Articles | Volume 11, issue 4
https://doi.org/10.5194/os-11-657-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-11-657-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Impact of currents on surface flux computations and their feedback on dynamics at regional scales
Institute for Coastal Marine Environment of the National Research Council, Oristano Section, Torregrande, Italy
I. Iermano
Department of Sciences and Technologies, Parthenope University, Naples, Italy
L. Fazioli
Institute for Coastal Marine Environment of the National Research Council, Oristano Section, Torregrande, Italy
A. Ribotti
Institute for Coastal Marine Environment of the National Research Council, Oristano Section, Torregrande, Italy
C. Tedesco
Institute for Coastal Marine Environment of the National Research Council, Oristano Section, Torregrande, Italy
F. Pessini
Institute for Coastal Marine Environment of the National Research Council, Oristano Section, Torregrande, Italy
R. Sorgente
Institute for Coastal Marine Environment of the National Research Council, Oristano Section, Torregrande, Italy
Related authors
Julio Salcedo-Castro, Antonio Olita, Freddy Saavedra, Gonzalo S. Saldías, Raúl C. Cruz-Gómez, and Cristian D. De la Torre Martínez
Ocean Sci., 19, 1687–1703, https://doi.org/10.5194/os-19-1687-2023, https://doi.org/10.5194/os-19-1687-2023, 2023
Short summary
Short summary
Considering the relevance and impact of river discharges on the coastal environment, it is necessary to understand the processes associated with river plume dynamics in different regions and at different scales. Modeling studies focused on the eastern Pacific coast under the influence of the Humboldt Current are scarce. Here, we conduct for the first time an interannual modeling study of two river plumes off central Chile and discuss their characteristics.
Charles Troupin, Ananda Pascual, Simon Ruiz, Antonio Olita, Benjamin Casas, Félix Margirier, Pierre-Marie Poulain, Giulio Notarstefano, Marc Torner, Juan Gabriel Fernández, Miquel Àngel Rújula, Cristian Muñoz, Eva Alou, Inmaculada Ruiz, Antonio Tovar-Sánchez, John T. Allen, Amala Mahadevan, and Joaquín Tintoré
Earth Syst. Sci. Data, 11, 129–145, https://doi.org/10.5194/essd-11-129-2019, https://doi.org/10.5194/essd-11-129-2019, 2019
Short summary
Short summary
The AlborEX (the Alboran Sea Experiment) consisted of an experiment in the Alboran Sea (western Mediterranean Sea) that took place between 25 and 31 May 2014, and use a wide range of oceanographic sensors. The dataset provides information on mesoscale and sub-mesoscale processes taking place in a frontal area. This paper presents the measurements obtained from these sensors and describes their particularities: scale, spatial and temporal resolutions, measured variables, etc.
Federica Pessini, Antonio Olita, Yuri Cotroneo, and Angelo Perilli
Ocean Sci., 14, 669–688, https://doi.org/10.5194/os-14-669-2018, https://doi.org/10.5194/os-14-669-2018, 2018
Short summary
Short summary
The Algerian Basin plays a key role in the WMED, and the formation and propagation of mesoscale structures strongly influence its circulation. They transport water masses, heat, salts and other properties and also have an impact on chlorophyll and fisheries. We investigated the spatial and temporal distribution of the eddies by applying a detection and tracking method to altimetry data. The results show mesoscale structures with different origins, behaviours and energies.
Giovanni Coppini, Palmalisa Marra, Rita Lecci, Nadia Pinardi, Sergio Cretì, Mario Scalas, Luca Tedesco, Alessandro D'Anca, Leopoldo Fazioli, Antonio Olita, Giuseppe Turrisi, Cosimo Palazzo, Giovanni Aloisio, Sandro Fiore, Antonio Bonaduce, Yogesh Vittal Kumkar, Stefania Angela Ciliberti, Ivan Federico, Gianandrea Mannarini, Paola Agostini, Roberto Bonarelli, Sara Martinelli, Giorgia Verri, Letizia Lusito, Davide Rollo, Arturo Cavallo, Antonio Tumolo, Tony Monacizzo, Marco Spagnulo, Rorberto Sorgente, Andrea Cucco, Giovanni Quattrocchi, Marina Tonani, Massimiliano Drudi, Paola Nassisi, Laura Conte, Laura Panzera, Antonio Navarra, and Giancarlo Negro
Nat. Hazards Earth Syst. Sci., 17, 533–547, https://doi.org/10.5194/nhess-17-533-2017, https://doi.org/10.5194/nhess-17-533-2017, 2017
Short summary
Short summary
SeaConditions aims to support the users by providing the environmental information in due time and with adequate accuracy in the marine and coastal environments, enforcing users' sea situational awareness. SeaConditions consists of a web and mobile application for the provision of meteorological and oceanographic observation and forecasting products. The iOS/Android apps were downloaded by more than 105 000 users and more than 100 000 users have visited the web version (www.sea-conditions.com).
Andrea Cucco, Giovanni Quattrocchi, Antonio Olita, Leopoldo Fazioli, Alberto Ribotti, Matteo Sinerchia, Costanza Tedesco, and Roberto Sorgente
Nat. Hazards Earth Syst. Sci., 16, 1553–1569, https://doi.org/10.5194/nhess-16-1553-2016, https://doi.org/10.5194/nhess-16-1553-2016, 2016
Short summary
Short summary
This work explored the importance of considering the tidal dynamics when modelling the general circulation in the Messina Strait, a narrow passage connecting the Tyrrhenian and the Ionian Sea sub-basins in the Western Mediterranean Sea. The results highlight that tidal dynamics deeply impact the reproduction of the instantaneous and residual circulation pattern, waters thermohaline properties and transport dynamics both inside the Messina Strait and in the surrounding coastal and open waters.
A. Olita, S. Sparnocchia, S. Cusí, L. Fazioli, R. Sorgente, J. Tintoré, and A. Ribotti
Ocean Sci., 10, 657–666, https://doi.org/10.5194/os-10-657-2014, https://doi.org/10.5194/os-10-657-2014, 2014
Julio Salcedo-Castro, Antonio Olita, Freddy Saavedra, Gonzalo S. Saldías, Raúl C. Cruz-Gómez, and Cristian D. De la Torre Martínez
Ocean Sci., 19, 1687–1703, https://doi.org/10.5194/os-19-1687-2023, https://doi.org/10.5194/os-19-1687-2023, 2023
Short summary
Short summary
Considering the relevance and impact of river discharges on the coastal environment, it is necessary to understand the processes associated with river plume dynamics in different regions and at different scales. Modeling studies focused on the eastern Pacific coast under the influence of the Humboldt Current are scarce. Here, we conduct for the first time an interannual modeling study of two river plumes off central Chile and discuss their characteristics.
Alberto Ribotti, Antonio Bussani, Milena Menna, Andrea Satta, Roberto Sorgente, Andrea Cucco, and Riccardo Gerin
Earth Syst. Sci. Data, 15, 4651–4659, https://doi.org/10.5194/essd-15-4651-2023, https://doi.org/10.5194/essd-15-4651-2023, 2023
Short summary
Short summary
Over 100 experiments were realized between 1998 and 2022 in the Mediterranean Sea using surface coastal and offshore Lagrangian drifters. Raw data were initially unified and pre-processed. Then, the integrity of the received data packages was checked and incomplete ones were discarded. Deployment information was retrieved and integrated into the PostgreSQL database. Data were interpolated at defined time intervals, providing a dataset of 158 trajectories, available in different formats.
Roberto Sorgente, Federica Pessini, Aldo Francis Drago, Alberto Ribotti, Simona Genovese, Marco Barra, Angelo Perilli, Giovanni Quattrocchi, Andrea Cucco, Ignazio Fontana, Giovanni Giacalone, Gualtiero Basilone, and Angelo Bonanno
EGUsphere, https://doi.org/10.5194/egusphere-2023-2193, https://doi.org/10.5194/egusphere-2023-2193, 2023
Preprint withdrawn
Short summary
Short summary
Presence and interannual variability of water masses on the continental shelf around Sardinia are studied by CTD data from three cruises carried out between 2019 and 2021. For the first time the analyses are identifying the water mass phenomenology on the south-western Sardinia shelf characterized by the presence of the Atlantic Water driven by Algerian eddies. On the southern and eastern shelves, the presence of the Atlantic Water the water column is affected by the South East Sardinia Gyre.
Alberto Ribotti, Roberto Sorgente, Federica Pessini, Andrea Cucco, Giovanni Quattrocchi, and Mireno Borghini
Earth Syst. Sci. Data, 14, 4187–4199, https://doi.org/10.5194/essd-14-4187-2022, https://doi.org/10.5194/essd-14-4187-2022, 2022
Short summary
Short summary
Over 1468 hydrological vertical profiles were acquired in 21 years in the Mediterranean Sea. This allowed us to follow the diffusion of the Western Mediterranean Transient along all western seas or make some important repetitions across straits, channels, or at defined locations. These data are now available in four open-access online datasets, including profiles of water temperature, conductivity, dissolved oxygen, chlorophyll α fluorescence, and, after 2004, turbidity and pH.
Malek Belgacem, Jacopo Chiggiato, Mireno Borghini, Bruno Pavoni, Gabriella Cerrati, Francesco Acri, Stefano Cozzi, Alberto Ribotti, Marta Álvarez, Siv K. Lauvset, and Katrin Schroeder
Earth Syst. Sci. Data, 12, 1985–2011, https://doi.org/10.5194/essd-12-1985-2020, https://doi.org/10.5194/essd-12-1985-2020, 2020
Short summary
Short summary
Long-term time series are a fundamental prerequisite to understanding and detecting climate shifts and trends. In marginal seas, such as the Mediterranean Sea, there are still monitoring gaps. An extensive dataset of dissolved inorganic nutrient profiles were collected between 2004 and 2017 in the western Mediterranean Sea to provide to the scientific community a publicly available, long-term, quality-controlled, internally consistent new database.
Alberto Ribotti, Roberto Sorgente, and Mireno Borghini
Earth Syst. Sci. Data, 12, 1287–1294, https://doi.org/10.5194/essd-12-1287-2020, https://doi.org/10.5194/essd-12-1287-2020, 2020
Short summary
Short summary
From May 2000 to January 2004 seven cruises in the Sea of Sardinia collected physical, chemical and biological data. They contributed to knowledge of the local circulation and its interaction with the general Mediterranean one. Accurate and sustained quality assurance for physical sensors was ensured through pre- and postcruise calibration (described here) and verified during cruises by redundant sensors and instruments. Hydrological data are in two open-access datasets in the SEANOE repository.
Charles Troupin, Ananda Pascual, Simon Ruiz, Antonio Olita, Benjamin Casas, Félix Margirier, Pierre-Marie Poulain, Giulio Notarstefano, Marc Torner, Juan Gabriel Fernández, Miquel Àngel Rújula, Cristian Muñoz, Eva Alou, Inmaculada Ruiz, Antonio Tovar-Sánchez, John T. Allen, Amala Mahadevan, and Joaquín Tintoré
Earth Syst. Sci. Data, 11, 129–145, https://doi.org/10.5194/essd-11-129-2019, https://doi.org/10.5194/essd-11-129-2019, 2019
Short summary
Short summary
The AlborEX (the Alboran Sea Experiment) consisted of an experiment in the Alboran Sea (western Mediterranean Sea) that took place between 25 and 31 May 2014, and use a wide range of oceanographic sensors. The dataset provides information on mesoscale and sub-mesoscale processes taking place in a frontal area. This paper presents the measurements obtained from these sensors and describes their particularities: scale, spatial and temporal resolutions, measured variables, etc.
Federica Pessini, Antonio Olita, Yuri Cotroneo, and Angelo Perilli
Ocean Sci., 14, 669–688, https://doi.org/10.5194/os-14-669-2018, https://doi.org/10.5194/os-14-669-2018, 2018
Short summary
Short summary
The Algerian Basin plays a key role in the WMED, and the formation and propagation of mesoscale structures strongly influence its circulation. They transport water masses, heat, salts and other properties and also have an impact on chlorophyll and fisheries. We investigated the spatial and temporal distribution of the eddies by applying a detection and tracking method to altimetry data. The results show mesoscale structures with different origins, behaviours and energies.
Giovanni Coppini, Palmalisa Marra, Rita Lecci, Nadia Pinardi, Sergio Cretì, Mario Scalas, Luca Tedesco, Alessandro D'Anca, Leopoldo Fazioli, Antonio Olita, Giuseppe Turrisi, Cosimo Palazzo, Giovanni Aloisio, Sandro Fiore, Antonio Bonaduce, Yogesh Vittal Kumkar, Stefania Angela Ciliberti, Ivan Federico, Gianandrea Mannarini, Paola Agostini, Roberto Bonarelli, Sara Martinelli, Giorgia Verri, Letizia Lusito, Davide Rollo, Arturo Cavallo, Antonio Tumolo, Tony Monacizzo, Marco Spagnulo, Rorberto Sorgente, Andrea Cucco, Giovanni Quattrocchi, Marina Tonani, Massimiliano Drudi, Paola Nassisi, Laura Conte, Laura Panzera, Antonio Navarra, and Giancarlo Negro
Nat. Hazards Earth Syst. Sci., 17, 533–547, https://doi.org/10.5194/nhess-17-533-2017, https://doi.org/10.5194/nhess-17-533-2017, 2017
Short summary
Short summary
SeaConditions aims to support the users by providing the environmental information in due time and with adequate accuracy in the marine and coastal environments, enforcing users' sea situational awareness. SeaConditions consists of a web and mobile application for the provision of meteorological and oceanographic observation and forecasting products. The iOS/Android apps were downloaded by more than 105 000 users and more than 100 000 users have visited the web version (www.sea-conditions.com).
Andrea Cucco, Giovanni Quattrocchi, Antonio Olita, Leopoldo Fazioli, Alberto Ribotti, Matteo Sinerchia, Costanza Tedesco, and Roberto Sorgente
Nat. Hazards Earth Syst. Sci., 16, 1553–1569, https://doi.org/10.5194/nhess-16-1553-2016, https://doi.org/10.5194/nhess-16-1553-2016, 2016
Short summary
Short summary
This work explored the importance of considering the tidal dynamics when modelling the general circulation in the Messina Strait, a narrow passage connecting the Tyrrhenian and the Ionian Sea sub-basins in the Western Mediterranean Sea. The results highlight that tidal dynamics deeply impact the reproduction of the instantaneous and residual circulation pattern, waters thermohaline properties and transport dynamics both inside the Messina Strait and in the surrounding coastal and open waters.
A. Olita, S. Sparnocchia, S. Cusí, L. Fazioli, R. Sorgente, J. Tintoré, and A. Ribotti
Ocean Sci., 10, 657–666, https://doi.org/10.5194/os-10-657-2014, https://doi.org/10.5194/os-10-657-2014, 2014
Related subject area
Approach: Numerical Models | Depth range: Surface | Geographical range: Mediterranean Sea | Phenomena: Air-Sea Fluxes
Modelling deep-water formation in the north-west Mediterranean Sea with a new air–sea coupled model: sensitivity to turbulent flux parameterizations
Léo Seyfried, Patrick Marsaleix, Evelyne Richard, and Claude Estournel
Ocean Sci., 13, 1093–1112, https://doi.org/10.5194/os-13-1093-2017, https://doi.org/10.5194/os-13-1093-2017, 2017
Cited articles
Chapman, D. C.: Numerical treatment of cross-shelf open boundaries in a Barotropic Coastal Ocean Model, J. Phys. Oceanogr., 15, 1060–1075, https://doi.org/10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2, 1985.
Dawe, J. T. and Thompson, L.: Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean, Geophys. Res. Lett., 33, L09604, https://doi.org/10.1029/2006GL025784, 2006.
Debreu, L. and Blayo, E.: Two-way embedding algorithms: a review, Ocean Dynam., 58, 415–428, https://doi.org/10.1007/s10236-008-0150-9, 2008.
Deng, Z., Xie, L., Liu, B., Wu, K., Zhao, D., and Yu, T.: Coupling winds to ocean surface currents over the global ocean, Ocean Model., 29, 261–268, https://doi.org/10.1016/j.ocemod.2009.05.003, 2009.
Dinniman, M. S., Klinck, J. M., and Smith, W. O.: Cross-shelf exchange in a model of the Ross Sea circulation and biogeochemistry, Deep-Sea Res. Pt. II, 50, 3103–3120, https://doi.org/10.1016/j.dsr2.2003.07.011, 2003.
Duhaut, T. H. A. and Straub, D. N.: Wind stress dependence on ocean surface velocity: implications for mechanical energy input to ocean circulation, J. Phys. Oceanogr., 36, 202, https://doi.org/10.1175/JPO2842.1, 2006.
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment, J. Geophys. Res., 101, 3747–3764, https://doi.org/10.1029/95JC03205, 1996.
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J. B.: Bulk parameterization of air sea fluxes: updates and verification for the COARE algorithm, J. Climate, 16, 571–591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2, 2003.
Flather, R. A.: A tidal model of the northwest European continental shelf, Mem. Soc. R. Sci. Liege, 6, 141–164, 1976.
Fuda, J., Millot, C., Taupier-Letage, I., Send, U., and Bocognano, J.: XBT monitoring of a meridian section across the western Mediterranean Sea, Deep-Sea Res. Pt. I, 47, 2191–2218, 2000.
Greatbatch, R. J., Zhai, X., Kohlmann, J.-D., and Czeschel, L.: Ocean eddy momentum fluxes at the latitudes of the Gulf Stream and the Kuroshio extensions as revealed by satellite data, Ocean Dynam., 60, 617–628, https://doi.org/10.1007/s10236-010-0282-6, 2010.
Haidvogel, D. B., Arango, H. G., Hedstrom, K., Beckmann, A., Malanotte-Rizzoli, P., and Shchepetkin, A. F.: Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates, Dynam. Atmos. Oceans, 32, 239–281, https://doi.org/10.1016/S0377-0265(00)00049-X, 2000.
Hughes, C. W. and Wilson, C.: Wind work on the geostrophic ocean circulation: an observational study of the effect of small scales in the wind stress, J. Geophys. Res.-Oceans, 113, C02016, https://doi.org/10.1029/2007JC004371, 2008.
Iacono, R., Napolitano, E., Marullo, S., Artale, V., and Vetrano, A.: Seasonal variability of the tyrrhenian sea surface geostrophic circulation as assessed by altimeter data, J. Phys. Oceanogr., 43, 1710–1732, 2013.
Iermano, I., Liguori, G., Iudicone, D., Buongiorno Nardelli, B., Colella, S., Zingone, A., Saggiomo, V., and Ribera d'Alcalà, M.: Filament formation and evolution in buoyant coastal waters: Observation and modelling, Prog. Oceanogr., 106, 118–137, https://doi.org/10.1016/j.pocean.2012.08.003, 2012.
Kara, A. B., Metzger, E. J., and Bourassa, M. A.: Ocean current and wave effects on wind stress drag coefficient over the global ocean, Geophys. Res. Lett., 34, L01604, https://doi.org/10.1029/2006GL027849, 2007.
Lévy, M., Memery, L., and Madec, G.: The onset of a bloom after deep winter convection in the northwestern Mediterranean sea: mesoscale process study with a primitive equation model, J. Marine Syst., 16, 7–21, 1998.
Marchesiello, P., McWilliams, J. C., and Shchepetkin, A.: Open boundary conditions for long-term integration of regional oceanic models, Ocean Model., 3, 1–20, https://doi.org/10.1016/S1463-5003(00)00013-5, 2001.
Mason, E., Molemaker, J., Shchepetkin, A. F., Colas, F., McWilliams, J. C., and Sangrà, P.: Procedures for offline grid nesting in regional ocean models, Ocean Model., 35, 1–15, https://doi.org/10.1016/j.ocemod.2010.05.007, 2010.
Millot, C., Gacic, M., Astraldi, M., and La Violette, P. E.: Circulation in the Western Mediterranean Sea, J. Marine Syst., 20, 423–442, 1999.
Olita, A., Dobricic, S., Ribotti, A., Fazioli, L., Cucco, A., Dufau, C., and Sorgente, R.: Impact of SLA assimilation in the Sicily Channel Regional Model: model skills and mesoscale features, Ocean Sci., 8, 485–496, https://doi.org/10.5194/os-8-485-2012, 2012.
Olita, A., Ribotti, A., Fazioli, L., Perilli, A., and Sorgente, R.: Surface circulation and upwelling in the Sardinia Sea: A numerical study, Cont. Shelf. Res., 71, 95–108, https://doi.org/10.1016/j.csr.2013.10.011, 2013.
Olita, A., Sparnocchia, S., Cusí, S., Fazioli, L., Sorgente, R., Tintoré, J., and Ribotti, A.: Observations of a phytoplankton spring bloom onset triggered by a density front in NW Mediterranean, Ocean Sci., 10, 657–666, https://doi.org/10.5194/os-10-657-2014, 2014.
Penven, P., Debreu, L., Marchesiello, P., and McWilliams, J. C.: Evaluation and application of the ROMS 1-way embedding procedure to the central california upwelling system, Ocean Model., 12, 157–187, https://doi.org/10.1016/j.ocemod.2005.05.002, 2006.
Perilli, A., Rupolo, V., and Salusti, E.: Satellite investigations of a cyclonic gyre in the central Tyrrhenian Sea (western Mediterranean Sea), J. Geophys. Res., 100, 2487–2499, https://doi.org/10.1029/94JC01315, 1995.
Pinardi, N., Zavatarelli, M., Adani, M., Coppini, G., Fratianni, C., Oddo, P., Simoncelli, S., Tonani, M., Lyubartsev, V., Dobricic, S., and Bonaduce, A.: Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis, Prog. Oceanogr., online first, https://doi.org/10.1016/j.pocean.2013.11.003, 2013.
Puillat, I., Taupier-Letage, I., and Millot, C.: Algerian eddies lifetime can near 3 years, J. of Marine Systems, 31, 245–259, 2002.
Ribotti, A., Puillat, I., Sorgente, R., and Natale, S.: Mesoscale circulation in the surface layer off the southern and western Sardinia Island in 2000–2002, Chem. Ecol., 20, 345–363, 2004.
Shchepetkin, A. F. and McWilliams, J. C.: Quasi-monotone advection schemes based on explicit locally adaptive dissipation, Mon. Weather Rev., 126, 1541, https://doi.org/10.1175/1520-0493(1998)126<1541:QMASBO>2.0.CO;2, 1998.
Shchepetkin, A. F. and McWilliams, J. C.: A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate, J. Geophys. Res.-Oceans, 108, 3090, https://doi.org/10.1029/2001JC001047, 2003.
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Model., 9, 347–404, https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
Testor, P. and Gascard, J.-C.: Large-scale spreading of deep waters in the Western Mediterranean Sea by submesoscale coherent eddies, J. Phys. Oceanogr., 33, 75–87, https://doi.org/10.1175/1520-0485(2003)033<0075:LSSODW>2.0.CO;2, 2003.
Testor, P., Béranger, K., and Mortier, L.: Modeling the deep eddy field in the southwestern Mediterranean: the life cycle of Sardinian eddies, Gephys. Res. Lett., 32, L13602, https://doi.org/10.1029/2004GL022283, 2005.
Tonani, M., Pinardi, N., Fratianni, C., Pistoia, J., Dobricic, S., Pensieri, S., de Alfonso, M., and Nittis, K.: Mediterranean Forecasting System: forecast and analysis assessment through skill scores, Ocean Sci., 5, 649–660, https://doi.org/10.5194/os-5-649-2009, 2009.
Vandenbulcke, L., Barth, A., Rixen, M., Alvera-Azcarate, A., Ben Bouallegue, Z., and Beckers, J. M.: Study of the combined effects of data assimilation and grid nesting in ocean models – application to the Gulf of Lions, Ocean Sci., 2, 213–222, https://doi.org/10.5194/os-2-213-2006, 2006.
Warner, J. C., Sherwood, C. R., Arango, H. G., and Signell, R. P.: Performance of four turbulence closure models implemented using a generic length scale method, Ocean Model., 8, 81–113, https://doi.org/10.1016/j.ocemod.2003.12.003, 2005.
Wilkin, J. L., Arango, H. G., Haidvogel, D. B., Lichtenwalner, C. S., Glenn, S. M., and HedströM, K. S.: A regional ocean modeling system for the long-term ecosystem observatory, J. Geophys. Res.-Oceans, 110, C06S91, https://doi.org/10.1029/2003JC002218, 2005.
Zhai, X. and Greatbatch, R. J.: Wind work in a model of the northwest Atlantic Ocean, Geophys. Res. Lett., 34, L04606, https://doi.org/10.1029/2006GL028907, 2007.
Short summary
The paper studies the impact of the use of relative winds (i.e., winds minus ocean currents) to compute heat and momentum fluxes at sea surface. This was done in an area interested by mesoscale eddies and a local boundary current.
Impact is relevant both for heat and momentum fluxes.
Major differences can be observed in areas with large mesoscale activity.
Results suggest that surface currents component in fluxes computation should not be neglected even at such scales and latitudes.
The paper studies the impact of the use of relative winds (i.e., winds minus ocean currents) to...