. Notarstefano, and C. Pizzi
Ocean Sci., 10, 513–522, https://doi.org/10.5194/os-10-513-2014, https://doi.org/10.5194/os-10-513-2014, 2014
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
L. Ursella, V. Kovačević, and M. Gačić
Ocean Sci., 10, 49–67, https://doi.org/10.5194/os-10-49-2014, https://doi.org/10.5194/os-10-49-2014, 2014
T. Tanhua, D. Hainbucher, K. Schroeder, V. Cardin, M. Álvarez, and G. Civitarese
Ocean Sci., 9, 789–803, https://doi.org/10.5194/os-9-789-2013, https://doi.org/10.5194/os-9-789-2013, 2013
T. Tanhua, D. Hainbucher, V. Cardin, M. Álvarez, G. Civitarese, A. P. McNichol, and R. M. Key
Earth Syst. Sci. Data, 5, 289–294, https://doi.org/10.5194/essd-5-289-2013, https://doi.org/10.5194/essd-5-289-2013, 2013
H. Mihanović, I. Vilibić, S. Carniel, M. Tudor, A. Russo, A. Bergamasco, N. Bubić, Z. Ljubešić, D. Viličić, A. Boldrin, V. Malačič, M. Celio, C. Comici, and F. Raicich
Ocean Sci., 9, 561–572, https://doi.org/10.5194/os-9-561-2013, https://doi.org/10.5194/os-9-561-2013, 2013
Cited articles
Allen, S. E. and Durrieu de Madron, X.: A review of the role of submarine canyons in deep-ocean exchange with the shelf, Ocean Sci., 5, 607–620, https://doi.org/10.5194/os-5-607-2009, 2009. a
Baliarsingh, S. K., Lotliker, A. A., Srichandan, S., Samanta, A., Kumar, N.,
and Nair, T. M. B.: A review of jellyfish aggregations, focusing on
India’s coastal waters, Ecol. Proc., 9, 58,
https://doi.org/10.1186/s13717-020-00268-z, 2020. a
Bensi, M., Cardin, V., Rubino, A., Notarstefano, G., and Poulain, P. M.:
Effects of winter convection on the deep layer of the Southern Adriatic Sea
in 2012, J. Geophys. Res.-Oceans, 118, 6064–6075,
https://doi.org/10.1002/2013JC009432, 2013. a, b, c
Buongiorno Nardelli, B., Tronconi, C., Pisano, A., and Santoleri, R.: Mediterranean Sea High Resolution and Ultra High Resolution Sea Surface Temperature Analysis, Copernicus Marine Service, [data set], https://resources.marine.copernicus.eu/product-detail/SST_MED_SST_L4_NRT_OBSERVATIONS_010_004/INFORMATION, last access: 27 August 2021. a
Boero, F., Brotz, L., Gibbons, M. J., Piraino, S., and Zampardi, S.: 3.10
Impacts and effects of ocean warming on jellyfish, Explaining ocean
warming: Causes, scale, effects and consequences,
IUCN Gland, Switzerland, 213–237, 2016. a
Brotz, L. and Pauly, D.: Jellyfish populations in the Mediterranean Sea, Acta
Adriat., 53, 213–232, 2012. a
Brotz, L., Cheung, W. W. L., Kleisner, K., Pakhomov, E., and Pauly, D.:
Increasing jellyfish populations: trends in Large Marine Ecosystems,
Springer Netherlands, Dordrecht, 3–20, https://doi.org/10.1007/978-94-007-5316-7_2,
2012. a
Buongiorno Nardelli, B., Tronconi, C., Pisano, A., and Santoleri, R.: High
and Ultra-High resolution processing of satellite Sea Surface Temperature
data over Southern European Seas in the framework of MyOcean project, Remote
Sens. Environ., 129, 1–16, https://doi.org/10.1016/j.rse.2012.10.012, 2013. a, b
Cardin, V., Čermelj, B., Ličer, M., Reyes-Suárez, N. C., Ursella, L., Malačič, V., and Deponte, D.: Near Real Time Surface Radial Velocities by HFR-NorthAdriatic, EuroGOOS – European HFR Node, [data set], http://150.145.136.27:8080/thredds/HF_RADAR/HFR_NAdr/HFR_NAdr_catalog.html, last access: 24 November 2021. a
Celio, M., Comici, C., and Bussani, A.: Thermohaline Anomalies in the Spring
and Early Summer of 2000 in the Gulf of Trieste, Mar. Ecol., 23,
101–110, 2002. a
Clementi, E., Pistoia, J., Escudier, R., Delrosso, D., Drudi, M., Grandi, A., Lecci, R., Cretí, S., Ciliberti, S., Coppini, G., Masina, S., and Pinardi, N.: Mediterranean Sea
Physical Analysis and Forecast (CMEMS MED-Currents, EAS6 system) (Version
1) [MEDSEA_ANALYSISFORECAST_PHY_006_013_EAS6], Copernicus Monitoring
Environment Marine Service (CMEMS), 10,
https://www.cmcc.it/mediterranean-sea-physical-analysis-and-forecast-cmems-med-currents-2016-2019 (last access: 24 March 2022), 2021. a
Clementi, E., Aydogdu, A., Goglio, A. C., Pistoia, J., Escudier, R., Drudi, M., Grandi, A., Mariani, A., Lyubartsev, V., Lecci, R., Cretí, S., Coppini, G., Masina, S., and Pinardi, N.: Mediterranean Sea Physical Analysis and Forecast. Copernicus Monitoring Environment Marine Service (CMEMS), [data set], https://resources.marine.copernicus.eu/product-detail/MEDSEA_ANALYSISFORECAST_PHY_006_013/INFORMATION, last access: 24 March 2022. a
Cosoli, S., Gačić, M., and Mazzoldi, A.: Surface current variability and wind
influence in the northeastern Adriatic Sea as observed from high-frequency
(HF) radar measurements, Cont. Shelf Res., 33, 1–13,
https://doi.org/10.1016/j.csr.2011.11.008, 2012. a, b, c
Cosoli, S., Ličer, M., Vodopivec, M., and Malačič, V.: Surface circulation
in the Gulf of Trieste (northern Adriatic Sea) from radar, model, and ADCP
comparisons, J. Geophys. Res.-Oceans, 118, 6183–6200,
https://doi.org/10.1002/2013JC009261, 2013. a, b
Cozzi, S., Cabrini, M., Kralj, M., De Vittor, C., Celio, M., and Giani, M.:
Climatic and Anthropogenic Impacts on Environmental Conditions and
Phytoplankton Community in the Gulf of Trieste (Northern Adriatic Sea),
Water, 12, 2652, https://doi.org/10.3390/w12092652, 2020. a, b, c
Dorman, C. E., Carniel, S., Cavaleri, L., Sclavo, M., Chiggiato, J., Doyle, J.,
Haack, T., Pullen, J., Grbec, B., Vilibić, I., Janeković, I., Lee, C.,
Malačič, V., Orlić, M., Paschini, E., Russo, A., and Signell, R. P.:
February 2003 marine atmospheric conditions and the bora over the northern
Adriatic, J. Geophys. Res.-Oceans, 111, C03S03,
https://doi.org/10.1029/2005JC003134, 2006. a, b
Faleh, A. B., Allaya, H., Armani, A., and Shahin, A.: Significant genetic
differentiation among meroplanktonic barrel jellyfish Rhizostoma pulmo
(Cnidaria: Scyphozoa) in the Mediterranean Sea, Afr. J. Mar. Sci., 39, 1–8, https://doi.org/10.2989/1814232X.2017.1303395, 2017. a
Fernández-Alías, A., Marcos, C., and Pérez-Ruzafa, A.: Larger scyphozoan
species dwelling in temperate, shallow waters show higher blooming potential,
Mar. Pollut. Bull., 173, 113100,
https://doi.org/10.1016/j.marpolbul.2021.113100, 2021. a
Fossette, S., Gleiss, A., Chalumeau, J., Bastian, T., Armstrong, C.,
Vandenabeele, S., Karpytchev, M., and Hays, G.: Current-Oriented Swimming by
Jellyfish and Its Role in Bloom Maintenance, Curr. Biol., 25, 342–347,
https://doi.org/10.1016/j.cub.2014.11.050, 2015. a
Francé, J., Varkitzi, I., Stanca, E., Cozzoli, F., Skejić, S., Ungaro, N.,
Vascotto, I., Mozetič, P., Živana Ninčević Gladan, Assimakopoulou, G.,
Pavlidou, A., Zervoudaki, S., Pagou, K., and Basset, A.: Large-scale testing
of phytoplankton diversity indices for environmental assessment in
Mediterranean sub-regions (Adriatic, Ionian and Aegean Seas), Ecol. Ind., 126, 107630, https://doi.org/10.1016/j.ecolind.2021.107630, 2021. a
Fuentes, V., Straehler-Pohl, I., Atienza, D., Franco, I., Tilves, U., Gentile,
M., Acevedo, M., Olariaga, A., and Gili, J.-M.: Life cycle of the jellyfish
Rhizostoma pulmo (Scyphozoa: Rhizostomeae) and its distribution,
seasonality and inter-annual variability along the Catalan coast and the
Mar Menor (Spain, NW Mediterranean), Mar. Biol., 158,
2247–2266, https://doi.org/10.1007/s00227-011-1730-7, 2011. a, b, c, d
Graham, W. M., Pagès, F., and Hamner, W. M.: A physical context for gelatinous
zooplankton aggregations: a review, in: Jellyfish Blooms: Ecological and
Societal Importance, edited by: Purcell, J. E., Graham, W. M., and Dumont,
H. J., Springer Netherlands, Dordrecht, 199–212, 2001. a
Gurgel, K.-W., Antonischki, G., Essen, H.-H., and Schlick, T.: Wellen Radar
(WERA): a new ground-wave HF radar for ocean remote sensing, Coast. Eng., 37, 219–234,
https://doi.org/10.1016/S0378-3839(99)00027-7, 1999. a
Hamner, W. M. and Dawson, M. N.: A review and synthesis on the systematics and
evolution of jellyfish blooms: advantageous aggregations and adaptive
assemblages, Hydrobiologia, 616, 161–191, https://doi.org/10.1007/s10750-008-9620-9,
2009. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5
hourly data on single levels from 1979 to present, Copernicus Climate Change
Service (C3S) Climate Data Store (CDS), ECMWF, [data set], https://doi.org/10.24381/cds.adbb2d47,
2018. a, b
Jeffries, M. A. and Lee, C. M.: A climatology of the northern Adriatic Sea's
response to bora and river forcing, J. Geophys. Res.-Oceans,
112, C03S02, https://doi.org/10.1029/2006JC003664, 2007. a
Kogovšek, T., Bogunović, B., and Malej, A.: Recurrence of
bloom-forming scyphomedusae: wavelet analysis of a 200-year time series,
Springer Netherlands, Dordrecht, 81–96, https://doi.org/10.1007/978-90-481-9541-1_7,
2010. a, b
Kogovšek, T., Vodopivec, M., Raicich, F., ichi Uye, S., and Malej, A.:
Comparative analysis of the ecosystems in the northern Adriatic Sea and the
Inland Sea of Japan: Can anthropogenic pressures disclose jellyfish
outbreaks?, Sci. Total Environ., 626, 982–994,
https://doi.org/10.1016/j.scitotenv.2018.01.011, 2018. a
Leoni, V., Molinero, J. C., Meffre, M., and Bonnet, D.: Variability of growth
rates and thermohaline niches of Rhizostoma pulmo’s pelagic stages
(Cnidaria: Scyphozoa), Mar. Biol., 168, 107,
https://doi.org/10.1007/s00227-021-03914-y, 2021b. a
Ličer, M., Smerkol, P., Fettich, A., Ravdas, M., Papapostolou, A., Mantziafou, A., Strajnar, B., Cedilnik, J., Jeromel, M., Jerman, J., Petan, S., Malačič, V., and Sofianos, S.: Modeling the ocean and atmosphere during an extreme bora event in northern Adriatic using one-way and two-way atmosphere–ocean coupling, Ocean Sci., 12, 71–86, https://doi.org/10.5194/os-12-71-2016, 2016. a, b, c
Ličer, M., Estival, S., Reyes-Suarez, C., Deponte, D., and Fettich, A.: Lagrangian modelling of a person lost at sea during the Adriatic scirocco storm of 29 October 2018, Nat. Hazards Earth Syst. Sci., 20, 2335–2349, https://doi.org/10.5194/nhess-20-2335-2020, 2020. a, b
Malačič, V., Petelin, B., Gačić, M., Artegiani, A., and
Orlić, M.: Regional Studies, Springer Netherlands,
Dordrecht, 167–216, https://doi.org/10.1007/978-94-015-9819-4_6, 2001. a
Malačič, V.: Wind Direction Measurements on Moored Coastal Buoys, J. Atmos. Ocean. Tech., 36, 1401–1418,
https://doi.org/10.1175/JTECH-D-18-0171.1, 2019. a
Malačič, V. and Petelin, B.: Climatic circulation in the Gulf of Trieste
(northern Adriatic), J. Geophys. Res.-Oceans, 114, C07002,
https://doi.org/10.1029/2008JC004904, 2009. a
Marullo, S., Pitarch, J., Bellacicco, M., Sarra, A. G. D., Meloni, D.,
Monteleone, F., Sferlazzo, D., Artale, V., and Santoleri, R.: Air–Sea
Interaction in the Central Mediterranean Sea: Assessment of Reanalysis and
Satellite Observations, Remote Sens., 13, 2188, https://doi.org/10.3390/rs13112188, 2021. a
Mills, C. E.: Jellyfish blooms: are populations increasing globally in response
to changing ocean conditions?, Hydrobiologia, 451, 55–68,
https://doi.org/10.1023/A:1011888006302, 2001. a
Nastav, B., Malej, M., Malej Jr., A., and Malej, A.: Is it possible to
determine the economic impact of jellyfish outbreaks on fisheries? A Case
Study – Slovenia, Mediterr. Mar. Sci., 14, 214–223,
https://doi.org/10.12681/mms.382, 2013. a
National Institute of Oceanography and Applied Geophysics: ADN-MAMBO1, CMEMS-In Situ TAC, [data set], http://www.marineinsitu.eu/dashboard/, last access: 23 March 2022. a
Palmieri, M. G., Barausse, A., Luisetti, T., and Turner, K.: Jellyfish blooms
in the Northern Adriatic Sea: Fishermen's perceptions and economic impacts on
fisheries, Fish. Res., 155, 51–58,
https://doi.org/10.1016/j.fishres.2014.02.021, 2014. a
Pierson, J., Camatti, E., Hood, R., Kogovšek, T., Lučić, D., Tirelli, V.,
and Malej, A.: Mesozooplankton and Gelatinous Zooplankton in the Face of
Environmental Stressors in: Coastal Ecosystems in Transition: A
Comparative Analysis of the Northern Adriatic and Chesapeake Bay, edited by: Malone,
T., Malej, A., and Faganeli, J., Chap. 6, American
Geophysical Union (AGU), Wiley & Sons Ltd, Geophys. Monogr., 105–127, https://doi.org/10.1002/9781119543626.ch6, 2020. a, b, c, d
Pitt, K. A., Lucas, C. H., Condon, R. H., Duarte, C. M., and Stewart-Koster,
B.: Claims That Anthropogenic Stressors Facilitate Jellyfish Blooms Have Been
Amplified Beyond the Available Evidence: A Systematic Review, Front. Mar. Sci., 5, 451, https://doi.org/10.3389/fmars.2018.00451, 2018. a
Poulain, P.-M. and Raicich, F.: Forcings in: Physical Oceanography of
the Adriatic Sea: Past, Present and Future, edited by: Cushman-Roisin, B., Gačić, M.,
Poulain, P.-M., and Artegiani, A., Kluwer Academic
Publishers, Dordrecht, 45–65, https://doi.org/10.1007/978-94-015-9819-4_2, 2001. a
Pullen, J., Doyle, J. D., Haack, T., Dorman, C., Signell, R. P., and Lee,
C. M.: Bora event variability and the role of air-sea feedback, J. Geophys. Res.-Oceans, 112, C03S18, https://doi.org/10.1029/2006JC003726, 2007. a
Purcell, J. E.: Climate effects on formation of jellyfish and ctenophore
blooms: a review, J. Mar. Biol. Assoc., 85, 461–476, https://doi.org/10.1017/S0025315405011409, 2005. a
Purcell, J. E., Atienza, D., Fuentes, V., Olariaga, A., Tilves, U., Colahan,
C., and Gili, J.-M.: Temperature effects on asexual reproduction rates of
scyphozoan species from the northwest Mediterranean Sea, in: Jellyfish
Blooms IV: Interactions with humans and fisheries, edited by: Purcell,
J., Mianzan, H., and Frost, J. R., Springer Netherlands,
Dordrecht, 169–180, https://doi.org/10.1007/978-94-007-5316-7_13, 2012. a
Querin, S., Crise, A., Deponte, D., and Solidoro, C.: Numerical study of the
role of wind forcing and freshwater buoyancy input on the circulation in a
shallow embayment (Gulf of Trieste, Northern Adriatic Sea), J. Geophys. Res.-Oceans, 111, C03S16, https://doi.org/10.1029/2006JC003611, 2006. a, b, c, d, e, f, g
Raicich, F., Malačič, V., Celio, M., Giaiotti, D., Cantoni, C., Colucci,
R. R., Čermelj, B., and Pucillo, A.: Extreme air-sea interactions in the
Gulf of Trieste (North Adriatic) during the strong Bora event in winter 2012,
J. Geophys. Res.-Oceans, 118, 5238–5250,
https://doi.org/10.1002/jgrc.20398, 2013. a, b, c
Richardson, A. J., Bakun, A., Hays, G. C., and Gibbons, M. J.: The jellyfish
joyride: causes, consequences and management responses to a more gelatinous
future, Trends Ecol. Evol., 24, 312–322,
https://doi.org/10.1016/j.tree.2009.01.010, 2009. a, b
Robinson, A., Leslie, W., Theocharis, A., and Lascaratos, A.: Mediterranean Sea
Circulation, in: Encyclopedia of Ocean Sciences (Second Edition), edited by:
Steele, J. H., Academic Press, Oxford, 2 Edn.,
710–725, https://doi.org/10.1016/B978-012374473-9.00376-3, 2001. a
Slovenia National Institute of Biology: VIDA-BUOY, CMEMS-In Situ TAC, [data set], http://www.marineinsitu.eu/dashboard/, last access: 25 November 2021. a
Strajnar, B., Cedilnik, J., Fettich, A., Ličer, M., Pristov, N., Smerkol, P.,
and Jerman, J.: Impact of two-way coupling and sea-surface temperature on
precipitation forecasts in regional atmosphere and ocean models, Q. J. Roy. Meteor. Soc., 145, 228–242,
https://doi.org/10.1002/qj.3425, 2019. a
Stravisi, F.: Il regime dei venti a Trieste (1951–1975), The wind regime in
Trieste (1951–1975), 61, 87–104, 1977. a
Termonia, P., Fischer, C., Bazile, E., Bouyssel, F., Brožková, R., Bénard, P., Bochenek, B., Degrauwe, D., Derková, M., El Khatib, R., Hamdi, R., Mašek, J., Pottier, P., Pristov, N., Seity, Y., Smolíková, P., Španiel, O., Tudor, M., Wang, Y., Wittmann, C., and Joly, A.: The ALADIN System and its canonical model configurations AROME CY41T1 and ALARO CY40T1, Geosci. Model Dev., 11, 257–281, https://doi.org/10.5194/gmd-11-257-2018, 2018. a
Tirelli, V. and Goruppi, A.: Gelatinous zooplankton validated sightings reported in the Mediterranean Sea from 2019 onwards by avvistAPP users. National Institute of Oceanography and Applied Geophysics – OGS, Division of Oceanography, Italy, Dataset/Occurrence https://doi.org/10.13120/3382-at05, [data set], last access: 9 August 2021. a
Tirelli, V., Goruppi, A., Riccamboni, R., and Tempesta, M.: Citizens’ Eyes on
Mnemiopsis: How to Multiply Sightings with a Click!, Diversity, 13, 224,
https://doi.org/10.3390/d13060224, 2021. a, b, c, d
Tomita, H. and Kubota, M.: Variability of surface heat flux over the Indian
Ocean, Atmos.-Ocean, 42, 183–199, https://doi.org/10.3137/ao.420303, 2004. a
Tomita, H., Kutsuwada, K., Kubota, M., and Hihara, T.: Advances in the
Estimation of Global Surface Net Heat Flux Based on Satellite Observation:
J-OFURO3 V1.1, Front. Mar. Sci., 8, 612361,
https://doi.org/10.3389/fmars.2021.612361, 2021. a
Vilibić, I. and Mihanović, H.: Observing the bottom density current over a
shelf using an Argo profiling float, Geophys. Res. Lett., 40,
910–915, https://doi.org/10.1002/grl.50215, 2013. a, b
Vilibić, I., Grbec, B., and Supić, N.: Dense water generation in the north
Adriatic in 1999 and its recirculation along the Jabuka Pit, Deep Sea
Res. Pt. I, 51, 1457–1474,
https://doi.org/10.1016/j.dsr.2004.07.012, 2004. a, b
Short summary
Explaining the dynamics of jellyfish blooms is a challenge for scientists. Biological and meteo-oceanographic data were combined on different timescales to explain the exceptional bloom of the jellyfish Rhizostoma pulmo in the Gulf of Trieste (Adriatic Sea) in April 2021. The bloom was associated with anomalously warm seasonal sea conditions. Then, a strong bora wind event enhanced upwelling and mixing of the water column, causing jellyfish to rise to the surface and accumulate along the coast.
Explaining the dynamics of jellyfish blooms is a challenge for scientists. Biological and...