Articles | Volume 10, issue 4
https://doi.org/10.5194/os-10-719-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-10-719-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Heat loss from the Atlantic water layer in the northern Kara Sea: causes and consequences
I. A. Dmitrenko
Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada
S. A. Kirillov
Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada
N. Serra
Institute of Oceanography, University of Hamburg, Hamburg, Germany
N. V. Koldunov
Institute of Oceanography, University of Hamburg, Hamburg, Germany
V. V. Ivanov
Arctic and Antarctic Research Institute, St. Petersburg, Russia
International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, USA
U. Schauer
Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
I. V. Polyakov
International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, USA
D. Barber
Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada
M. Janout
Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
V. S. Lien
Institute of Marine Research, Bergen, Norway
M. Makhotin
Arctic and Antarctic Research Institute, St. Petersburg, Russia
Y. Aksenov
National Oceanography Centre Southampton, Southampton, UK
Dedicated to the memory of our colleague Klaus Hochheim, who tragically lost his life in the Arctic expedition in September 2013
Dedicated to the memory of our colleague Klaus Hochheim, who tragically lost his life in the Arctic expedition in September 2013
Related authors
Igor Dmitrenko, Vladislav Petrusevich, Andreas Preußer, Ksenia Kosobokova, Caroline Bouchard, Maxime Geoffroy, Alexander Komarov, David Babb, Sergei Kirillov, and David Barber
EGUsphere, https://doi.org/10.5194/egusphere-2024-1637, https://doi.org/10.5194/egusphere-2024-1637, 2024
Short summary
Short summary
The diel vertical migration (DVM) of zooplankton is one of the largest species migrations to occur globally and is a key driver of regional ecosystems. Here, time series of acoustic data collected at the circumpolar Arctic polynya system were used to examine the annual cycle of DVM. We revealed that the formation of polynya open water disrupts DVM. This disruption is attributed to a predator avoidance behavior of zooplankton in response to higher polar cod abundance attracted by the polynya.
Sergei Kirillov, Igor Dmitrenko, David G. Babb, Jens K. Ehn, Nikolay Koldunov, Søren Rysgaard, David Jensen, and David G. Barber
Ocean Sci., 18, 1535–1557, https://doi.org/10.5194/os-18-1535-2022, https://doi.org/10.5194/os-18-1535-2022, 2022
Short summary
Short summary
The sea ice bridge usually forms during winter in Nares Strait and prevents ice drifting south. However, this bridge has recently become unstable, and in this study we investigate the role of oceanic heat flux in this decline. Using satellite data, we identify areas where sea ice is relatively thin and further attribute those areas to the heat fluxes from the warm subsurface water masses. We also discuss the potential role of such an impact on ice bridge instability and earlier ice break up.
Igor A. Dmitrenko, Denis L. Volkov, Tricia A. Stadnyk, Andrew Tefs, David G. Babb, Sergey A. Kirillov, Alex Crawford, Kevin Sydor, and David G. Barber
Ocean Sci., 17, 1367–1384, https://doi.org/10.5194/os-17-1367-2021, https://doi.org/10.5194/os-17-1367-2021, 2021
Short summary
Short summary
Significant trends of sea ice in Hudson Bay have led to a considerable increase in shipping activity. Therefore, understanding sea level variability is an urgent issue crucial for safe navigation and coastal infrastructure. Using the sea level, atmospheric and river discharge data, we assess environmental factors impacting variability of sea level at Churchill. We find that it is dominated by wind forcing, with the seasonal cycle generated by the seasonal cycle in atmospheric circulation.
Igor A. Dmitrenko, Vladislav Petrusevich, Gérald Darnis, Sergei A. Kirillov, Alexander S. Komarov, Jens K. Ehn, Alexandre Forest, Louis Fortier, Søren Rysgaard, and David G. Barber
Ocean Sci., 16, 1261–1283, https://doi.org/10.5194/os-16-1261-2020, https://doi.org/10.5194/os-16-1261-2020, 2020
Short summary
Short summary
Diel vertical migration (DVM) of zooplankton is the largest nonhuman migration on the Earth. DVM in the eastern Beaufort Sea was assessed using a 2-year-long time series of currents and acoustic signal from a bottom-anchored oceanographic mooring. Our results show that DVM is deviated by the (i) seasonal and interannual variability in sea ice and (ii) wind-driven water dynamics. We also observed the midnight-sun DVM during summer 2004, a signal masked by suspended particles in summer 2005.
Vladislav Y. Petrusevich, Igor A. Dmitrenko, Andrea Niemi, Sergey A. Kirillov, Christina Michelle Kamula, Zou Zou A. Kuzyk, David G. Barber, and Jens K. Ehn
Ocean Sci., 16, 337–353, https://doi.org/10.5194/os-16-337-2020, https://doi.org/10.5194/os-16-337-2020, 2020
Short summary
Short summary
The diel vertical migration of zooplankton is considered the largest daily migration of biomass on Earth. This study investigates zooplankton distribution, dynamics, and factors controlling them during open-water and ice cover periods in Hudson Bay, a large seasonally ice-covered Canadian inland sea. The presented data constitute the first-ever observed diel vertical migration of zooplankton in Hudson Bay during winter and its interaction with the tidal dynamics.
Igor A. Dmitrenko, Sergey A. Kirillov, Bert Rudels, David G. Babb, Leif Toudal Pedersen, Søren Rysgaard, Yngve Kristoffersen, and David G. Barber
Ocean Sci., 13, 1045–1060, https://doi.org/10.5194/os-13-1045-2017, https://doi.org/10.5194/os-13-1045-2017, 2017
Sergei Kirillov, Igor Dmitrenko, Søren Rysgaard, David Babb, Leif Toudal Pedersen, Jens Ehn, Jørgen Bendtsen, and David Barber
Ocean Sci., 13, 947–959, https://doi.org/10.5194/os-13-947-2017, https://doi.org/10.5194/os-13-947-2017, 2017
Short summary
Short summary
This paper reports the analysis of 3-week oceanographic data obtained in the front of Flade Isblink Glacier in northeast Greenland. The major focus of research is considering the changes of water dynamics and the altering of temperature and salinity vertical distribution occurring during the storm event. We discuss the mechanisms that are responsible for the formation of two-layer circulation cell and release of cold and relatively fresh sub-glacial waters into the ocean.
Vidar S. Lien, Roshin P. Raj, and Sourav Chatterjee
State Planet, 4-osr8, 8, https://doi.org/10.5194/sp-4-osr8-8-2024, https://doi.org/10.5194/sp-4-osr8-8-2024, 2024
Short summary
Short summary
We find that major marine heatwaves are rather coherent throughout the Barents Sea, but surface marine heatwaves occur more frequently while heatwaves on the ocean floor have a longer duration. Moreover, we investigate the sensitivity to the choice of climatological average length when calculating marine heatwave statistics. Our results indicate that severe marine heatwaves may become more frequent in the future Barents Sea due to ongoing climate change.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Viktoria Spaiser, Sirkku Juhola, Sara M. Constantino, Weisi Guo, Tabitha Watson, Jana Sillmann, Alessandro Craparo, Ashleigh Basel, John T. Bruun, Krishna Krishnamurthy, Jürgen Scheffran, Patricia Pinho, Uche T. Okpara, Jonathan F. Donges, Avit Bhowmik, Taha Yasseri, Ricardo Safra de Campos, Graeme S. Cumming, Hugues Chenet, Florian Krampe, Jesse F. Abrams, James G. Dyke, Stefanie Rynders, Yevgeny Aksenov, and Bryan M. Spears
Earth Syst. Dynam., 15, 1179–1206, https://doi.org/10.5194/esd-15-1179-2024, https://doi.org/10.5194/esd-15-1179-2024, 2024
Short summary
Short summary
In this paper, we identify potential negative social tipping points linked to Earth system destabilization and draw on related research to understand the drivers and likelihood of these negative social tipping dynamics, their potential effects on human societies and the Earth system, and the potential for cascading interactions and contribution to systemic risks.
Ole Pinner, Friederike Pollmann, Markus Janout, Gunnar Voet, and Torsten Kanzow
EGUsphere, https://doi.org/10.5194/egusphere-2024-2444, https://doi.org/10.5194/egusphere-2024-2444, 2024
Short summary
Short summary
The Weddell Sea Bottom Water gravity current transports dense water from the continental shelf to the deep sea and is crucial for the formation of new deep sea water. Build on vertical profiles and time series measured in the northwestern Weddell Sea, we apply 3 methods to distinguish turbulence caused by internal waves from turbulence by other sources. We find that in the upper part of the gravity current, internal waves are important for the mixing of less dense water down into the current.
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2491, https://doi.org/10.5194/egusphere-2024-2491, 2024
Short summary
Short summary
Based on a series of storm-resolving greenhouse warming simulations conducted with the AWI-CM3 model at 9 km global atmosphere, 4–25 km ocean resolution, we present new projections of regional climate change, modes of climate variability and extreme events. The 10-year-long high resolution simulations for the 2000s, 2030s, 2060s, 2090s were initialized from a coarser resolution transient run (31 km atmosphere) which follows the SSP5-8.5 greenhouse gas emission scenario from 1950–2100 CE.
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
EGUsphere, https://doi.org/10.5194/egusphere-2024-2281, https://doi.org/10.5194/egusphere-2024-2281, 2024
Short summary
Short summary
Vertical mixing is an important process e.g. for tropical sea surface temperature, but cannot be resolved by ocean models. Comparisons of mixing schemes and settings have usually been done with a single model, sometimes yielding conflicting results. We systematically compare two widely used schemes, TKE and KPP, with different parameter settings, in two different ocean models, and show that most effects from mixing scheme parameter changes are model dependent.
Naoya Kanna, Kazutaka Tateyama, Takuji Waseda, Anna Timofeeva, Maria Papadimitraki, Laura Whitmore, Hajime Obata, Daiki Nomura, Hiroshi Ogawa, Youhei Yamashita, and Igor Polyakov
EGUsphere, https://doi.org/10.5194/egusphere-2024-1834, https://doi.org/10.5194/egusphere-2024-1834, 2024
Short summary
Short summary
This article presents data on iron and manganese, which are essential micronutrients for primary producers, on the surface of the Arctic’s Laptev and East Siberian Seas (LESS). Observations were made in international cooperation with the NABOS expedition during the late summer of 2021 in the Arctic Ocean. The results from this study indicate that the major factors controlling these metal concentrations in LESS are river discharge and the input of shelf sediment.
Ivan Kuznetsov, Benjamin Rabe, Alexey Androsov, Ying-Chih Fang, Mario Hoppmann, Alejandra Quintanilla-Zurita, Sven Harig, Sandra Tippenhauer, Kirstin Schulz, Volker Mohrholz, Ilker Fer, Vera Fofonova, and Markus Janout
Ocean Sci., 20, 759–777, https://doi.org/10.5194/os-20-759-2024, https://doi.org/10.5194/os-20-759-2024, 2024
Short summary
Short summary
Our research introduces a tool for dynamically mapping the Arctic Ocean using data from the MOSAiC experiment. Incorporating extensive data into a model clarifies the ocean's structure and movement. Our findings on temperature, salinity, and currents reveal how water layers mix and identify areas of intense water movement. This enhances understanding of Arctic Ocean dynamics and supports climate impact studies. Our work is vital for comprehending this key region in global climate science.
Igor Dmitrenko, Vladislav Petrusevich, Andreas Preußer, Ksenia Kosobokova, Caroline Bouchard, Maxime Geoffroy, Alexander Komarov, David Babb, Sergei Kirillov, and David Barber
EGUsphere, https://doi.org/10.5194/egusphere-2024-1637, https://doi.org/10.5194/egusphere-2024-1637, 2024
Short summary
Short summary
The diel vertical migration (DVM) of zooplankton is one of the largest species migrations to occur globally and is a key driver of regional ecosystems. Here, time series of acoustic data collected at the circumpolar Arctic polynya system were used to examine the annual cycle of DVM. We revealed that the formation of polynya open water disrupts DVM. This disruption is attributed to a predator avoidance behavior of zooplankton in response to higher polar cod abundance attracted by the polynya.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Alexei Koldunov, Tobias Kölling, Josh Kousal, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Domokos Sármány, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
EGUsphere, https://doi.org/10.5194/egusphere-2024-913, https://doi.org/10.5194/egusphere-2024-913, 2024
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale"), and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Yanan Wang, Byongjun Hwang, Adam William Bateson, Yevgeny Aksenov, and Christopher Horvat
The Cryosphere, 17, 3575–3591, https://doi.org/10.5194/tc-17-3575-2023, https://doi.org/10.5194/tc-17-3575-2023, 2023
Short summary
Short summary
Sea ice is composed of small, discrete pieces of ice called floes, whose size distribution plays a critical role in the interactions between the sea ice, ocean and atmosphere. This study provides an assessment of sea ice models using new high-resolution floe size distribution observations, revealing considerable differences between them. These findings point not only to the limitations in models but also to the need for more high-resolution observations to validate and calibrate models.
Elin Darelius, Vår Dundas, Markus Janout, and Sandra Tippenhauer
Ocean Sci., 19, 671–683, https://doi.org/10.5194/os-19-671-2023, https://doi.org/10.5194/os-19-671-2023, 2023
Short summary
Short summary
Antarctica's ice shelves are melting from below as ocean currents bring warm water into the ice shelf cavities. The melt rates of the large Filchner–Ronne Ice Shelf in the southern Weddell Sea are currently low, as the water in the cavity is cold. Here, we present data from a scientific cruise to the region in 2021 and show that the warmest water at the upper part of the continental slope is now about 0.1°C warmer than in previous observations, while the surface water is fresher than before.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Sergei Kirillov, Igor Dmitrenko, David G. Babb, Jens K. Ehn, Nikolay Koldunov, Søren Rysgaard, David Jensen, and David G. Barber
Ocean Sci., 18, 1535–1557, https://doi.org/10.5194/os-18-1535-2022, https://doi.org/10.5194/os-18-1535-2022, 2022
Short summary
Short summary
The sea ice bridge usually forms during winter in Nares Strait and prevents ice drifting south. However, this bridge has recently become unstable, and in this study we investigate the role of oceanic heat flux in this decline. Using satellite data, we identify areas where sea ice is relatively thin and further attribute those areas to the heat fluxes from the warm subsurface water masses. We also discuss the potential role of such an impact on ice bridge instability and earlier ice break up.
Vidar S. Lien, Angelika H. H. Renner, Mari S. Myksvoll, Johnny A. Johannessen, Jeremy Cook, Helene Spurkeland, and Ronald Toppe
State Planet Discuss., https://doi.org/10.5194/sp-2022-12, https://doi.org/10.5194/sp-2022-12, 2022
Preprint withdrawn
Short summary
Short summary
The One Ocean Expedition, a part of the United Nations Ocean Decade, is a sailing voyage where a traditional tall ship equipped with state-of-the-art ocean observation technology is circumnavigating the globe with a crew consisting of students, scientists, trainees and professionals. The focus for the expedition is awareness raising and education through showcasing ocean science using a traditional tall ship as a platform.
Vidar S. Lien and Roshin P. Raj
State Planet Discuss., https://doi.org/10.5194/sp-2022-13, https://doi.org/10.5194/sp-2022-13, 2022
Preprint withdrawn
Short summary
Short summary
Dense overflow water entering the North Atlantic from the Nordic Seas forms the northern limb of the Atlantic Meridional Overturning Circulation. The formation of dense water in the Nordic Seas is sensitive to the properties of the northward flowing Atlantic Water entering the Nordic Seas to the south. We find that the unprecedented freshwater anomaly in the North Atlantic recent years caused the dense water formed in the Barents Sea to have the lowest density in recorded history.
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Jan Hegewald, Dmitry V. Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
Geosci. Model Dev., 15, 6399–6427, https://doi.org/10.5194/gmd-15-6399-2022, https://doi.org/10.5194/gmd-15-6399-2022, 2022
Short summary
Short summary
We developed a new atmosphere–ocean coupled climate model, AWI-CM3. Our model is significantly more computationally efficient than its predecessors AWI-CM1 and AWI-CM2. We show that the model, although cheaper to run, provides results of similar quality when modeling the historic period from 1850 to 2014. We identify the remaining weaknesses to outline future work. Finally we preview an improved simulation where the reduction in computational cost has to be invested in higher model resolution.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Adam William Bateson, Daniel L. Feltham, David Schröder, Yanan Wang, Byongjun Hwang, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere, 16, 2565–2593, https://doi.org/10.5194/tc-16-2565-2022, https://doi.org/10.5194/tc-16-2565-2022, 2022
Short summary
Short summary
Numerical models are used to understand the mechanisms that drive the evolution of the Arctic sea ice cover. The sea ice cover is formed of pieces of ice called floes. Several recent studies have proposed variable floe size models to replace the standard model assumption of a fixed floe size. In this study we show the need to include floe fragmentation processes in these variable floe size models and demonstrate that model design can determine the impact of floe size on size ice evolution.
Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, Qiang Wang, Nikolay Koldunov, Dmitry Sein, and Thomas Jung
Geosci. Model Dev., 15, 335–363, https://doi.org/10.5194/gmd-15-335-2022, https://doi.org/10.5194/gmd-15-335-2022, 2022
Short summary
Short summary
Structured-mesh ocean models are still the most mature in terms of functionality due to their long development history. However, unstructured-mesh ocean models have acquired new features and caught up in their functionality. This paper continues the work by Scholz et al. (2019) of documenting the features available in FESOM2.0. It focuses on the following two aspects: (i) partial bottom cells and embedded sea ice and (ii) dealing with mixing parameterisations enabled by using the CVMix package.
Guokun Lyu, Nuno Serra, Meng Zhou, and Detlef Stammer
Ocean Sci., 18, 51–66, https://doi.org/10.5194/os-18-51-2022, https://doi.org/10.5194/os-18-51-2022, 2022
Short summary
Short summary
This study explores the Arctic sea level variability depending on different timescales and the relation to temperature, salinity and mass changes, identifying key parameters and regions that need to be observed coordinately. The decadal sea level variability reflects salinity changes. But it can only reflect salinity change at periods of greater than 1 year, highlighting the requirement for enhancing in situ hydrographic observations and complicated interpolation methods.
Igor A. Dmitrenko, Denis L. Volkov, Tricia A. Stadnyk, Andrew Tefs, David G. Babb, Sergey A. Kirillov, Alex Crawford, Kevin Sydor, and David G. Barber
Ocean Sci., 17, 1367–1384, https://doi.org/10.5194/os-17-1367-2021, https://doi.org/10.5194/os-17-1367-2021, 2021
Short summary
Short summary
Significant trends of sea ice in Hudson Bay have led to a considerable increase in shipping activity. Therefore, understanding sea level variability is an urgent issue crucial for safe navigation and coastal infrastructure. Using the sea level, atmospheric and river discharge data, we assess environmental factors impacting variability of sea level at Churchill. We find that it is dominated by wind forcing, with the seasonal cycle generated by the seasonal cycle in atmospheric circulation.
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021, https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Short summary
Freshwater in the Arctic Ocean plays a critical role in the global climate system by impacting ocean circulations, stratification, mixing, and emergent regimes. In this review paper we assess how Arctic Ocean freshwater changed in the 2010s relative to the 2000s. Estimates from observations and reanalyses show a qualitative stabilization in the 2010s due to a compensation between a freshening of the Beaufort Gyre and a reduction in freshwater in the Amerasian and Eurasian basins.
Jens A. Hölemann, Bennet Juhls, Dorothea Bauch, Markus Janout, Boris P. Koch, and Birgit Heim
Biogeosciences, 18, 3637–3655, https://doi.org/10.5194/bg-18-3637-2021, https://doi.org/10.5194/bg-18-3637-2021, 2021
Short summary
Short summary
The Arctic Ocean receives large amounts of river water rich in terrestrial dissolved organic matter (tDOM), which is an important component of the Arctic carbon cycle. Our analysis shows that mixing of three major freshwater sources is the main factor that regulates the distribution of tDOM concentrations in the Siberian shelf seas. In this context, the formation and melting of the land-fast ice in the Laptev Sea and the peak spring discharge of the Lena River are of particular importance.
H. Jakob Belter, Thomas Krumpen, Luisa von Albedyll, Tatiana A. Alekseeva, Gerit Birnbaum, Sergei V. Frolov, Stefan Hendricks, Andreas Herber, Igor Polyakov, Ian Raphael, Robert Ricker, Sergei S. Serovetnikov, Melinda Webster, and Christian Haas
The Cryosphere, 15, 2575–2591, https://doi.org/10.5194/tc-15-2575-2021, https://doi.org/10.5194/tc-15-2575-2021, 2021
Short summary
Short summary
Summer sea ice thickness observations based on electromagnetic induction measurements north of Fram Strait show a 20 % reduction in mean and modal ice thickness from 2001–2020. The observed variability is caused by changes in drift speeds and consequential variations in sea ice age and number of freezing-degree days. Increased ocean heat fluxes measured upstream in the source regions of Arctic ice seem to precondition ice thickness, which is potentially still measurable more than a year later.
Anastasiia Tarasenko, Alexandre Supply, Nikita Kusse-Tiuz, Vladimir Ivanov, Mikhail Makhotin, Jean Tournadre, Bertrand Chapron, Jacqueline Boutin, Nicolas Kolodziejczyk, and Gilles Reverdin
Ocean Sci., 17, 221–247, https://doi.org/10.5194/os-17-221-2021, https://doi.org/10.5194/os-17-221-2021, 2021
Short summary
Short summary
Data from the ARKTIKA-2018 expedition and new satellite data help us to follow rapid changes in the upper layer of the Laptev and East Siberian seas (LS, ESS) in summer 2018. With satellite-derived surface temperature, an improved SMOS salinity, and wind, we study how the fresh river water is mixed with cold sea water and ice-melted water at small time and spatial scales. The wind pushes fresh water northward and northeastward, close to and under the ice, forcing it into the deep Arctic Ocean.
Igor A. Dmitrenko, Vladislav Petrusevich, Gérald Darnis, Sergei A. Kirillov, Alexander S. Komarov, Jens K. Ehn, Alexandre Forest, Louis Fortier, Søren Rysgaard, and David G. Barber
Ocean Sci., 16, 1261–1283, https://doi.org/10.5194/os-16-1261-2020, https://doi.org/10.5194/os-16-1261-2020, 2020
Short summary
Short summary
Diel vertical migration (DVM) of zooplankton is the largest nonhuman migration on the Earth. DVM in the eastern Beaufort Sea was assessed using a 2-year-long time series of currents and acoustic signal from a bottom-anchored oceanographic mooring. Our results show that DVM is deviated by the (i) seasonal and interannual variability in sea ice and (ii) wind-driven water dynamics. We also observed the midnight-sun DVM during summer 2004, a signal masked by suspended particles in summer 2005.
Sylvain Watelet, Øystein Skagseth, Vidar S. Lien, Helge Sagen, Øivind Østensen, Viktor Ivshin, and Jean-Marie Beckers
Earth Syst. Sci. Data, 12, 2447–2457, https://doi.org/10.5194/essd-12-2447-2020, https://doi.org/10.5194/essd-12-2447-2020, 2020
Short summary
Short summary
We present here a seasonal atlas of the Barents Sea including both temperature and salinity for the period 1965–2016. This atlas is curated using several in situ data sources interpolated thanks to the tool DIVA minimizing the expected errors. The results show a recent "Atlantification" of the Barents Sea, i.e., a general increase in both temperature and salinity, while its density remains stable. The atlas is made freely accessible (https://doi.org/10.21335/NMDC-2058021735).
Eric P. Chassignet, Stephen G. Yeager, Baylor Fox-Kemper, Alexandra Bozec, Frederic Castruccio, Gokhan Danabasoglu, Christopher Horvat, Who M. Kim, Nikolay Koldunov, Yiwen Li, Pengfei Lin, Hailong Liu, Dmitry V. Sein, Dmitry Sidorenko, Qiang Wang, and Xiaobiao Xu
Geosci. Model Dev., 13, 4595–4637, https://doi.org/10.5194/gmd-13-4595-2020, https://doi.org/10.5194/gmd-13-4595-2020, 2020
Short summary
Short summary
This paper presents global comparisons of fundamental global climate variables from a suite of four pairs of matched low- and high-resolution ocean and sea ice simulations to assess the robustness of climate-relevant improvements in ocean simulations associated with moving from coarse (∼1°) to eddy-resolving (∼0.1°) horizontal resolutions. Despite significant improvements, greatly enhanced horizontal resolution does not deliver unambiguous bias reduction in all regions for all models.
Hiroyuki Tsujino, L. Shogo Urakawa, Stephen M. Griffies, Gokhan Danabasoglu, Alistair J. Adcroft, Arthur E. Amaral, Thomas Arsouze, Mats Bentsen, Raffaele Bernardello, Claus W. Böning, Alexandra Bozec, Eric P. Chassignet, Sergey Danilov, Raphael Dussin, Eleftheria Exarchou, Pier Giuseppe Fogli, Baylor Fox-Kemper, Chuncheng Guo, Mehmet Ilicak, Doroteaciro Iovino, Who M. Kim, Nikolay Koldunov, Vladimir Lapin, Yiwen Li, Pengfei Lin, Keith Lindsay, Hailong Liu, Matthew C. Long, Yoshiki Komuro, Simon J. Marsland, Simona Masina, Aleksi Nummelin, Jan Klaus Rieck, Yohan Ruprich-Robert, Markus Scheinert, Valentina Sicardi, Dmitry Sidorenko, Tatsuo Suzuki, Hiroaki Tatebe, Qiang Wang, Stephen G. Yeager, and Zipeng Yu
Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, https://doi.org/10.5194/gmd-13-3643-2020, 2020
Short summary
Short summary
The OMIP-2 framework for global ocean–sea-ice model simulations is assessed by comparing multi-model means from 11 CMIP6-class global ocean–sea-ice models calculated separately for the OMIP-1 and OMIP-2 simulations. Many features are very similar between OMIP-1 and OMIP-2 simulations, and yet key improvements in transitioning from OMIP-1 to OMIP-2 are also identified. Thus, the present assessment justifies that future ocean–sea-ice model development and analysis studies use the OMIP-2 framework.
Veronika Eyring, Lisa Bock, Axel Lauer, Mattia Righi, Manuel Schlund, Bouwe Andela, Enrico Arnone, Omar Bellprat, Björn Brötz, Louis-Philippe Caron, Nuno Carvalhais, Irene Cionni, Nicola Cortesi, Bas Crezee, Edouard L. Davin, Paolo Davini, Kevin Debeire, Lee de Mora, Clara Deser, David Docquier, Paul Earnshaw, Carsten Ehbrecht, Bettina K. Gier, Nube Gonzalez-Reviriego, Paul Goodman, Stefan Hagemann, Steven Hardiman, Birgit Hassler, Alasdair Hunter, Christopher Kadow, Stephan Kindermann, Sujan Koirala, Nikolay Koldunov, Quentin Lejeune, Valerio Lembo, Tomas Lovato, Valerio Lucarini, François Massonnet, Benjamin Müller, Amarjiit Pandde, Núria Pérez-Zanón, Adam Phillips, Valeriu Predoi, Joellen Russell, Alistair Sellar, Federico Serva, Tobias Stacke, Ranjini Swaminathan, Verónica Torralba, Javier Vegas-Regidor, Jost von Hardenberg, Katja Weigel, and Klaus Zimmermann
Geosci. Model Dev., 13, 3383–3438, https://doi.org/10.5194/gmd-13-3383-2020, https://doi.org/10.5194/gmd-13-3383-2020, 2020
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance tracking to ensure reproducibility.
Dmitry Sidorenko, Sergey Danilov, Nikolay Koldunov, Patrick Scholz, and Qiang Wang
Geosci. Model Dev., 13, 3337–3345, https://doi.org/10.5194/gmd-13-3337-2020, https://doi.org/10.5194/gmd-13-3337-2020, 2020
Short summary
Short summary
Computation of barotropic and meridional overturning streamfunctions for models formulated on unstructured meshes is commonly preceded by interpolation to a regular mesh. This operation destroys the original conservation, which can be then be artificially imposed to make the computation possible. An elementary method is proposed that avoids interpolation and preserves conservation in a strict model sense.
H. Jakob Belter, Thomas Krumpen, Stefan Hendricks, Jens Hoelemann, Markus A. Janout, Robert Ricker, and Christian Haas
The Cryosphere, 14, 2189–2203, https://doi.org/10.5194/tc-14-2189-2020, https://doi.org/10.5194/tc-14-2189-2020, 2020
Short summary
Short summary
The validation of satellite sea ice thickness (SIT) climate data records with newly acquired moored sonar SIT data shows that satellite products provide modal rather than mean SIT in the Laptev Sea region. This tendency of satellite-based SIT products to underestimate mean SIT needs to be considered for investigations of sea ice volume transports. Validation of satellite SIT in the first-year-ice-dominated Laptev Sea will support algorithm development for more reliable SIT records in the Arctic.
Vladislav Y. Petrusevich, Igor A. Dmitrenko, Andrea Niemi, Sergey A. Kirillov, Christina Michelle Kamula, Zou Zou A. Kuzyk, David G. Barber, and Jens K. Ehn
Ocean Sci., 16, 337–353, https://doi.org/10.5194/os-16-337-2020, https://doi.org/10.5194/os-16-337-2020, 2020
Short summary
Short summary
The diel vertical migration of zooplankton is considered the largest daily migration of biomass on Earth. This study investigates zooplankton distribution, dynamics, and factors controlling them during open-water and ice cover periods in Hudson Bay, a large seasonally ice-covered Canadian inland sea. The presented data constitute the first-ever observed diel vertical migration of zooplankton in Hudson Bay during winter and its interaction with the tidal dynamics.
Mattia Righi, Bouwe Andela, Veronika Eyring, Axel Lauer, Valeriu Predoi, Manuel Schlund, Javier Vegas-Regidor, Lisa Bock, Björn Brötz, Lee de Mora, Faruk Diblen, Laura Dreyer, Niels Drost, Paul Earnshaw, Birgit Hassler, Nikolay Koldunov, Bill Little, Saskia Loosveldt Tomas, and Klaus Zimmermann
Geosci. Model Dev., 13, 1179–1199, https://doi.org/10.5194/gmd-13-1179-2020, https://doi.org/10.5194/gmd-13-1179-2020, 2020
Short summary
Short summary
This paper describes the second major release of ESMValTool, a community diagnostic and performance metrics tool for the evaluation of Earth system models. This new version features a brand new design, with an improved interface and a revised preprocessor. It takes advantage of state-of-the-art computational libraries and methods to deploy efficient and user-friendly data processing, improving the performance over its predecessor by more than a factor of 30.
Adam W. Bateson, Daniel L. Feltham, David Schröder, Lucia Hosekova, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere, 14, 403–428, https://doi.org/10.5194/tc-14-403-2020, https://doi.org/10.5194/tc-14-403-2020, 2020
Short summary
Short summary
The Arctic sea ice cover has been observed to be decreasing, particularly in summer. We use numerical models to gain insight into processes controlling its seasonal and decadal evolution. Sea ice is made of pieces of ice called floes. Previous models have set these floes to be the same size, which is not supported by observations. In this study we show that accounting for variable floe size reveals the importance of sea ice regions close to the open ocean in driving seasonal retreat of sea ice.
Patrick Scholz, Dmitry Sidorenko, Ozgur Gurses, Sergey Danilov, Nikolay Koldunov, Qiang Wang, Dmitry Sein, Margarita Smolentseva, Natalja Rakowsky, and Thomas Jung
Geosci. Model Dev., 12, 4875–4899, https://doi.org/10.5194/gmd-12-4875-2019, https://doi.org/10.5194/gmd-12-4875-2019, 2019
Short summary
Short summary
This paper is the first in a series documenting and assessing important key components of the Finite-volumE Sea ice-Ocean Model version 2.0 (FESOM2.0). We assess the hydrographic biases, large-scale circulation, numerical performance and scalability of FESOM2.0 compared with its predecessor, FESOM1.4. The main conclusion is that the results of FESOM2.0 compare well to FESOM1.4 in terms of model biases but with a remarkable performance speedup with a 3 times higher throughput.
Nikolay V. Koldunov, Vadym Aizinger, Natalja Rakowsky, Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, and Thomas Jung
Geosci. Model Dev., 12, 3991–4012, https://doi.org/10.5194/gmd-12-3991-2019, https://doi.org/10.5194/gmd-12-3991-2019, 2019
Short summary
Short summary
We measure how computational performance of the global FESOM2 ocean model (formulated on an unstructured mesh) changes with the increase in the number of computational cores. We find that for many components of the model the performance increases linearly but we also identify two bottlenecks: sea ice and ssh submodules. We show that FESOM2 is on par with the state-of-the-art ocean models in terms of throughput that reach 16 simulated years per day for eddy resolving configuration (1/10°).
Thomas Rackow, Dmitry V. Sein, Tido Semmler, Sergey Danilov, Nikolay V. Koldunov, Dmitry Sidorenko, Qiang Wang, and Thomas Jung
Geosci. Model Dev., 12, 2635–2656, https://doi.org/10.5194/gmd-12-2635-2019, https://doi.org/10.5194/gmd-12-2635-2019, 2019
Short summary
Short summary
Current climate models show errors in the deep ocean that are larger than the level of natural variability and the response to enhanced greenhouse gas concentrations. These errors are larger than the signals we aim to predict. With the AWI Climate Model, we show that increasing resolution to resolve eddies can lead to major reductions in deep ocean errors. AWI's next-generation (CMIP6) model configuration will thus use locally eddy-resolving computational grids for projecting climate change.
Katrin Latarius, Ursula Schauer, and Andreas Wisotzki
Earth Syst. Sci. Data, 11, 895–920, https://doi.org/10.5194/essd-11-895-2019, https://doi.org/10.5194/essd-11-895-2019, 2019
Short summary
Short summary
During summer 2014 and summer 2015 two autonomous underwater vehicles were operated over several months in the western Nordic Seas close to the ice edge. They took measurements of temperature, salinity and water depth (pressure) on the way. The aim of the Seaglider missions was to observe if near-surface freshwater, which flows out of the Arctic Ocean in the direction to the North Atlantic, increased with shrinking ice coverage. The measurements were executed to finally provide validated data.
Timo Vihma, Petteri Uotila, Stein Sandven, Dmitry Pozdnyakov, Alexander Makshtas, Alexander Pelyasov, Roberta Pirazzini, Finn Danielsen, Sergey Chalov, Hanna K. Lappalainen, Vladimir Ivanov, Ivan Frolov, Anna Albin, Bin Cheng, Sergey Dobrolyubov, Viktor Arkhipkin, Stanislav Myslenkov, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 1941–1970, https://doi.org/10.5194/acp-19-1941-2019, https://doi.org/10.5194/acp-19-1941-2019, 2019
Short summary
Short summary
The Arctic marine climate system, ecosystems, and socio-economic systems are changing rapidly. This calls for the establishment of a marine Arctic component of the Pan-Eurasian Experiment (MA-PEEX), for which we present a plan. The program will promote international collaboration; sustainable marine meteorological, sea ice, and oceanographic observations; advanced data management; and multidisciplinary research on the marine Arctic and its interaction with the Eurasian continent.
Andrey V. Pnyushkov, Igor V. Polyakov, Robert Rember, Vladimir V. Ivanov, Matthew B. Alkire, Igor M. Ashik, Till M. Baumann, Genrikh V. Alekseev, and Arild Sundfjord
Ocean Sci., 14, 1349–1371, https://doi.org/10.5194/os-14-1349-2018, https://doi.org/10.5194/os-14-1349-2018, 2018
Short summary
Short summary
This study describes along-slope volume, heat, and salt transports derived from observations collected between 2013 and 2015 in the eastern Eurasian Basin of the Arctic Ocean using a cross-slope array of six moorings. Inferred transport estimates may have wide implications and should be considered when assessing high-latitude ocean dynamics.
Andrey Pnyushkov, Igor V. Polyakov, Laurie Padman, and An T. Nguyen
Ocean Sci., 14, 1329–1347, https://doi.org/10.5194/os-14-1329-2018, https://doi.org/10.5194/os-14-1329-2018, 2018
Short summary
Short summary
A total of 4 years of velocity and hydrography records from moored profilers over the Laptev Sea slope reveal multiple events of eddies passing through the mooring site. These events suggest that the advection of mesoscale eddies is an important component of ocean dynamics in the Eurasian Basin of the Arctic Ocean. Increased vertical shear of current velocities found within eddies produces enhanced diapycnal mixing, suggesting their importance for the redistribution of heat in the Arctic Ocean.
Nikolay V. Koldunov and Luisa Cristini
Adv. Geosci., 45, 295–303, https://doi.org/10.5194/adgeo-45-295-2018, https://doi.org/10.5194/adgeo-45-295-2018, 2018
Short summary
Short summary
We believe that project managers can benefit from using programming languages in their work. In this paper we show several simple examples of how python programming language can be used for some of the basic text manipulation tasks, as well as describe more complicated test cases using a HORIZON 2020 type European project as an example.
David Storkey, Adam T. Blaker, Pierre Mathiot, Alex Megann, Yevgeny Aksenov, Edward W. Blockley, Daley Calvert, Tim Graham, Helene T. Hewitt, Patrick Hyder, Till Kuhlbrodt, Jamie G. L. Rae, and Bablu Sinha
Geosci. Model Dev., 11, 3187–3213, https://doi.org/10.5194/gmd-11-3187-2018, https://doi.org/10.5194/gmd-11-3187-2018, 2018
Short summary
Short summary
We document the latest version of the shared UK global configuration of the
NEMO ocean model. This configuration will be used as part of the climate
models for the UK contribution to the IPCC 6th Assessment Report.
30-year integrations forced with atmospheric forcing show that the new
configurations have an improved simulation in the Southern Ocean with the
near-surface temperatures and salinities and the sea ice all matching the
observations more closely.
Axel Behrendt, Hiroshi Sumata, Benjamin Rabe, and Ursula Schauer
Earth Syst. Sci. Data, 10, 1119–1138, https://doi.org/10.5194/essd-10-1119-2018, https://doi.org/10.5194/essd-10-1119-2018, 2018
Short summary
Short summary
Oceanographic data have been collected in the Arctic Ocean over many decades. They were measured by a large variety of platforms. Most of these data are publicly available from the World Ocean Database (WOD). This important online archive, however, does not contain all available modern data and has quality problems in the upper water layers. To enable a quick access to nearly all available temperature and salinity profiles, we compiled UDASH, a complete data archive with a higher quality.
Fabrice Ardhuin, Yevgueny Aksenov, Alvise Benetazzo, Laurent Bertino, Peter Brandt, Eric Caubet, Bertrand Chapron, Fabrice Collard, Sophie Cravatte, Jean-Marc Delouis, Frederic Dias, Gérald Dibarboure, Lucile Gaultier, Johnny Johannessen, Anton Korosov, Georgy Manucharyan, Dimitris Menemenlis, Melisa Menendez, Goulven Monnier, Alexis Mouche, Frédéric Nouguier, George Nurser, Pierre Rampal, Ad Reniers, Ernesto Rodriguez, Justin Stopa, Céline Tison, Clément Ubelmann, Erik van Sebille, and Jiping Xie
Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, https://doi.org/10.5194/os-14-337-2018, 2018
Short summary
Short summary
The Sea surface KInematics Multiscale (SKIM) monitoring mission is a proposal for a future satellite that is designed to measure ocean currents and waves. Using a Doppler radar, the accurate measurement of currents requires the removal of the mean velocity due to ocean wave motions. This paper describes the main processing steps needed to produce currents and wave data from the radar measurements. With this technique, SKIM can provide unprecedented coverage and resolution, over the global ocean.
Hiroshi Sumata, Frank Kauker, Michael Karcher, Benjamin Rabe, Mary-Louise Timmermans, Axel Behrendt, Rüdiger Gerdes, Ursula Schauer, Koji Shimada, Kyoung-Ho Cho, and Takashi Kikuchi
Ocean Sci., 14, 161–185, https://doi.org/10.5194/os-14-161-2018, https://doi.org/10.5194/os-14-161-2018, 2018
Short summary
Short summary
We estimated spatial and temporal decorrelation scales of temperature and salinity in the Amerasian Basin in the Arctic Ocean. The estimated scales can be applied to representation error assessment in the ocean data assimilation system for the Arctic Ocean.
Igor A. Dmitrenko, Sergey A. Kirillov, Bert Rudels, David G. Babb, Leif Toudal Pedersen, Søren Rysgaard, Yngve Kristoffersen, and David G. Barber
Ocean Sci., 13, 1045–1060, https://doi.org/10.5194/os-13-1045-2017, https://doi.org/10.5194/os-13-1045-2017, 2017
Matthew B. Alkire, Igor Polyakov, Robert Rember, Andrey Pnyushkov, Vladimir Ivanov, and Igor Ashik
Ocean Sci., 13, 983–995, https://doi.org/10.5194/os-13-983-2017, https://doi.org/10.5194/os-13-983-2017, 2017
Short summary
Short summary
High-resolution measurements of temperature, salinity, and the stable oxygen isotope ratio of seawater were collected along the slopes of the Barents, Kara, and Laptev seas during late summer of 2013 and 2015. Two separate mixing regimes were identified that describe the initial and final stages of halocline water formation. The linear regressions defining the mixing regimes appear to be stable despite the dramatic environmental changes observed over the Arctic Ocean over the past two decades.
Sergei Kirillov, Igor Dmitrenko, Søren Rysgaard, David Babb, Leif Toudal Pedersen, Jens Ehn, Jørgen Bendtsen, and David Barber
Ocean Sci., 13, 947–959, https://doi.org/10.5194/os-13-947-2017, https://doi.org/10.5194/os-13-947-2017, 2017
Short summary
Short summary
This paper reports the analysis of 3-week oceanographic data obtained in the front of Flade Isblink Glacier in northeast Greenland. The major focus of research is considering the changes of water dynamics and the altering of temperature and salinity vertical distribution occurring during the storm event. We discuss the mechanisms that are responsible for the formation of two-layer circulation cell and release of cold and relatively fresh sub-glacial waters into the ocean.
Nikolay V. Koldunov, Armin Köhl, Nuno Serra, and Detlef Stammer
The Cryosphere, 11, 2265–2281, https://doi.org/10.5194/tc-11-2265-2017, https://doi.org/10.5194/tc-11-2265-2017, 2017
Short summary
Short summary
The paper describes one of the first attempts to use the so-called adjoint data assimilation method to bring Arctic Ocean model simulations closer to observation, especially in terms of the sea ice. It is shown that after assimilation the model bias in simulating the Arctic sea ice is considerably reduced. There is also additional improvement in the sea ice thickens representation that is not assimilated directly.
Jennifer V. Lukovich, Cathleen A. Geiger, and David G. Barber
The Cryosphere, 11, 1707–1731, https://doi.org/10.5194/tc-11-1707-2017, https://doi.org/10.5194/tc-11-1707-2017, 2017
Short summary
Short summary
In this study we develop a framework to characterize directional changes in sea ice drift and associated deformation in response to atmospheric forcing. Lagrangian dispersion statistics applied to ice beacons deployed in a triangular configuration in the Beaufort Sea capture a shift in ice dynamical regimes and local differences in deformation. This framework contributes to diagnostic development relevant for ice hazard assessments and forecasting required by indigenous communities and industry.
Amelie Driemel, Eberhard Fahrbach, Gerd Rohardt, Agnieszka Beszczynska-Möller, Antje Boetius, Gereon Budéus, Boris Cisewski, Ralph Engbrodt, Steffen Gauger, Walter Geibert, Patrizia Geprägs, Dieter Gerdes, Rainer Gersonde, Arnold L. Gordon, Hannes Grobe, Hartmut H. Hellmer, Enrique Isla, Stanley S. Jacobs, Markus Janout, Wilfried Jokat, Michael Klages, Gerhard Kuhn, Jens Meincke, Sven Ober, Svein Østerhus, Ray G. Peterson, Benjamin Rabe, Bert Rudels, Ursula Schauer, Michael Schröder, Stefanie Schumacher, Rainer Sieger, Jüri Sildam, Thomas Soltwedel, Elena Stangeew, Manfred Stein, Volker H Strass, Jörn Thiede, Sandra Tippenhauer, Cornelis Veth, Wilken-Jon von Appen, Marie-France Weirig, Andreas Wisotzki, Dieter A. Wolf-Gladrow, and Torsten Kanzow
Earth Syst. Sci. Data, 9, 211–220, https://doi.org/10.5194/essd-9-211-2017, https://doi.org/10.5194/essd-9-211-2017, 2017
Short summary
Short summary
Our oceans are always in motion – huge water masses are circulated by winds and by global seawater density gradients resulting from different water temperatures and salinities. Measuring temperature and salinity of the world's oceans is crucial e.g. to understand our climate. Since 1983, the research icebreaker Polarstern has been the basis of numerous water profile measurements in the Arctic and the Antarctic. We report on a unique collection of 33 years of polar salinity and temperature data.
J. Sievers, L. L. Sørensen, T. Papakyriakou, B. Else, M. K. Sejr, D. Haubjerg Søgaard, D. Barber, and S. Rysgaard
The Cryosphere, 9, 1701–1713, https://doi.org/10.5194/tc-9-1701-2015, https://doi.org/10.5194/tc-9-1701-2015, 2015
R. Marsh, V. O. Ivchenko, N. Skliris, S. Alderson, G. R. Bigg, G. Madec, A. T. Blaker, Y. Aksenov, B. Sinha, A. C. Coward, J. Le Sommer, N. Merino, and V. B. Zalesny
Geosci. Model Dev., 8, 1547–1562, https://doi.org/10.5194/gmd-8-1547-2015, https://doi.org/10.5194/gmd-8-1547-2015, 2015
Short summary
Short summary
Calved icebergs account for around 50% of total freshwater input to the ocean from the Greenland and Antarctic ice sheets. As they melt, icebergs interact with the ocean. We have developed and tested interactive icebergs in a state-of-the-art global ocean model, showing how sea ice, temperatures, and currents are disturbed by iceberg melting. With this new model capability, we are better prepared to predict how future increases in iceberg numbers might influence the oceans and climate.
R. K. Scharien, J. Landy, and D. G. Barber
The Cryosphere, 8, 2147–2162, https://doi.org/10.5194/tc-8-2147-2014, https://doi.org/10.5194/tc-8-2147-2014, 2014
R. K. Scharien, K. Hochheim, J. Landy, and D. G. Barber
The Cryosphere, 8, 2163–2176, https://doi.org/10.5194/tc-8-2163-2014, https://doi.org/10.5194/tc-8-2163-2014, 2014
J. V. Lukovich, D. G. Babb, R. J. Galley, R. L. Raddatz, and D. G. Barber
The Cryosphere Discuss., https://doi.org/10.5194/tcd-8-4281-2014, https://doi.org/10.5194/tcd-8-4281-2014, 2014
Revised manuscript not accepted
A. Megann, D. Storkey, Y. Aksenov, S. Alderson, D. Calvert, T. Graham, P. Hyder, J. Siddorn, and B. Sinha
Geosci. Model Dev., 7, 1069–1092, https://doi.org/10.5194/gmd-7-1069-2014, https://doi.org/10.5194/gmd-7-1069-2014, 2014
X. Tian-Kunze, L. Kaleschke, N. Maaß, M. Mäkynen, N. Serra, M. Drusch, and T. Krumpen
The Cryosphere, 8, 997–1018, https://doi.org/10.5194/tc-8-997-2014, https://doi.org/10.5194/tc-8-997-2014, 2014
D. Bauch, S. Torres-Valdes, I. Polyakov, A. Novikhin, I. Dmitrenko, J. McKay, and A. Mix
Ocean Sci., 10, 141–154, https://doi.org/10.5194/os-10-141-2014, https://doi.org/10.5194/os-10-141-2014, 2014
F. Wobus, G. I. Shapiro, J. M. Huthnance, M. A. M. Maqueda, and Y. Aksenov
Ocean Sci., 9, 885–899, https://doi.org/10.5194/os-9-885-2013, https://doi.org/10.5194/os-9-885-2013, 2013
T. Krumpen, M. Janout, K. I. Hodges, R. Gerdes, F. Girard-Ardhuin, J. A. Hölemann, and S. Willmes
The Cryosphere, 7, 349–363, https://doi.org/10.5194/tc-7-349-2013, https://doi.org/10.5194/tc-7-349-2013, 2013
C. Wegner, D. Bauch, J. A. Hölemann, M. A. Janout, B. Heim, A. Novikhin, H. Kassens, and L. Timokhov
Biogeosciences, 10, 1117–1129, https://doi.org/10.5194/bg-10-1117-2013, https://doi.org/10.5194/bg-10-1117-2013, 2013
B. Rudels, U. Schauer, G. Björk, M. Korhonen, S. Pisarev, B. Rabe, and A. Wisotzki
Ocean Sci., 9, 147–169, https://doi.org/10.5194/os-9-147-2013, https://doi.org/10.5194/os-9-147-2013, 2013
B. Rabe, P. A. Dodd, E. Hansen, E. Falck, U. Schauer, A. Mackensen, A. Beszczynska-Möller, G. Kattner, E. J. Rohling, and K. Cox
Ocean Sci., 9, 91–109, https://doi.org/10.5194/os-9-91-2013, https://doi.org/10.5194/os-9-91-2013, 2013
Related subject area
Approach: In situ Observations | Depth range: Shelf-sea depth | Geographical range: Deep Seas: Arctic Ocean | Phenomena: Temperature, Salinity and Density Fields
Arctic Ocean outflow and glacier–ocean interactions modify water over the Wandel Sea shelf (northeastern Greenland)
Igor A. Dmitrenko, Sergey A. Kirillov, Bert Rudels, David G. Babb, Leif Toudal Pedersen, Søren Rysgaard, Yngve Kristoffersen, and David G. Barber
Ocean Sci., 13, 1045–1060, https://doi.org/10.5194/os-13-1045-2017, https://doi.org/10.5194/os-13-1045-2017, 2017
Cited articles
Adcroft, A., Campin, J.-M., Hill, C., and Marshall, J.: Implementation of an atmosphere-ocean general circulation model on the expanded spherical cube, Mon. Weather Rev., 132, 2845–2863, https://doi.org/10.1175/MWR2823.1, 2004.
Alexeev, V. A., Ivanov, V. V., Kwok, R., and Smedsrud, L. H.: North Atlantic warming and declining volume of arctic sea ice, The Cryosphere Discuss., 7, 245–265, https://doi.org/10.5194/tcd-7-245-2013, 2013.
Årthun, M. and Schrum, C.: Ocean surface heat flux variability in the Barents Sea, J. Marine Syst., 83, 88–98, 2010.
Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Ø., and Ingvaldsen, R. B.: Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat, J. Climate, 25, 4736–4743, 2012.
Beszczynska-Möller, A., Fahrbach, E., Schauer, U., and Hansen, E.: Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010, ICES J. Mar. Science, 69, 852–863, https://doi.org/10.1093/icesjms/fss056, 2012.
Boyer, T., Levitus, S., Garcia, H., Locarnini, R. A., Stephens, C., and Antonov, J.: Objective analyses of annual, seasonal, and monthly temperature and salinity for the World Ocean on a 0.25° grid, Int. J. Climatol., 25, 931–945, https://doi.org/10.1002/joc.1173, 2005.
Dewey, R., Muench, R., and Gunn, J.: Mixing and vertical heat flux estimates in the Arctic Eurasian Basin, J. Marine Syst., 21, 199–205, https://doi.org/10.1016/S0924-7963(99)00014-7, 1999.
Dmitrenko, I. A., Kirillov, S. A., Ivanov, V. V., and Woodgate, R. A.: Mesoscale Atlantic water eddy off the Laptev Sea continental slope carries the signature of upstream interaction, J. Geophys. Res., 113, C07005, https://doi.org/10.1029/2007JC004491, 2008a.
Dmitrenko, I. A., Polyakov, I. V., Kirillov, S. A., Timokhov, L. A., Frolov, I. E., Sokolov, V. T., Simmons, H. L., Ivanov, V. V., and Walsh, D.: Toward a warmer Arctic Ocean: Spreading of the early 21st century Atlantic Water warm anomaly along the Eurasian Basin margins, J. Geophys. Res., 113, C05023, https://doi.org/10.1029/2007JC004158, 2008b.
Dmitrenko, I. A., Bauch, D., Kirillov, S. A., Koldunov, N., Minnett, P. J., Ivanov, V. V., Hölemann, J. A., and Timokhov, L. A.: Barents Sea upstream events impact the properties of Atlantic water inflow into the Arctic Ocean: Evidence from 2005–2006 downstream observations, Deep-Sea Res. Pt. I, 56, 513–527, 2009.
Dmitrenko, I. A., Kirillov, S. A., Ivanov, V. V., Rudels, B., Serra, N., and Koldunov, N. V.: Modified halocline water over the Laptev Sea continental margin: Historical data analysis, J. Climate, 25, 5556–5565, 2012.
Ezraty, R., Girard-Ardhuin, F., and Croizé-Fillon, D.: Sea ice drift in the central Arctic using the 89 GHz brightness temperatures of the advanced microwave scanning radiometr, User's Manual, IFREMER, Brest, France, 2007.
Gammelsrød, T., Leikvin, Ø., Lien, V., Budgell, W. P., Loeng, H., and Maslowski, W.: Mass and heat transports in the NE Barents Sea: Observations and models, J. Marine Syst., 75, 56–69, 2009.
Hanzlick, D. and Aagaard, K.: Freshwater and Atlantic Water in the Kara Sea, J. Geophys. Res., 85, 4937–4942, 1980.
Ivanov, V. V., Alexeev, V. A., Repina, I., Koldunov, N. V., and Smirnov, A.: Tracing Atlantic water signature in the Arctic sea ice cover east of Svalbard, Adv. Meteorol., 2012, 201818, https://doi.org/10.1155/2012/201818, 2012.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR 40 Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–471, 1996.
Kirillov, S. A., Dmitrenko, I. A., Ivanov, V. V., Aksenov, E. O., Makhotin, M. S., and de Quevas B. A.: The influence of atmospheric circulation on the dynamics of the intermediate water layer in the eastern part of the St. Anna Trough, Dokl, Earth Sci., 444, 630–633, 2012.
Koenigk, T. and Brodeau, L.: Ocean heat transport into the Arctic in the twentieth and twenty-first century in EC-Earth, Clim. Dynam., 42, 3101–3120, https://doi.org/10.1007/s00382-013-1821-x, 2013.
Kwok, R. and Cunningham, G.: ICESat over Arctic sea ice: estimation of snow depth and ice thickness, J. Geophys. Res., 113, C08010, https://doi.org/10.1029/2008JC004753, 2008.
Kwok, R., Cunningham, G. F., Wensnahan, M., Rigor, I., Zwally, H. J., and Yi, D.: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008, J. Geophys. Res., 114, C07005, https://doi.org/10.1029/2009JC005312, 2009.
Large, W. G., McWilliams, J., and Doney, S. C.: Ocean vertical mixing: a review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363–403, 1994.
Lenn, Y. D., Rippeth, T. P., Old, C. P., Bacon, S., Polyakov, I., Ivanov, V., and Hölemann, J.: Intermittent intense turbulent mixing under ice in the Laptev Sea continental shelf, J. Phys. Oceanogr., 41, 531–547, 2011.
Lien, V. S. and Trofimov, A. G.: Formation of Barents Sea Branch Water in the Northeastern Barents Sea, Polar Res., 32, 18905, https://doi.org/10.3402/polar.v32i0.18905, 2013.
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res., 102, 5753–5766, 1997.
Melling, H., Lake, R. A., Topham, D. R., and Fissel, D. B.: Oceanic thermal structure in the western Canadian Arctic, Cont. Shelf. Res., 3, 233–258, 1984.
Polyakov, I. V., Timokhov, L. A., Alexeev, V. A., Bacon, S., Dmitrenko, I. A., Fortier, L., Frolov, I. E., Gascard, J.-C., Hansen, E., Ivanov, V. V., Laxon, S., Mauritzen, C., Perovich, D., Shimada, K., Simmons, H. L., Sokolov, V. T., Steele, M., and Toole, J.: Arctic Ocean warming contributes to reduced polar ice cap, J. Phys. Oceanogr., 40, 2743–2756, 2010.
Polyakov, I. V., Pnyushkov, A. V., Rember, R., Ivanov, V. V., Lenn, Y. D., Padman, L., and Carmack, E. C.: Mooring-based observations of double-diffusive staircases over the Laptev Sea slope, J. Phys. Oceanogr., 42, 95–109, 2012.
Polzin, K. L.: Statistics of the Richardson number: Mixing models and fine structure, J. Phys. Oceanogr., 26, 1409–1425, 1996.
Rudels, B.: Constraints on exchanges in the Arctic Mediterranean – do they exist and can they be of use?, Tellus, 62A, 109–122, https://doi.org/10.1111/j.1600-0870.2009.00425.x, 2010.
Rudels, B., Jones, E. P., Anderson, L. G., and Kattner, G.: On the intermediate depth waters of the Arctic Ocean, in: The Polar Oceans and Their Role in Shaping the Global Environment: The Nansen Centennial Volume, edited by: Johannessen, O. M., Muench, R. D., and Overland, J. E., Geophys. Monogr. Ser., 85, AGU, Washington DC, 33–46, 1994.
Schauer, U., Loeng, H., Rudels, B., Ozhigin, V. K., and Dieck, W.: Atlantic Water flow through the Barents and Kara Seas, Deep-Sea Res. Pt. I, 49, 2281–2298, 2002a.
Schauer, U., Rudels, B., Jones, E. P., Anderson, L. G., Muench, R. D., Björk, G., Swift, J. H., Ivanov, V., and Larsson, A.-M.: Confluence and redistribution of Atlantic water in the Nansen, Amundsen and Makarov basins, Ann. Geophys., 20, 257–273, https://doi.org/10.5194/angeo-20-257-2002, 2002b.
Schlichtholz, P.: Influence of oceanic heat variability on sea ice anomalies in the Nordic Seas, Geophys. Res. Lett., 38, L05705, https://doi.org/10.1029/2010GL045894, 2011.
Serra, N., Käse, R., Köhl, A., Stammer, D., and Quadfasel, D.: On the low-frequency phase relation between the Denmark Strait and the Faroe-Shetland Channel dense overflows, Tellus A, 62, 530–550, 2010.
Sirevaag, A. and Fer, I.: Early spring oceanic heat fluxes and mixing observed from drift stations north of Svalbard, J. Phys. Oceanogr., 39, 3049–3069, 2009.
Sirevaag, A. and Fer, I.: Vertical heat transfer in the Arctic Ocean: The role of double-diffusive mixing, J. Geophys. Res., 117, C07010, https://doi.org/10.1029/2012JC007910, 2012.
Skagseth, Ø.: Recirculation of Atlantic Water in the western Barents Sea, Geophys. Res. Lett., 35, L11606, https://doi.org/10.1029/2008GL033785, 2008.
Skagseth, Ø., Furevik, T., Ingvaldsen, R. B., Loeng, H., Mork, K. A., Orvik, K. A., and Ozhigin, V.: Volume and heat transports to the Arctic Ocean via the Norwegian and Barents Seas, in: Arctic Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate, edited by: Dickson, R., Meincke, J., and Rhines, P., Springer, New York, 45–64, 2008.
Smith, W. H. F. and Sandwell, D. T.: Global seafloor topography from satellite altimetry and ship depth soundings, Science, 277, 1957–1962, 1997.
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using AMSR-E 89 GHz channels, J. Geophys. Res., 113, C02S03, https://doi.org/10.1029/2005JC003384, 2008.
Steele M. and Morison J.: Hydrography and vertical fluxes of heat and salt northeast of Svalbard in autumn, J. Geophys. Res., 98, 10013–10024, 1993.
Stefan, J.: Über die Theorie der Eisbildung, insbesondere über Eisbildung im Polarmeere, Annalen der Physik und Chemie, Wiedemann-Annalen, 42, 269–286, 1891 (in German).
Sundfjord, A., Fer, I., Kasajima, Y., and Svendsen, H.: Observations of turbulent mixing and hydrography in the marginal ice zone of the Barents Sea, J. Geophys. Res., 112, C05008, https://doi.org/10.1029/2006JC003524, 2007.