Articles | Volume 18, issue 5
https://doi.org/10.5194/os-18-1293-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1293-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The influence of tides on the marine carbonate chemistry of a coastal polynya in the south-eastern Weddell Sea
School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom
Mario Hoppema
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Postfach 120161, 27515 Bremerhaven, Germany
Melchor González-Dávila
Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, 35017 Las Palmas de Gran Canaria, Spain
Juana Magdalena Santana-Casiano
Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, 35017 Las Palmas de Gran Canaria, Spain
Bastien Y. Queste
School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom
Department of Marine Sciences, University of Gothenburg, Carl Skottsbergs Gata 22B, 413 19 Gothenburg, Sweden
Giorgio Dall'Olmo
Plymouth Marine Laboratory, Prospect Place, PL1 3DH Plymouth, United Kingdom
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Borgo Grotta Gigante 42/c, 34010 Sgonico, Trieste, Italy
Hugh J. Venables
British Antarctic Survey, High Cross, Madingley Road, CB3 0ET Cambridge, United Kingdom
Gerd Rohardt
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Postfach 120161, 27515 Bremerhaven, Germany
Sharyn Ossebaar
Department of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB, Den Burg, Texel, the Netherlands
Daniel Schuller
Scripps Institution of Oceanography, UC San Diego, 8622 Kennel Way, La Jolla, CA 92037, United States
Sunke Trace-Kleeberg
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Postfach 120161, 27515 Bremerhaven, Germany
School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, SO14 3ZH Southampton, United Kingdom
Dorothee C. E. Bakker
School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom
Related authors
No articles found.
Irene Sánchez-Mendoza, Melchor González-Dávila, David González-Santana, David Curbelo-Hernández, David Estupiñan-Santana, Aridane G. González, and J. Magdalena Santana-Casiano
EGUsphere, https://doi.org/10.5194/egusphere-2025-3699, https://doi.org/10.5194/egusphere-2025-3699, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study looked at ocean CO2 and pH near the Canary Islands using satellite and local data. Of four methods tested, the bagging machine learning worked best. More CO2 and lower pH were found in the west due to ocean currents. CO2 released to the air rose from 2019 to 2024, partly due to warmer seas and a 2023 heatwave. The study shows how combining long-term data and smart tools can help us understand how the ocean and air exchange CO2 in changing coastal waters.
Estel Font, Esther Portela, Sebastiaan Swart, Mauro Pinto-Juica, and Bastien Y. Queste
EGUsphere, https://doi.org/10.5194/egusphere-2025-3782, https://doi.org/10.5194/egusphere-2025-3782, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
In the Sea of Oman, mode waters form at the surface in winter and are trapped beneath a warmer surface layer in spring, linking the surface ocean and the oxygen minimum zone. Using data from ocean gliders, our study examines how this layer evolves. Changes occur along layers of equal density, with brief episodes of vertical mixing, enhanced by eddies. Glider data reveal more variability than monthly means, showing the need for sustained glider observations to understand future ecosystem impacts.
Matthew P. Humphreys and Sharyn Ossebaar
EGUsphere, https://doi.org/10.5194/egusphere-2025-3644, https://doi.org/10.5194/egusphere-2025-3644, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
The ocean is one of the main reservoirs of carbon dioxide (CO2) on Earth's surface, so it plays an important role in modulating the climate. In this paper, we propose an update to how dissolved CO2 in seawater is determined from laboratory data, which can sometimes improve the accuracy of these measurements.
Peter M. F. Sheehan, Benjamin G. M. Webber, Alejandra Sanchez-Franks, and Bastien Y. Queste
Ocean Sci., 21, 1575–1588, https://doi.org/10.5194/os-21-1575-2025, https://doi.org/10.5194/os-21-1575-2025, 2025
Short summary
Short summary
Using measurements and computer models, we identify a large flux of oxygen within the Southwest Monsoon Current, which flows north into the Bay of Bengal between June and September each year. Oxygen levels in the bay are very low, but they are not quite low enough for key nutrient cycles to be as dramatically altered as in other low-oxygen regions. We suggest that the flux which we identify contributes to keeping oxygen levels in the bay above the threshold below which dramatic changes would occur.
Estel Font, Sebastiaan Swart, Puthenveettil Narayana Vinayachandran, and Bastien Y. Queste
Ocean Sci., 21, 1349–1368, https://doi.org/10.5194/os-21-1349-2025, https://doi.org/10.5194/os-21-1349-2025, 2025
Short summary
Short summary
Mode water is formed annually and sits between the warm surface water and deeper older waters. In the Arabian Sea, it plays a crucial role in regulating ocean heat and oxygen variability by acting as a doorway between the surface and deeper waters. Using observations and models, we show that its formation is primarily driven by atmospheric forcing, though ocean currents, eddies, and biological heating also influence its life cycle. This water mass contributes up to 40 % of the region's oxygen content.
David Curbelo-Hernández, David González-Santana, Aridane G. González, J. Magdalena Santana-Casiano, and Melchor González-Dávila
Biogeosciences, 22, 3329–3356, https://doi.org/10.5194/bg-22-3329-2025, https://doi.org/10.5194/bg-22-3329-2025, 2025
Short summary
Short summary
This study offers a unique high-resolution dataset (2019–2024) on surface physicochemical properties in the western Mediterranean Sea. It reveals accelerated surface warming, significantly altering CO2 levels and pH. Currently a net CO2 sink, the region may become a CO2 source by 2030 due to weakening in-gassing. The research highlights the value of VOS (volunteer observing ship) lines for monitoring climate impacts and emphasizes the need for ongoing observations to enhance long-term trend accuracy and future projections.
Daisy Drew Pickup, Dorothee C. E. Bakker, Karen J. Heywood, Francis Glassup, Emily Hammermeister, Sharon E. Stammerjohn, Gareth A. Lee, Socratis Loucaides, Bastien Y. Queste, Benjamin G. M. Webber, and Patricia L. Yager
EGUsphere, https://doi.org/10.5194/egusphere-2025-2441, https://doi.org/10.5194/egusphere-2025-2441, 2025
Short summary
Short summary
Autonomous platforms in the Amundsen Sea have allowed for detection of isolated water masses that are colder, saltier and denser than overlying water. They are also associated with a higher dissolved inorganic carbon concentration and lower pH. The water masses, referred to as lenses, could have implications for the transfer of heat and storage of carbon in the region. We hypothesise that they form in surrounding areas that experience intense cooling and sea ice formation in autumn/winter.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Blandine Jacob, Bastien Y. Queste, and Marcel D. du Plessis
Ocean Sci., 21, 359–379, https://doi.org/10.5194/os-21-359-2025, https://doi.org/10.5194/os-21-359-2025, 2025
Short summary
Short summary
Few observations exist in the Amundsen Sea. Consequently, studies rely on reanalysis (e.g., ERA5) to investigate how the atmosphere affects ocean variability (e.g., sea-ice formation and melt). We use data collected along ice shelves to show that cold, dry air blowing from Antarctica triggers large ocean heat loss, which is underestimated by ERA5. We then use an ocean model to show that this bias has an important impact on the ocean, with implications for sea-ice forecasts.
Thomas M. Jordan, Giorgio Dall'Olmo, Gavin Tilstone, Robert J. W. Brewin, Francesco Nencioli, Ruth Airs, Crystal S. Thomas, and Louise Schlüter
Earth Syst. Sci. Data, 17, 493–516, https://doi.org/10.5194/essd-17-493-2025, https://doi.org/10.5194/essd-17-493-2025, 2025
Short summary
Short summary
We present a compilation of water optical properties and phytoplankton pigments from the surface of the Atlantic Ocean collected during nine cruises between 2009 and 2019. We derive continuous Chlorophyll a concentrations (a biomass proxy) from water absorption. We then illustrate geographical variations and relationships for water optical properties, Chlorophyll a, and other pigments. The dataset will be useful to researchers in ocean optics, remote sensing, ecology, and biogeochemistry.
David Curbelo-Hernández, Fiz F. Pérez, Melchor González-Dávila, Sergey V. Gladyshev, Aridane G. González, David González-Santana, Antón Velo, Alexey Sokov, and J. Magdalena Santana-Casiano
Biogeosciences, 21, 5561–5589, https://doi.org/10.5194/bg-21-5561-2024, https://doi.org/10.5194/bg-21-5561-2024, 2024
Short summary
Short summary
The study evaluated CO2–carbonate system dynamics in the North Atlantic subpolar gyre during 2009–2019. Significant ocean acidification, largely due to rising anthropogenic CO2 levels, was found. Cooling, freshening, and enhanced convective processes intensified this trend, affecting calcite and aragonite saturation. The findings contribute to a deeper understanding of ocean acidification and improve our knowledge about its impact on marine ecosystems.
Milagros Rico, Paula Santiago-Díaz, Guillermo Samperio-Ramos, Melchor González-Dávila, and Juana Magdalena Santana-Casiano
Biogeosciences, 21, 4381–4394, https://doi.org/10.5194/bg-21-4381-2024, https://doi.org/10.5194/bg-21-4381-2024, 2024
Short summary
Short summary
Changes in pH generate stress conditions, either because high pH drastically decreases the availability of trace metals such as Fe(II), a restrictive element for primary productivity, or because reactive oxygen species are increased with low pH. The metabolic functions and composition of microalgae can be affected. These modifications in metabolites are potential factors leading to readjustments in phytoplankton community structure and diversity and possible alteration in marine ecosystems.
David González-Santana, María Segovia, Melchor González-Dávila, Librada Ramírez, Aridane G. González, Leonardo J. Pozzo-Pirotta, Veronica Arnone, Victor Vázquez, Ulf Riebesell, and J. Magdalena Santana-Casiano
Biogeosciences, 21, 2705–2715, https://doi.org/10.5194/bg-21-2705-2024, https://doi.org/10.5194/bg-21-2705-2024, 2024
Short summary
Short summary
In a recent experiment off the coast of Gran Canaria (Spain), scientists explored a method called ocean alkalinization enhancement (OAE), where carbonate minerals were added to seawater. This process changed the levels of certain ions in the water, affecting its pH and buffering capacity. The researchers were particularly interested in how this could impact the levels of essential trace metals in the water.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Benjamin R. Loveday, Timothy Smyth, Anıl Akpinar, Tom Hull, Mark E. Inall, Jan Kaiser, Bastien Y. Queste, Matt Tobermann, Charlotte A. J. Williams, and Matthew R. Palmer
Earth Syst. Sci. Data, 14, 3997–4016, https://doi.org/10.5194/essd-14-3997-2022, https://doi.org/10.5194/essd-14-3997-2022, 2022
Short summary
Short summary
Using a new approach to combine autonomous underwater glider data and satellite Earth observations, we have generated a 19-month time series of North Sea net primary productivity – the rate at which phytoplankton absorbs carbon dioxide minus that lost through respiration. This time series, which spans 13 gliders, allows for new investigations into small-scale, high-frequency variability in the biogeochemical processes that underpin the carbon cycle and coastal marine ecosystems in shelf seas.
Michael P. Hemming, Jan Kaiser, Jacqueline Boutin, Liliane Merlivat, Karen J. Heywood, Dorothee C. E. Bakker, Gareth A. Lee, Marcos Cobas García, David Antoine, and Kiminori Shitashima
Ocean Sci., 18, 1245–1262, https://doi.org/10.5194/os-18-1245-2022, https://doi.org/10.5194/os-18-1245-2022, 2022
Short summary
Short summary
An underwater glider mission was carried out in spring 2016 near a mooring in the northwestern Mediterranean Sea. The glider deployment served as a test of a prototype ion-sensitive field-effect transistor pH sensor. Mean net community production rates were estimated from glider and buoy measurements of dissolved oxygen and inorganic carbon concentrations before and during the spring bloom. Incorporating advection is important for accurate mass budgets. Unexpected metabolic quotients were found.
Hein J. W. de Baar, Mario Hoppema, and Elizabeth M. Jones
EGUsphere, https://doi.org/10.5194/egusphere-2022-676, https://doi.org/10.5194/egusphere-2022-676, 2022
Preprint archived
Short summary
Short summary
There is confusion in the literature on interactions of dissolved phosphate and sulphate with the alkalinity of seawater. These do play a minor role in the titration to determine alkalinity. However, a perceived biological role of phosphate and sulphate has been suggested in the value of Oceanic Alkalinity. We think this is mistaken. Some other minor issues additionally have led to confusion on the exact description of Alkalinity. We treat those against a theoretical and empirical background.
Yixi Zheng, David P. Stevens, Karen J. Heywood, Benjamin G. M. Webber, and Bastien Y. Queste
The Cryosphere, 16, 3005–3019, https://doi.org/10.5194/tc-16-3005-2022, https://doi.org/10.5194/tc-16-3005-2022, 2022
Short summary
Short summary
New observations reveal the Thwaites gyre in a habitually ice-covered region in the Amundsen Sea for the first time. This gyre rotates anticlockwise, despite the wind here favouring clockwise gyres like the Pine Island Bay gyre – the only other ocean gyre reported in the Amundsen Sea. We use an ocean model to suggest that sea ice alters the wind stress felt by the ocean and hence determines the gyre direction and strength. These processes may also be applied to other gyres in polar oceans.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Matthew P. Humphreys, Erik H. Meesters, Henk de Haas, Szabina Karancz, Louise Delaigue, Karel Bakker, Gerard Duineveld, Siham de Goeyse, Andreas F. Haas, Furu Mienis, Sharyn Ossebaar, and Fleur C. van Duyl
Biogeosciences, 19, 347–358, https://doi.org/10.5194/bg-19-347-2022, https://doi.org/10.5194/bg-19-347-2022, 2022
Short summary
Short summary
A series of submarine sinkholes were recently discovered on Luymes Bank, part of Saba Bank, a carbonate platform in the Caribbean Netherlands. Here, we investigate the waters inside these sinkholes for the first time. One of the sinkholes contained a body of dense, low-oxygen and low-pH water, which we call the
acid lake. We use measurements of seawater chemistry to work out what processes were responsible for forming the acid lake and discuss the consequences for the carbonate platform.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Steve D. Jones, Maren K. Karlsen, Claire Lo Monaco, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, https://doi.org/10.5194/essd-13-5565-2021, 2021
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2021 is the third update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 989 hydrographic cruises covering the world's oceans from 1972 to 2020.
Yuanxu Dong, Mingxi Yang, Dorothee C. E. Bakker, Vassilis Kitidis, and Thomas G. Bell
Atmos. Chem. Phys., 21, 8089–8110, https://doi.org/10.5194/acp-21-8089-2021, https://doi.org/10.5194/acp-21-8089-2021, 2021
Short summary
Short summary
Eddy covariance (EC) is the most direct method for measuring air–sea CO2 flux from ships. However, uncertainty in EC air–sea CO2 fluxes has not been well quantified. Here we show that with the state-of-the-art gas analysers, instrumental noise no longer contributes significantly to the CO2 flux uncertainty. Applying an appropriate averaging timescale (1–3 h) and suitable air–sea CO2 fugacity threshold (at least 20 µatm) to EC flux data enables an optimal analysis of the gas transfer velocity.
Sara González-Delgado, David González-Santana, Magdalena Santana-Casiano, Melchor González-Dávila, Celso A. Hernández, Carlos Sangil, and José Carlos Hernández
Biogeosciences, 18, 1673–1687, https://doi.org/10.5194/bg-18-1673-2021, https://doi.org/10.5194/bg-18-1673-2021, 2021
Short summary
Short summary
We describe the carbon system dynamics of a new CO2 seep system located off the coast of La Palma. We explored for over a year, finding points with lower levels of pH and alkalinity; high levels of carbon; and poorer levels of aragonite and calcite, both essential for calcifying species. The seeps are a key feature for robust experimental designs, aimed at comprehending how life has persisted through past eras or at predicting the consequences of ocean acidification in the marine realm.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Cited articles
Alderkamp, A. C., Mills, M. M., van Dijken, G. L., Laan, P., Thuróczy,
C. E., Gerringa, L. J., de Baar, H. J., Payne, C. D., Visser, R. J., Buma,
A. G., and Arrigo, K. R.: Iron from melting glaciers fuels phytoplankton
blooms in the Amundsen Sea (Southern Ocean): Phytoplankton characteristics
and productivity, Deep-Sea Res. Pt II, 71–76, 32–48, https://doi.org/10.1016/j.dsr2.2012.03.005, 2012. a, b
Anderson, L. G., Holby, O., Lindegren, R., and Ohlson, M.: The transport of
anthropogenic carbon dioxide into the Weddell Sea, J. Geophys.
Res., 96, 16679–16687, https://doi.org/10.1029/91jc01785, 1991. a
Andersson, A. J. and Mackenzie, F. T.: Revisiting four scientific debates in ocean acidification research, Biogeosciences, 9, 893–905, https://doi.org/10.5194/bg-9-893-2012, 2012. a
Arndt, J. E., Schenke, H. W., Jakobsson, M., Nitsche, F.-O., Buys,
G., Goleby, B., Rebesco, M., Bohoyo, F., Hong, J. K., Black, J.,
Greku, R. K., Udintsev, G. B., Barrios, F., Reynoso-Peralta, W.,
Taisei, M., and Wigley, R.: The International Bathymetric Chart of the
Southern Ocean (IBCSO) Version 1.0, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.805736, 2013. a, b
Arrigo, K. R., van Dijken, G., and Long, M.: Coastal Southern Ocean: A strong
anthropogenic CO2 sink, Geophys. Res. Lett., 35, 1–6,
https://doi.org/10.1029/2008GL035624, 2008. a
Arroyo, M. C., Shadwick, E. H., and Tilbrook, B.: Summer carbonate chemistry
in the Dalton Polynya, East Antarctica, J. Geophys. Res.-Oceans, 124, 5634–5653, https://doi.org/10.1029/2018JC014882, 2019. a, b
Bakker, D. C. E., Hoppema, M., Schröder, M., Geibert, W., and de Baar, H. J. W.: A rapid transition from ice covered CO2-rich waters to a biologically mediated CO2 sink in the eastern Weddell Gyre, Biogeosciences, 5, 1373–1386, https://doi.org/10.5194/bg-5-1373-2008, 2008. a
Barber, D. G. and Massom, R. A.: Chapter 1 The Role of Sea Ice in Arctic and Antarctic Polynyas, in: Polynyas: Windows to the World, Vol. 74, chap. 1, edited by: W. O. Smith, and D. G. Barber, Elsevier, 1–54, https://doi.org/10.1016/S0422-9894(06)74001-6, 2007. a
Boebel, O.: The expedition PS89 of the research vessel POLARSTERN to the
Weddell Sea in 2014/2015, Berichte zur Polar-und Meeresforschung [Reports on
polar and marine research], 689, TIB [report], https://doi.org/10.2312/BzPM_0689_2015, 2015. a, b, c, d
Boebel, O. and Tippenhauer, S.: Raw data of continuous VM-ADCP
(vessel-mounted Acoustic Doppler Current Profiler) profile during POLARSTERN
cruise PS117, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.902725, 2019. a
Brown, P. J., Jullion, L., Landschützer, P., Bakker, D. C., Naveira
Garabato, A. C., Meredith, M. P., Torres-Valdés, S., Watson, A. J.,
Hoppema, M., Loose, B., Jones, E. M., Telszewski, M., Jones, S. D., and
Wanninkhof, R.: Carbon dynamics of the Weddell Gyre, Southern Ocean, Global
Biogeochem. Cy., 29, 288–306, https://doi.org/10.1002/2014GB005006, 2015. a, b, c, d
Carmack, E. C.: A quantitative characterization of water masses in the Weddell
sea during summer, Deep-Sea Research and Oceanographic Abstracts, 21,
431–443, https://doi.org/10.1016/0011-7471(74)90092-8, 1974. a, b
Dickson, A. and Riley, J.: The estimation of acid dissociation constants in
sea-water media from potentiometric titrations with strong base, Mar. Chem., 7,
101–109, https://doi.org/10.1016/0304-4203(79)90002-1, 1979. a
Dickson, A. G.: Standard potential of the reaction: AgCl(s) + 1 2H2(g) = Ag(s) + HCl(aq), and and the standard acidity constant of the ion HSO in
synthetic sea water from 273.15 to 318.15 K, J. Chem.
Thermodyn., 22, 113–127, https://doi.org/10.1016/0021-9614(90)90074-Z, 1990. a
Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): Guide to best practices for ocean CO2 measurement, Sidney, British Columbia, North Pacific Marine Science Organization, 191 pp. (PICES Special Publication 3; IOCCP Report 8), https://doi.org/10.25607/OBP-1342, 2007. a, b
Dlugokencky, E., Mund, J., Crotwell, A., Crotwell, M., and Thoning, K.:
Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA ESRL Carbon
Cycle Cooperative Global Air Sampling Network, 1968–2018, version: 2019-07, Global Monitoring Laboratory [data set],
https://doi.org/10.15138/wkgj-f215, 2019. a, b
Dmitrenko, I. A., Kirillov, S. A., Bloshkina, E., and Lenn, Y. D.:
Tide-induced vertical mixing in the Laptev Sea coastal polynya, J.
Geophys. Res.-Oceans, 117, 1–19, https://doi.org/10.1029/2011JC006966, 2012. a
Driemel, A., Fahrbach, E., Rohardt, G., Beszczynska-Möller, A., Boetius, A., Budéus, G., Cisewski, B., Engbrodt, R., Gauger, S., Geibert, W., Geprägs, P., Gerdes, D., Gersonde, R., Gordon, A. L., Grobe, H., Hellmer, H. H., Isla, E., Jacobs, S. S., Janout, M., Jokat, W., Klages, M., Kuhn, G., Meincke, J., Ober, S., Østerhus, S., Peterson, R. G., Rabe, B., Rudels, B., Schauer, U., Schröder, M., Schumacher, S., Sieger, R., Sildam, J., Soltwedel, T., Stangeew, E., Stein, M., Strass, V. H., Thiede, J., Tippenhauer, S., Veth, C., von Appen, W.-J., Weirig, M.-F., Wisotzki, A., Wolf-Gladrow, D. A., and Kanzow, T.: From pole to pole: 33 years of physical oceanography onboard R/V Polarstern, Earth Syst. Sci. Data, 9, 211–220, https://doi.org/10.5194/essd-9-211-2017, 2017. a, b, c
Eicken, H. and Lange, M. A.: Development and properties of sea ice in the
coastal regime of the southeastern Weddell Sea, J. Geophys.
Res.-Oceans, 94, 8193–8206, https://doi.org/10.1029/JC094iC06p08193,
1989. a
Fahrbach, E., Peterson, R. G., Rohardt, G., Schlosser, P., and Bayer, R.:
Suppression of bottom water formation in the southeastern Weddell sea,
Deep-Sea Res. Pt. I, 41, 389–411, https://doi.org/10.1016/0967-0637(94)90010-8,
1994. a, b, c, d
Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J.,
and Millero, F. J.: Impact of anthropogenic CO2 on the CaCO3 system in
the oceans, Science, 305, 362–366, https://doi.org/10.2134/jae1985.0003, 2004. a
Friis, K., Körtzinger, A., and Wallace, D. W.: The salinity
normalization of marine inorganic carbon chemistry data, Geophys.
Res. Lett., 30, 1–4, https://doi.org/10.1029/2002GL015898, 2003. a, b, c
Gerringa, L. J., Alderkamp, A. C., Laan, P., Thuróczy, C. E., De Baar,
H. J., Mills, M. M., van Dijken, G. L., van Haren, H., and Arrigo, K. R.:
Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea
(Southern Ocean): Iron biogeochemistry, Deep-Sea Res. Pt. II, 71–76, 16–31, https://doi.org/10.1016/j.dsr2.2012.03.007,
2012. a
Gerrish, L., Fretwell, P., and Cooper, P.: High resolution vector polygons of
the Antarctic coastline (7.3), BAS Data Catalogue [data set],
https://doi.org/10.5285/0a6d85d7-fc9c-4d68-a58d-e792f68ae9f4, 2020. a
Gleitz, M., Bathmann, U. V., and Lochte, K.: Build-up and decline of summer
phytoplankton biomass in the eastern Weddell Sea, Antarctica, Polar Biol.,
14, 413–422, https://doi.org/10.1007/BF00240262, 1994. a, b
González-Dávila, M., Droste, E. S., Santana-Casiano, J. M., Schuller, D., Ossebaar, S., Hoppema, M., Bakker, D. C. E.: Dissolved inorganic carbon and total alkalinity of seawater samples from a Weddell Sea coastal polynya during two tidal observation case studies for RV POLARSTERN expeditions PS89 and PS117, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.946363, 2022. a, b
Ho, D. T., Law, C. S., Smith, M. J., Schlosser, P., Harvey, M., and Hill, P.:
Measurements of air-sea gas exchange at high wind speeds in the Southern
Ocean: Implications for global parameterizations, Geophys. Res.
Lett., 33, L16611, https://doi.org/10.1029/2006GL026817, 2006. a
Hoppema, M. and Anderson, L. G.: Chapter 6 Biogeochemistry of Polynyas and
Their Role in Sequestration of Anthropogenic Constituents, in: Elsevier
Oceanography Series, edited by: W. O., Smith and D. G. Barber, Vol. 74, chap. 6, Elsevier, 193–221,
https://doi.org/10.1016/S0422-9894(06)74006-5, 2007. a
Hoppema, M., Fahrbach, E., Stoll, M. H., and De Baar, H. J.: Annual uptake
of atmospheric CO2 by the Weddell sea derived from a surface layer
balance, including estimations of entrainment and new production, J.
Marine Syst., 19, 219–233, https://doi.org/10.1016/S0924-7963(98)00091-8, 1999. a
Hoppmann, M., Nicolaus, M., Paul, S., Hunkeler, P. A., Heinemann, G., Willmes,
S., Timmermann, R., Boebel, O., Schmidt, T., Kühnel, M.,
König-Langlo, G., and Gerdes, R.: Ice platelets below Weddell Sea
landfast sea ice, Ann. Glaciol., 56, 175–190,
https://doi.org/10.3189/2015AoG69A678, 2015. a, b
Huhn, O., Rhein, M., Hoppema, M., and van Heuven, S.: Decline of deep and
bottom water ventilation and slowing down of anthropogenic carbon storage in
the Weddell Sea, 1984–2011, Deep-Sea Res. Pt. I, 76, 66–84, https://doi.org/10.1016/j.dsr.2013.01.005, 2013. a
Humphreys, M. P. and Matthews, R. S.: Calkulate: total alkalinity from
titration data in Python, Zenodo [code], https://doi.org/10.5281/zenodo.2634304, 2022. a, b
Humphreys, M. P., Lewis, E. R., Sharp, J. D., and Pierrot, D.: PyCO2SYS v1.8: marine carbonate system calculations in Python, Geosci. Model Dev., 15, 15–43, https://doi.org/10.5194/gmd-15-15-2022, 2022. a
Huot, P. V., Fichefet, T., Jourdain, N. C., Mathiot, P., Rousset, C., Kittel,
C., and Fettweis, X.: Influence of ocean tides and ice shelves on
ocean–ice interactions and dense shelf water formation in the D'Urville
Sea, Antarctica, Ocean Model., 162, 101794,
https://doi.org/10.1016/j.ocemod.2021.101794, 2021. a
Kirillov, S. A., Dmitrenko, I. A., Hölemann, J. A., Kassens, H., and
Bloshkina, E.: The penetrative mixing in the Laptev Sea coastal polynya
pycnocline layer, Cont. Shelf Res., 63, 34–42,
https://doi.org/10.1016/j.csr.2013.04.040, 2013. a
König-Langlo, G.: Meteorological observations during POLARSTERN cruise PS89
(ANT-XXX/2), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.844571, 2015. a
Legrésy, B., Wendt, A., Tabacco, I., Rémy, F., and Dietrich, R.:
Influence of tides and tidal current on Mertz Glacier, Antarctica, J. Glaciol., 50, 427–435, https://doi.org/10.3189/172756504781829828, 2004. a
Lewis, E. and Wallace, D. W. R.: Program Developed for CO2 System Calculations. ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, USA, https://doi.org/10.2172/639712, 1998. a
Llanillo, P. J., Aiken, C. M., Cordero, R. R., Damiani, A., Sepúlveda,
E., and Fernández-Gómez, B.: Oceanographic Variability induced
by Tides, the Intraseasonal Cycle and Warm Subsurface Water intrusions in
Maxwell Bay, King George Island (West-Antarctica), Sci. Rep.-UK, 9,
1–17, https://doi.org/10.1038/s41598-019-54875-8, 2019. a, b, c, d
Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2 calculated
from dissolved inorganic carbon, alkalinity, and equations for K1 and K2:
Validation based on laboratory measurements of CO2 in gas and seawater at
equilibrium, Mar. Chem., 70, 105–119,
https://doi.org/10.1016/S0304-4203(00)00022-0, 2000. a
Makinson, K., Holland, P. R., Jenkins, A., Nicholls, K. W., and Holland, D. M.:
Influence of tides on melting and freezing beneath Filchner-Ronne Ice Shelf,
Antarctica, Geophys. Res. Lett., 38, 4–9,
https://doi.org/10.1029/2010GL046462, 2011. a
Middelburg, J. J., Soetaert, K., and Hagens, M.: Ocean alkalinity, buffering
and biogeochemical processes, Rev. Geophys., 58, 1–28,
https://doi.org/10.1029/2019RG000681, 2020. a
Mintrop, L.: VINDTA 3C Manual, https://www.marianda.com/,
manual downloaded from https://www.marianda.com/ (last access: 14 March 2021), 2016. a
Mueller, R. D., Hattermann, T., Howard, S. L., and Padman, L.: Tidal influences on a future evolution of the Filchner–Ronne Ice Shelf cavity in the Weddell Sea, Antarctica, The Cryosphere, 12, 453–476, https://doi.org/10.5194/tc-12-453-2018, 2018. a
Negrete-García, G., Lovenduski, N. S., Hauri, C., Krumhardt, K. M., and
Lauvset, S. K.: Sudden emergence of a shallow aragonite saturation horizon
in the Southern Ocean, Nat. Clim. Change, 9, 313–317,
https://doi.org/10.1038/s41558-019-0418-8, 2019. a
Nicholls, K. W., Østerhus, S., Makinson, K., Gammelsrød, T., and
Fahrbach, E.: Ice-ocean processes over the continental shelf of the Southern
Weddell Sea, Antarctica: A review, Rev. Geophys., 47, 1–23,
https://doi.org/10.1029/2007RG000250, 2009. a, b
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A.,
Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K.,
Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G.,
Plattner, G. K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer,
R., Slater, R. D., Totterdell, I. J., Weirig, M. F., Yamanaka, Y., and Yool,
A.: Anthropogenic ocean acidification over the twenty-first century and its
impact on calcifying organisms, Nature, 437, 681–686,
https://doi.org/10.1038/nature04095, 2005. a, b
Orsi, A. H., Smethie, W. M., and Bullister, J. L.: On the total input of
Antarctic waters to the deep ocean: A preliminary estimate from
chlorofluorocarbon measurements, J. Geophys. Res.-Oceans,
107, 31-1–31-14, https://doi.org/10.1029/2001jc000976, 2002. a
Padman, L., Fricker, H. A., Coleman, R., Howard, S., and Erofeeva, L.: A new
tide model for the Antarctic ice shelves and seas, Ann. Glaciol., 34,
247–254, https://doi.org/10.3189/172756402781817752, 2002. a, b, c, d
Padman, L., Howard, S. L., Orsi, A. H., and Muench, R. D.: Tides of the
northwestern Ross Sea and their impact on dense outflows of Antarctic Bottom
Water, Deep-Sea Res. Pt. II, 56,
818–834, https://doi.org/10.1016/j.dsr2.2008.10.026, 2009. a, b
Padman, L., Siegfried, M. R., and Fricker, H. A.: Ocean Tide Influences on the
Antarctic and Greenland Ice Sheets, Rev. Geophys., 56, 142–184,
https://doi.org/10.1002/2016RG000546, 2018. a, b, c
Renfrew, I. A.: Coastal polynyas in the southern Weddell Sea: Variability of
the surface energy budget, J. Geophys. Res., 107, 16-1–16-22,
https://doi.org/10.1029/2000jc000720, 2002. a, b
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-shelf melting
around Antarctica, Science, 341, 266–270, https://doi.org/10.1126/science.1235798,
2013. a
Rogachev, K. A., Carmack, E. C., Salomatin, A. S., and Alexanina, M. G.: Lunar
fortnightly modulation of tidal mixing near Kashevarov Bank, Sea of Okhotsk,
and its impacts on biota and sea ice, Prog. Oceanogr., 49,
373–390, https://doi.org/10.1016/S0079-6611(01)00031-3, 2001. a, b, c
Rohardt, G. and Boebel, O.: Physical oceanography during POLARSTERN cruise
PS89 (ANT-XXX/2), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.846701, 2015a. a
Rohardt, G. and Boebel, O.: Physical oceanography measured on water bottle
samples during POLARSTERN cruise PS89 (ANT-XXX/2), PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.846773, 2015b. a
Rohardt, G. and Boebel, O.: Physical oceanography during POLARSTERN cruise
PS117, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.910663, 2020. a
Rohardt, G., Middag, R., Boebel, O., Trace-Kleeberg, S., and
Ossebaar, S.: Physical oceanography measured on water bottle samples during
POLARSTERN cruise PS117, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.910673, 2020. a
Ryan, S., Hellmer, H. H., Janout, M., Darelius, E., Vignes, L., and
Schröder, M.: Exceptionally Warm and Prolonged Flow of Warm Deep Water
Toward the Filchner-Ronne Ice Shelf in 2017, Geophys. Res. Lett.,
47, e2020GL088119, https://doi.org/10.1029/2020GL088119, 2020. a
Rysgaard, S., Bendtsen, J., Delille, B., Dieckmann, G. S., Glud, R. N.,
Kennedy, H., Mortensen, J., Papadimitriou, S., Thomas, D. N., and Tison,
J. L.: Sea ice contribution to the air-sea CO2 exchange in the Arctic and
Southern Oceans, Tellus B, 63,
823–830, https://doi.org/10.1111/j.1600-0889.2011.00571.x, 2011. a, b
Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics, Princeton University Press,
https://doi.org/10.1515/9781400849079, 2013. a
Schmithüsen, H.: Meteorological observations during POLARSTERN cruise
PS117, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.913632, 2020. a
Sims, R. P., Bedington, M., Schuster, U., Watson, A. J., Kitidis, V., Torres, R., Findlay, H. S., Fishwick, J. R., Brown, I., and Bell, T. G.: Tidal mixing of estuarine and coastal waters in the western English Channel is a control on spatial and temporal variability in seawater CO2, Biogeosciences, 19, 1657–1674, https://doi.org/10.5194/bg-19-1657-2022, 2022. a
Skogseth, R., McPhee, M. G., Nilsen, F., and Smedsrud, L. H.: Creation and
tidal advection of a cold salinity front in Storfjorden: 1. Polynya
dynamics, J. Geophys. Res.-Oceans, 118, 3278–3291,
https://doi.org/10.1002/jgrc.20231, 2013. a, b, c, d
Smith, E. C., Hattermann, T., Kuhn, G., Gaedicke, C., Berger, S., Drews, R.,
Ehlers, T. A., Franke, D., Gromig, R., Hofstede, C., Lambrecht, A.,
Läufer, A., Mayer, C., Tiedemann, R., Wilhelms, F., and Eisen, O.:
Detailed Seismic Bathymetry Beneath Ekström Ice Shelf, Antarctica:
Implications for Glacial History and Ice-Ocean Interaction, Geophys.
Res. Lett., 47, e2019GL086187, https://doi.org/10.1029/2019GL086187, 2020a. a, b, c, d, e, f, g, h, i, j, k, l, m
Smith, E. C., Hattermann, T., Kuhn, G., Gaedicke, C., Berger, S.,
Gromig, R., Haas, C., Läufer, A. L., Tell, J., Tiedemann, R.,
Tison, J.-L., Wilhelms, F., and Eisen, O.: CTD profiles from beneath
Ekstroem Ice Shelf and Atka Bay, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.914478, 2020b. a
Thompson, A. F., Stewart, A. L., Spence, P., and Heywood, K. J.: The Antarctic
Slope Current in a Changing Climate, Rev. Geophys., 56, 741–770,
https://doi.org/10.1029/2018RG000624, 2018. a
Tremblay, J. E., Gratton, Y., Fauchot, J., and Price, N. M.: Climatic and
oceanic forcing of new, net, and diatom production in the North Water,
Deep-Sea Res. Pt. II, 49, 4927–4946,
https://doi.org/10.1016/S0967-0645(02)00171-6, 2002. a
Uppström, L. R.: The boron/chlorinity ratio of deep-sea water from the
Pacific Ocean, Deep-Sea Research and Oceanographic Abstracts, 21, 161–162,
https://doi.org/10.1016/0011-7471(74)90074-6, 1974. a
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean, J. Geophys. Res., 97, 7373–7382,
https://doi.org/10.1029/92JC00188, 1992. a
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited, Limnol. Oceanogr.-Meth., 12, 351–362,
https://doi.org/10.4319/lom.2014.12.351, 2014. a, b
Witte, H. and Boebel, O.: Processed 2 minutes-averaged continuous VM-ADCP
(vessel-mounted Acoustic Doppler Current Profiler) profiles during POLARSTERN
cruise PS89, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.885934, 2018. a
Yager, P. L., Wallace, D. W., Johnson, K. M., Smith, W. O., Minnett, P. J., and
Deming, J. W.: The Northeast Water Polynya as an atmospheric CO2 sink: a
seasonal rectification hypothesis, J. Geophys. Res., 100,
4389–4398, https://doi.org/10.1029/94JC01962, 1995. a
Zhou, Q., Hattermann, T., Nost, O., Biuw, M., Kovacs, K. M., and Lydersen, C.:
Wind-driven spreading of fresh surface water beneath ice shelves in the
eastern Weddell Sea, J. Geophys. Res.-Oceans, 119,
3818–3833, https://doi.org/10.1002/2013JC009556, 2014. a, b
Short summary
Tides affect the marine carbonate chemistry of a coastal polynya neighbouring the Ekström Ice Shelf by movement of seawater with different physical and biogeochemical properties. The result is that the coastal polynya in the summer can switch between being a sink or a source of CO2 multiple times a day. We encourage consideration of tides when collecting in polar coastal regions to account for tide-driven variability and to avoid overestimations or underestimations of air–sea CO2 exchange.
Tides affect the marine carbonate chemistry of a coastal polynya neighbouring the Ekström Ice...