Articles | Volume 17, issue 1
https://doi.org/10.5194/os-17-265-2021
https://doi.org/10.5194/os-17-265-2021
Research article
 | 
10 Feb 2021
Research article |  | 10 Feb 2021

Seasonal variability of the Atlantic Meridional Overturning Circulation at 11° S inferred from bottom pressure measurements

Josefine Herrford, Peter Brandt, Torsten Kanzow, Rebecca Hummels, Moacyr Araujo, and Jonathan V. Durgadoo

Related authors

Relating North Atlantic Deep Water transport to ocean bottom pressure variations as a target for satellite gravimetry missions
Linus Shihora, Torge Martin, Anna Christina Hans, Rebecca Hummels, Michael Schindelegger, and Henryk Dobslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-3660,https://doi.org/10.5194/egusphere-2024-3660, 2024
Short summary
Marine snow morphology drives sinking and attenuation in the ocean interior
Yawouvi Dodji Soviadan, Miriam Beck, Joelle Habib, Alberto Baudena, Laetitia Drago, Alexandre Accardo, Remi Laxenaire, Sabrina Speich, Peter Brandt, Rainer Kiko, and Lars Stemmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3302,https://doi.org/10.5194/egusphere-2024-3302, 2024
Short summary
Marine snow surface production and bathypelagic export at the Equatorial Atlantic from an imaging float
Joelle Habib, Lars Stemmann, Alexandre Accardo, Alberto Baudena, Franz Philip Tuchen, Peter Brandt, and Rainer Kiko
EGUsphere, https://doi.org/10.5194/egusphere-2024-3365,https://doi.org/10.5194/egusphere-2024-3365, 2024
Short summary
River discharge impacts coastal Southeastern Tropical Atlantic sea surface temperature and circulation: a model-based analysis
Léo C. Aroucha, Joke F. Lübbecke, Peter Brandt, Franziska U. Schwarzkopf, and Arne Biastoch
EGUsphere, https://doi.org/10.5194/egusphere-2024-3320,https://doi.org/10.5194/egusphere-2024-3320, 2024
Short summary
The formation and ventilation of an oxygen minimum zone in a simple model for latitudinally alternating zonal jets
Eike E. Köhn, Richard J. Greatbatch, Peter Brandt, and Martin Claus
Ocean Sci., 20, 1281–1290, https://doi.org/10.5194/os-20-1281-2024,https://doi.org/10.5194/os-20-1281-2024, 2024
Short summary

Cited articles

Bachèlery, M.-L., Illig, S., and Dadou, I.: Interannual variability in the South-East Atlantic Ocean, focusing on the Benguela Upwelling System: Remote versus local forcing, J. Geophys. Res.-Oceans, 121, 284–310, https://doi.org/10.1002/2015JC011168, 2016. 
Bentamy, A. and Croizé-Fillon, D.: Gridded surface wind fields from Metop/ASCAT measurements, Int. J. Remote Sens., 33, 1729–1754. https://doi.org/10.1080/01431161.2011.600348, 2012. 
Biastoch, A., Böning, C. W., and Lutjeharms, J. R. E.: Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation, Nature, 456, 489–492, https://doi.org/10.1038/nature07426, 2008. 
Bingham, R. J. and Hughes, C. W.: The relationship between sea‐level and bottom pressure variability in an eddy permitting ocean model, Geophys. Res. Lett., 35, L03602, https://doi.org/10.1029/2007GL032662, 2008. 
Boebel, O., Schmid, C., and Zenk, W.: Kinematic elements of Antarctic Intermediate Water in the western South Atlantic, Deep-Sea Res. Pt. II, 46, 355–392, https://doi.org/10.1016/S0967-0645(98)00104-0, 1999. 
Download
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important component of the climate system. Understanding its structure and variability is a key priority for many scientists. Here, we present the first estimate of AMOC variations for the tropical South Atlantic from the TRACOS array at 11° S. Over the observed period, the AMOC was dominated by seasonal variability. We investigate the respective mechanisms with an ocean model and find that different wind-forced waves play a big role.