Articles | Volume 12, issue 1
https://doi.org/10.5194/os-12-243-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-12-243-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Effect of the North Equatorial Counter Current on the generation and propagation of internal solitary waves off the Amazon shelf (SAR observations)
CIMAR/CIIMAR – Interdisciplinary Centre of Marine and Environmental Research & Department of Geosciences, Environment and Spatial Planning, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
J. C. B. da Silva
CIMAR/CIIMAR – Interdisciplinary Centre of Marine and Environmental Research & Department of Geosciences, Environment and Spatial Planning, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
M. C. Buijsman
University of Southern Mississippi, Department of Marine Science, 1020 Balch Blvd, Stennis Space Center, MS 39529, USA
C. A. E. Garcia
Federal University of Rio Grande, Av. Itália, 96201-900, Caixa Postal 474, Rio Grande, Brazil
Related authors
Carina Regina de Macedo, Ariane Koch-Larrouy, José Carlos Bastos da Silva, Jorge Manuel Magalhães, Carlos Alessandre Domingos Lentini, Trung Kien Tran, Marcelo Caetano Barreto Rosa, and Vincent Vantrepotte
Ocean Sci., 19, 1357–1374, https://doi.org/10.5194/os-19-1357-2023, https://doi.org/10.5194/os-19-1357-2023, 2023
Short summary
Short summary
We focus on the internal solitary waves (ISWs) off the Amazon shelf, their velocity, and their variability in seasonal and tidal cycles. The analysis is based on a large remote-sensing data set. The region is newly described as a hot spot for ISWs with mode-2 internal tide wavelength. The wave activity is higher during spring tides. The mode-1 waves located in the region influenced by the North Equatorial Counter Current showed a velocity/wavelength 14.3 % higher during the boreal summer/fall.
Harpreet Kaur, Maarten C. Buijsman, Zhongxiang Zhao, and Jay F. Shriver
Ocean Sci., 20, 1187–1208, https://doi.org/10.5194/os-20-1187-2024, https://doi.org/10.5194/os-20-1187-2024, 2024
Short summary
Short summary
This study examines the seasonal variability in internal tide sea surface height in a global model simulation. We also compare this with altimetry and the seasonal variability in the internal tide energy terms. Georges Bank and the Arabian Sea show the strongest seasonal variability. This study also reveals that sea surface height may not be the most accurate indicator of the true seasonal variability in the internal tides because it is modulated by the seasonal variability in stratification.
Carina Regina de Macedo, Ariane Koch-Larrouy, José Carlos Bastos da Silva, Jorge Manuel Magalhães, Carlos Alessandre Domingos Lentini, Trung Kien Tran, Marcelo Caetano Barreto Rosa, and Vincent Vantrepotte
Ocean Sci., 19, 1357–1374, https://doi.org/10.5194/os-19-1357-2023, https://doi.org/10.5194/os-19-1357-2023, 2023
Short summary
Short summary
We focus on the internal solitary waves (ISWs) off the Amazon shelf, their velocity, and their variability in seasonal and tidal cycles. The analysis is based on a large remote-sensing data set. The region is newly described as a hot spot for ISWs with mode-2 internal tide wavelength. The wave activity is higher during spring tides. The mode-1 waves located in the region influenced by the North Equatorial Counter Current showed a velocity/wavelength 14.3 % higher during the boreal summer/fall.
Gaspard Geoffroy, Jonas Nycander, Maarten C. Buijsman, Jay F. Shriver, and Brian K. Arbic
Ocean Sci., 19, 811–835, https://doi.org/10.5194/os-19-811-2023, https://doi.org/10.5194/os-19-811-2023, 2023
Short summary
Short summary
The ocean state is sensitive to the mixing originating from internal tides (ITs). To date, our knowledge of the magnitude and spatial distribution of this mixing mostly relies on uncertain modeling. Here, we use novel observations from autonomous floats to validate the spatial variability in the semidiurnal IT in a realistic ocean simulation. The numerical simulation is found to correctly reproduce the main spatial patterns of the observed tidal energy but to be biased low at the global scale.
Loren Carrere, Brian K. Arbic, Brian Dushaw, Gary Egbert, Svetlana Erofeeva, Florent Lyard, Richard D. Ray, Clément Ubelmann, Edward Zaron, Zhongxiang Zhao, Jay F. Shriver, Maarten Cornelis Buijsman, and Nicolas Picot
Ocean Sci., 17, 147–180, https://doi.org/10.5194/os-17-147-2021, https://doi.org/10.5194/os-17-147-2021, 2021
Short summary
Short summary
Internal tides can have a signature of several centimeters at the ocean surface and need to be corrected from altimeter measurements. We present a detailed validation of several internal-tide models using existing satellite altimeter databases. The analysis focuses on the main diurnal and semidiurnal tidal constituents. Results show the interest of the methodology proposed, the quality of the internal-tide models tested and their positive contribution for estimating an accurate sea level.
Cited articles
Alford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., Buijsman, M. C.,
Centuroni, L. R., Chao, S.-Y., Chang, M.-H., Farmer, D. M., Fringer, O. B.,
et al.: The formation and fate of internal waves in the South China Sea,
Nature, 521, 65–69, 2015.
Almeida-Filho, R., Miranda, F. P., Lorenzzetti, J. A., Pedroso, E. C.,
Beisl, C. H., Landau, L., Baptista, M. C., and Camargo, E. G.: RADARSAT-1
images in support of petroleum exploration: the offshore Amazon River mouth
example, Can. J. Remote Sens., 31, 289–303, 2005.
Alpers, W.: Theory of radar imaging of internal waves, Nature, 314, 245–247, 1985.
Alpers, W. and Salusti, E.: Scylla and Charybdis observed from space, J.
Geophys. Res., 88, 1800–1808, 1983.
Apel, J. R., Holbrook, J. R., Liu, A. K., and Tsai, J. J.: The Sulu Sea
internal soliton experiment, J. Phys. Oceanogr., 15, 625–651, 1985.
Arbic, B. K., Richman, J. G., Shriver, J. F., Timko, P. G., Metzger, E. J.,
and Wallcraft, A. J.: Global modeling of internal tides within an eddying
ocean general circulation model, Oceanography, 25, 20–29, 2012.
Azevedo, A., da Silva, J. C. B., and New, A. L.: On the generation and
propagation of internal waves in the southern Bay of Biscay, Deep-Sea Res.
Pt. I, 53, 927–941, 2006.
Baines, P. G.: On internal tides generation models, Deep-Sea Res. Pt. A,
29, 307–338, 1982.
Bleck, R.: An oceanic general circulation model framed in hybrid isopycnic
Cartesian coordinates, Ocean Modell., 4, 55–88, 2002.
Brandt, P., Rubino, A., and Fisher, J.: Large-Amplitude Internal Solitary
Waves in the North Equatorial Countercurrent, J. Phys. Oceanogr., 32,
1567–1573, 2002.
Buijsman, M. C., McWilliams, J. C., and Jackson, C. R.: East–west
asymmetry in nonlinear internal waves from Luzon Strait, J. Geophys. Res.,
115, C10057, https://doi.org/10.1029/2009JC006004, 2010a.
Buijsman, M. C., Kanarska, Y., and McWilliams, J. C.: On the generation and
evolution of nonlinear internal waves in the South China Sea, J. Geophys.
Res., 115, C02012, https://doi.org/10.1029/2009JC005275, 2010b.
Buijsman, M. C., Ansong, J. K., Arbic., B. K., Richman, J. G., Shriver, J.
F., Timko, P. G., Wallcraft, A. J., Whalen, C. B., and Zhao, Z.: Impact of
internal wave drag on the semidiurnal energy balance in a global ocean
circulation model, J. Phys. Oceanogr., https://doi.org/10.1175/JPO-D-15-0074.1, 2016.
da Silva, J. C. B., Ermakov, S. A., Robinson, I. S., Jeans, D. R. G., and
Kijashko, S. V.: Role of surface films in ERS SAR signatures of internal
waves on the shelf. 1. Short period internal waves, J. Geophys. Res., 103,
8009–8031, 1998.
da Silva, J. C. B. and Helfrich, K. R.: Synthetic Aperture Radar
observations of resonantly generated internal solitary waves at Race Point
Channel (Cape Cod), J. Geophys. Res., 113, C11016, https://doi.org/10.1029/2008JC005004,
2008.
da Silva, J. C. B., New, A. L., and Magalhaes, J. M.: Internal solitary
waves in the Mozambique Channel: observations and interpretation, J. Geophys.
Res., 114, C05001, https://doi.org/10.1029/2008JC005125, 2009.
da Silva, J. C. B., New, A. L., and Magalhaes, J. M.: On the structure and
propagation of internal solitary waves generated at the Mascarene Plateau in
the Indian Ocean, Deep-Sea Res. Pt. I, 58, 229–240, 2011.
da Silva, J. C. B., Buijsman, M. C., and Magalhaes, J. M.: Internal waves
on the upstream side of a large sill of the Mascarene Ridge: a comprehensive
view of their generation mechanisms, Deep-Sea Res. Pt. I, 99, 87–104, 2015.
Dunphy, M. and Lamb, K. G.: Focusing and vertical mode scattering of the
first mode internal tide by mesoscale eddy interaction, J. Geophys. Res. Oc.,
119, 523–536, 2014.
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modelling of
barotropic ocean tides, J. Oc. Atmos. Technol., 19, 183–204, 2002.
Ferrari, R. and Wunsch, C.: Ocean Circulation Kinetic Energy: Reservoirs,
Sources, and Sinks, Ann. Rev. Fluid Mechan., 41, 253–282, 2009.
Garrett, C. and Kunze, E.: Internal tide generation in the deep ocean,
Annu. Rev. Fluid Mech., 39, 57–87, 2007.
Garzoli, S. L. and Katz, E. J.: The forced annual reversal of the Atlantic
North Equatorial Countercurrent, J. Phys. Oceanogr., 13, 2082–2090, 1983.
Gerkema, T. and Zimmerman, J. T. F.: Generation of Nonlinear Internal Tides
and Solitary Waves, J. Phys. Oceanogr., 25, 1081–1094, 1995.
Gerkema, T., Lam, F.-P. A., and Maas, L. R. M.: Internal tides in the Bay
of Biscay: Conversion rates and seasonal effects, Deep Sea Res. Pt. II, 51,
2995–3008, 2004.
Grisouard, N., Staquet, C., and Gerkema, T.: Generation of internal
solitary waves in a pycnocline by an internal wave beam: a numerical study,
J. Fluid Mech., 676, 491–513, 2011.
Guo, C., Vlasenko, V., Alpers, W., Stashchuk, N., and Chen, X.: Evidence of
short internal waves trailing strong internal solitary waves in the northern
South China Sea from synthetic aperture radar observations, Remote Sens.
Environ., 124, 542–550, 2012.
Helfrich, K. R. and Grimshaw, R. H. J.: Nonlinear Disintegration of the
Internal Tide, J. Phys. Oceanogr., 28, 686–701, 2008.
Helfrich, K. R. and Melville, W. K.: Review of dispersive and resonant
effects in internal wave propagation, in: The Physical Oceanography of Sea
Straits, edited by: Pratt, L. J., Kluwer Academic Publishers, the
Netherlands, 28, 391–420, 1990.
Hormann, V., Lumpkin, R., and Foltz, G. R.: Interannual North Equatorial
Countercurrent variability and its relation to tropical Atlantic climate
modes, J. Geophys. Res., 117, C04035, https://doi.org/10.1029/2011JC007697, 2012.
Ivanov, V. A., Ivanov, L. I., and Lisichenok, A. D.: Redistribution of
energy of the internal tidal wave in the North Equatorial Countercurrent
region, Sov. J. Phys. Oceanogr., 1, 383–386, 1990.
Jackson, C. R.: An Atlas of Internal Solitary-like Waves and Their
Properties, 2nd Edn., Global Ocean Associates, Alexandria, VA, available
online at: http://www.internalwaveatlas.com (last access: 26 July
2013), 560 pp., 2004.
Jackson, C. R., da Silva, J. C. B., and Jeans, G.: The generation of
nonlinear internal waves, Oceanography, 25, 108–123, 2012.
Jeon, C., Park, J.-H., Varlamov, S. M., Yoon, J.-H., Kim, Y. H., Seo, S.,
Park, Y.-G., Min, H. S., Lee, J. H., and Kim C.-H.: Seasonal variation of
semi diurnal internal tides in the East/Japan Sea, J. Geophys. Res. Oc., 119,
2843–2859, 2014.
Johns, W. E., Lee, T. N., Beardsley, R. C., Candela, J., Limeburner, R.,
and Castro, B.: Annual Cycle and Variability of the North Brazil Current, J.
Phys. Oceanogr., 28, 103–128, 1998.
Kang, D. and Fringer, O.: Energetics of barotropic and baroclinic tides in
the Monterey Bay area, J. Phys. Oceanogr., 42, 272–290, 2012.
Kozlov, I., Romanenkov, D., Zimin, A., and Chapron, B.: SAR observing
large-scale nonlinear internal waves in the White Sea, Remote Sens. Environ.,
147, 99–107, 2014.
Kudryavtsev, V., Akimov, D., Johannessen, J., and Chapron, B.: On radar
imaging of current features: 1. Model and comparison with observations, J.
Geophys. Res., 110, C07016, https://doi.org/10.1029/2004JC002505, 2005.
Lamb, K. G.: Internal Wave Breaking and Dissipation Mechanisms on the
Continental Slope/Shelf, Annu. Rev. Fluid Mech., 46, 231–254, 2014.
Lumpkin, R. and Garzoli, S. L.: Near-surface Circulation in the Tropical
Atlantic Ocean, Deep-Sea Res. Pt. I, 52, 495–518, 2005.
Magalhaes, J. M. and da Silva, J. C. B.: SAR observations of internal
solitary waves generated at the Estremadura Promontory off the west Iberian
coast, Deep-Sea Res., Pt. I, 69, 12–24, 2012.
Mercier, M. J., Mathur, M., Gostiaux, L., Gerkema, T., Magalhaes, J. M., da
Silva, J. C. B., and Dauxois, T.: Soliton generation by internal tidal beams
impinging on a pycnocline: Laboratory experiments, J. Fluid Mecha., 704,
37–60, 2012.
Metzger, E. J., Hurlburt, H. E., Xu, X., Shriver, J. F., Gordon, A. L.,
Sprintall, J., Susanto, R. D., and van Aken, H. M.: Simulated and observed
circulation in the Indonesian Seas: 1∕12° global HYCOM and the
INSTANT observations, Dyn. Atmos. Oc., 50, 275–300, 2010.
Miles, J. W.: On the stability of heterogeneous shear flows, J. Fluid
Mech., 10, 496–508, 1961.
Moum, J. N., Klymak, J. M., Nash, J. D., Perlin, A., and Smyth, W. D.:
Energy Transport by Nonlinear Internal Waves, J. Phys.
Oceanogr., 37, 1968–1988, 2007.
New, A. L. and da Silva, J. C. B.: Remote-sensing evidence for the local
generation of internal soliton packets in the central Bay of Biscay, Deep-Sea
Res. Pt. I, 49, 915–934, 2002.
Osborne, A. R. and Burch, T. L.: Internal Solitons in the Andaman Sea,
Science, 208, 451–460, 1980.
Ramp, S. R., Chiu, C. S., Kim, H.-R., Bahr, F. L., Tang, T.-Y., Yang, Y.
J., Duda, T., and Liu, A. K.: Solitons in the northeastern South China Sea
part I: Sources and propagation through deep water, IEEE, 29, 1157–1181,
2004.
Ray, R. D. and Cartwright, D. E.: Estimates of internal tide energy fluxes
from TOPEX/Poseidon altimetry: Central North Pacific, Geophys. Res. Lett.,
28, 259–262, 2001.
Sherwin, T. J., Vlasenko, V. I., Stashchuk, N., Jeans, D. R. G., and Jones,
B.: Along-slope generation as an explanation for some unusually large
internal tides, Deep-Sea Res. Pt. I, 49, 1787–1799, 2002.
Shriver, J. F., Arbic, B. K., Richman, J. G., Ray, R. D., Metzger, E. J.,
Wallcraft, A. J., and Timko, P. G.: An evaluation of the barotropic and
internal tides in a high-resolution global ocean circulation model, J.
Geophys. Res., 117, C10024, https://doi.org/10.1029/2012JC008170, 2012.
Shroyer, E. L., Moum, J. N., and Nash, J. D.: Mode 2 waves on the
continental shelf: Ephemeral components of the nonlinear internal wave field,
J. Geophys. Res., 115, C07001, https://doi.org/10.1029/2009JC005605, 2010.
Smyth, W. D., Moum, J. N., and Nash, J. D.: Narrowband oscillations in the
upper equatorial ocean, Part II: Properties of shear instabilities, J. Phys.
Oceanogr., 41, 412–428, 2011.
Thompson, D. R. and Gasparovic, R. F.: Intensity modulation in SAR images
of internal waves, Nature, 320, 345–348, 1986.
Valente, A. S. and da Silva, J. C. B.: On the observability of the
fortnightly cycle of the Tagus estuary turbid plume using MODIS ocean colour
images, J. Mar. Syst., 75, 131–137, 2009.
Vlasenko, V. and Alpers, W.: Generation of secondary internal waves by the
interaction of an internal solitary wave with an underwater bank, J. Geophys.
Res., 110, C02019, https://doi.org/10.1029/2004JC002467, 2005.
Vlasenko, V., Stashchuk, N., and Hutter, K.: Baroclinic Tides: Theoretical
Modeling and Observational Evidence, Cambridge University Press, New York,
351 pp., 2005.
Wisser, D., Fekete, B. M., Vörösmarty, C. J., and Schumann, A. H.:
Reconstructing 20th century global hydrography: a contribution to the Global
Terrestrial Network-Hydrology (GTN-H), Hydrol. Earth Syst. Sci., 14, 1–24,
https://doi.org/10.5194/hess-14-1-2010, 2010.
Zhang, S., Alford, M. H., and Mickett, J. B.: Characteristics, generation
and mass transport of nonlinear internal waves on the Washington continental
shelf, J. Geophys. Res. Oceans, 120, 741–758, https://doi.org/10.1002/2014JC010393,
2015.
Zhao, Z., Klemas, V., Zheng, Q., and Yan, X.-H.: Remote sensing evidence
for the baroclinic tide origin of internal solitary waves in the northeastern
South China Sea, Geophys. Res. Lett., 31, L06302, https://doi.org/10.1029/2003GL019077,
2004.
Zhao, Z., Alford, M. H., and Girton, J. B.: Mapping low-mode internal tides
from multisatellite altimetry, Oceanography, 25, 42–51, 2012.
Short summary
Satellite imagery reveals intense internal solitary waves (ISWs) seen hundreds of kilometres from the Amazon shelf and extending for 500 km into the open ocean (propagating above 3 m/s, amongst the fastest ever recorded). Seasonality is discussed in light of the North Equatorial Counter Current, and a late disintegration of the internal tide (IT) is investigated based on climatological data. A late disintegration of the IT may explain other ISW observations in the world’s oceans.
Satellite imagery reveals intense internal solitary waves (ISWs) seen hundreds of kilometres...