Articles | Volume 21, issue 6
https://doi.org/10.5194/os-21-3031-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-3031-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling water column gas transformation, migration and atmospheric flux from seafloor seepage
Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway
Department of Electrical Engineering, UiT The Arctic University of Norway, Narvik, Norway
Håvard Espenes
Ocenaography section, Akvaplan-niva, Tromsø, Norway
SINTEF Ocean, Trondheim, Norway
Alfred Hanssen
Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway
Muhammed Fatih Sert
Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway
Magnus Drivdal
Ocenaography section, Akvaplan-niva, Tromsø, Norway
Achim Randelhoff
Ocenaography section, Akvaplan-niva, Tromsø, Norway
Bénédicte Ferré
Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway
Related authors
Knut Ola Dølven, Juha Vierinen, Roberto Grilli, Jack Triest, and Bénédicte Ferré
Geosci. Instrum. Method. Data Syst., 11, 293–306, https://doi.org/10.5194/gi-11-293-2022, https://doi.org/10.5194/gi-11-293-2022, 2022
Short summary
Short summary
Sensors capable of measuring rapid fluctuations are important to improve our understanding of environmental processes. Many sensors are unable to do this, due to their reliance on the transfer of the measured property, for instance a gas, across a semi-permeable barrier. We have developed a mathematical tool which enables the retrieval of fast-response signals from sensors with this type of sensor design.
Knut Ola Dølven, Bénédicte Ferré, Anna Silyakova, Pär Jansson, Peter Linke, and Manuel Moser
Ocean Sci., 18, 233–254, https://doi.org/10.5194/os-18-233-2022, https://doi.org/10.5194/os-18-233-2022, 2022
Short summary
Short summary
Natural sources of atmospheric methane need to be better described and quantified. We present time series from ocean observatories monitoring two seabed methane seep sites in the Arctic. Methane concentration varied considerably on short timescales and seasonal scales. Seeps persisted throughout the year, with increased potential for atmospheric release in winter due to water mixing. The results highlight and constrain uncertainties in current methane estimates from seabed methane seepage.
Claudio Argentino, Luca Fallati, Sebastian Petters, Hans Christopher Bernstein, Ines Barrenechea Angeles, Jorge Corrales-Guerrero, Alessandra Savini, Benedicte Ferré, and Giuliana Panieri
EGUsphere, https://doi.org/10.5194/egusphere-2025-3906, https://doi.org/10.5194/egusphere-2025-3906, 2025
Short summary
Short summary
Seafloor methane emissions associated with cold-water corals have been reported worldwide. Yet, there are still knowledge gaps regarding their ecological relationships. We studied the geology, chemistry and biology of methane seeps in a coral area off northern Norway. We found that corals thrive in areas with methane-rich sediments and benefit from strong currents that deliver food, but the seep activity itself does not directly determine coral distribution.
Håvard Espenes, Pål Erik Isachsen, and Ole Anders Nøst
Ocean Sci., 19, 1633–1648, https://doi.org/10.5194/os-19-1633-2023, https://doi.org/10.5194/os-19-1633-2023, 2023
Short summary
Short summary
We show that tidally generated eddies generated near the constriction of a channel can drive a strong and fluctuating flow field far downstream of the channel constriction itself. The velocity signal has been observed in other studies, but this is the first study linking it to a physical process. Eddies such as those we found are generated because of complex coastal geometry, suggesting that, for example, land-reclamation projects in channels may enhance current shear over a large area.
Knut Ola Dølven, Juha Vierinen, Roberto Grilli, Jack Triest, and Bénédicte Ferré
Geosci. Instrum. Method. Data Syst., 11, 293–306, https://doi.org/10.5194/gi-11-293-2022, https://doi.org/10.5194/gi-11-293-2022, 2022
Short summary
Short summary
Sensors capable of measuring rapid fluctuations are important to improve our understanding of environmental processes. Many sensors are unable to do this, due to their reliance on the transfer of the measured property, for instance a gas, across a semi-permeable barrier. We have developed a mathematical tool which enables the retrieval of fast-response signals from sensors with this type of sensor design.
Rowan Romeyn, Alfred Hanssen, and Andreas Köhler
The Cryosphere, 16, 2025–2050, https://doi.org/10.5194/tc-16-2025-2022, https://doi.org/10.5194/tc-16-2025-2022, 2022
Short summary
Short summary
We have investigated a long-term record of ground vibrations, recorded by a seismic array installed in Adventdalen, Svalbard. This record contains a large number of
frost quakes, a type of ground shaking that can be produced by cracks that form as the ground cools rapidly. We use underground temperatures measured in a nearby borehole to model forces of thermal expansion and contraction that can cause these cracks. We also use the seismic measurements to estimate where these cracks occurred.
Muhammed Fatih Sert, Helge Niemann, Eoghan P. Reeves, Mats A. Granskog, Kevin P. Hand, Timo Kekäläinen, Janne Jänis, Pamela E. Rossel, Bénédicte Ferré, Anna Silyakova, and Friederike Gründger
Biogeosciences, 19, 2101–2120, https://doi.org/10.5194/bg-19-2101-2022, https://doi.org/10.5194/bg-19-2101-2022, 2022
Short summary
Short summary
We investigate organic matter composition in the Arctic Ocean water column. We collected seawater samples from sea ice to deep waters at six vertical profiles near an active hydrothermal vent and its plume. In comparison to seawater, we found that the organic matter in waters directly affected by the hydrothermal plume had different chemical composition. We suggest that hydrothermal processes may influence the organic matter distribution in the deep ocean.
Knut Ola Dølven, Bénédicte Ferré, Anna Silyakova, Pär Jansson, Peter Linke, and Manuel Moser
Ocean Sci., 18, 233–254, https://doi.org/10.5194/os-18-233-2022, https://doi.org/10.5194/os-18-233-2022, 2022
Short summary
Short summary
Natural sources of atmospheric methane need to be better described and quantified. We present time series from ocean observatories monitoring two seabed methane seep sites in the Arctic. Methane concentration varied considerably on short timescales and seasonal scales. Seeps persisted throughout the year, with increased potential for atmospheric release in winter due to water mixing. The results highlight and constrain uncertainties in current methane estimates from seabed methane seepage.
Rowan Romeyn, Alfred Hanssen, Bent Ole Ruud, and Tor Arne Johansen
The Cryosphere, 15, 2939–2955, https://doi.org/10.5194/tc-15-2939-2021, https://doi.org/10.5194/tc-15-2939-2021, 2021
Short summary
Short summary
Air-coupled flexural waves are produced by the interaction between pressure waves in air and bending waves in a floating ice sheet. The frequency of these waves is related to the physical properties of the ice sheet, specifically its thickness and rigidity. We demonstrate the usefulness of air-coupled flexural waves for estimating ice thickness and give a theoretical description of the governing physics that highlights their similarity to related phenomena in other fields.
Rowan Romeyn, Alfred Hanssen, Bent Ole Ruud, Helene Meling Stemland, and Tor Arne Johansen
The Cryosphere, 15, 283–302, https://doi.org/10.5194/tc-15-283-2021, https://doi.org/10.5194/tc-15-283-2021, 2021
Short summary
Short summary
A series of unusual ground motion signatures were identified in geophone recordings at a frost polygon site in Adventdalen on Svalbard. By analysing where the ground motion originated in time and space, we are able to classify them as cryoseisms, also known as frost quakes, a ground-cracking phenomenon that occurs as a result of freezing processes. The waves travelling through the ground produced by these frost quakes also allow us to measure the structure of the permafrost in the near surface.
Cited articles
Aghito, M., Calgaro, L., Dagestad, K.-F., Ferrarin, C., Marcomini, A., Breivik, Ø., and Hole, L. R.: ChemicalDrift 1.0: an open-source Lagrangian chemical-fate and transport model for organic aquatic pollutants, Geosci. Model Dev., 16, 2477–2494, https://doi.org/10.5194/gmd-16-2477-2023, 2023. a
Albretsen, J., Sperrevik, A. K., Staalstrøm, A., Sandvik, A. D., Vikebø, F., and Asplin, L.: NordKyst-800 Report No. 1 User Manual and technical descriptions, Tech. Rep. 2, Norwegian Institute of Marine Research, http://hdl.handle.net/11250/113865 (last access: 12 November 2025), 2011. a
Argentino, C., Fallati, L., Petters, S., Bernstein, H. C., Barrenechea Angeles, I., Corrales-Guerrero, J., Savini, A., Ferré, B., and Panieri, G.: Seafloor chemosynthetic habitats and AOM-influenced sediment microbiome at a cold-water coral site off the Vesterålen coast, northern Norway, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2025-3906, 2025. a
Barbero, D., Ribstein, B., Nibart, M., Carissimo, B., and Tarniewicz, J.: Reduction of simulation times by application of a kernel method in a high-resolution Lagrangian particle dispersion model, Air Quality, Atmosphere & Health, 17, 2105–2117, https://doi.org/10.1007/s11869-023-01472-4, 2024. a
Björnham, O., Brännström, N., Grahn, H., Lindgren, P., and von Schoenberg, P.: Post-processing of results from a particle dispersion model by employing kernel density estimation, Technical Report FOI-R–4135–SE, Totalförsvarets forskningsinstitut, https://www.foi.se/rapporter/rapportsammanfattning.html?reportNo=FOI-R--4135--SE (last access: 12 November 2025), 2015. a
Bresenham, J. E.: Algorithm for computer control of a digital plotter, IBM Systems Journal, 4, 25–30, https://doi.org/10.1147/sj.41.0025, 1965. a
Chan, E. W., Shiller, A. M., Joung, D. J., Arrington, E. C., Valentine, D. L., Redmond, M. C., Breier, J. A., Socolofsky, S. A., and Kessler, J. D.: Investigations of Aerobic Methane Oxidation in Two Marine Seep Environments: Part 2—Isotopic Kinetics, Journal of Geophysical Research: Oceans, 124, 8392–8399, https://doi.org/10.1029/2019JC015603, 2019. a
Chand, S., Rise, L., Bellec, V., Dolan, M., Bøe, R., Thorsnes, T., Buhl-Mortensen, P., and Buhl-Mortensen, L.: Active venting system offshore northern Norway, EOS, 89, 261–262, https://doi.org/10.1029/2008EO290001, 2008. a
Dagestad, K.-F., Röhrs, J., Breivik, Ø., and Ådlandsvik, B.: OpenDrift v1.0: a generic framework for trajectory modelling, Geosci. Model Dev., 11, 1405–1420, https://doi.org/10.5194/gmd-11-1405-2018, 2018. a
de Angelis, M. A., Lilley, M. D., and Baross, J. A.: Methane oxidation in deep-sea hydrothermal plumes of the endeavour segment of the Juan de Fuca Ridge, Deep Sea Research Part I: Oceanographic Research Papers, 40, 1169–1186, https://doi.org/10.1016/0967-0637(93)90132-M, 1993. a
de Groot, T. R., Kalenitchenko, D., Moser, M., Argentino, C., Panieri, G., Lindgren, M., Dølven, K. O., Ferré, B., Svenning, M. M., and Niemann, H.: Methanotroph activity and connectivity between two seep systems north off Svalbard, Frontiers in Earth Science, 12, https://doi.org/10.3389/feart.2024.1287226, 2024. a
De Haan, P.: On the use of density kernels for concentration estimations within particle and puff dispersion models, Atmospheric Environment, 33, 2007–2021, https://doi.org/10.1016/S1352-2310(98)00424-5, 1999. a, b
Dissanayake, A. L., Gros, J., Drews, H. J., Nielsen, J. W., and Drews, A.: Fate of Methane from the Nord Stream Pipeline Leaks, Environmental Science & Technology Letters, 10, 903–908, https://doi.org/10.1021/acs.estlett.3c00493, 2023. a
Dølven, K. O.: KnutOlaD/M2PG1_functions: Initial submission to Ocean Science (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.15042452, 2025a. a
Dølven, K. O.: Animation of layered 3-D concentration of methane, TIB [video], https://doi.org/10.5446/69942, 2025b. a, b
Dølven, K. O.: Animation of 2-D diffusive release of methane, TIB [video], https://doi.org/10.5446/69941, 2025c. a, b
Dølven, K. O., and Espenes, H.: Methane Concentration and Flux Modelling With OpenDrift (v1.1), Zenodo [code], https://doi.org/10.5281/zenodo.17350322, 2025a. a
Dølven, K. O. and Espenes, H.: Replication data for “Modeling water column gas transformation, migration and atmospheric flux from seafloor seepage”, Zenodo [data set], https://doi.org/10.5281/zenodo.15042308, 2025b. a
Dølven, K. O., and Hanssen, A.: akd_estimator: Adaptive bandwidth kernel density estimator with boundary control (v1.2.1), Zenodo [code], https://doi.org/10.5281/zenodo.17588979, 2025. a, b
Dugstad, J. S., Isachsen, P. E., and Fer, I.: The mesoscale eddy field in the Lofoten Basin from high-resolution Lagrangian simulations, Ocean Sci., 17, 651–674, https://doi.org/10.5194/os-17-651-2021, 2021. a
Ferré, B., Jansson, P., Moser, M., Portnov, A., Graves, C., Panieri, G., Gründger, F., Berndt, C., Lehmann, M., and Niemann, H.: Reduced methane seepage from Arctic sediments during cold bottom-water conditions, Nature Geoscience, 13, https://doi.org/10.1038/s41561-019-0515-3, 2020. a, b
Ferré, B., Barreyre, T., Bünz, S., Argentino, C., Corrales-Guerrero, J., Dølven, K. O., Stetzler, M., Fallati, L., Sert, M. F., Panieri, G., Rastrick, S., Kutti, T., and Moser, M.: Contrasting Methane Seepage Dynamics in the Hola Trough Offshore Norway: Insights From Two Different Summers, Journal of Geophysical Research: Oceans, 129, e2024JC020949, https://doi.org/10.1029/2024JC020949, 2024. a, b, c, d
Gentz, T., Damm, E., Schneider von Deimling, J., Mau, S., McGinnis, D. F., and Schlüter, M.: A water column study of methane around gas flares located at the West Spitsbergen continental margin, Continental Shelf Research, 72, 107–118, https://doi.org/10.1016/j.csr.2013.07.013, 2014. a, b
Graves, C. A., Steinle, L., Rehder, G., Niemann, H., Connelly, D. P., Lowry, D., Fisher, R. E., Stott, A. W., Sahling, H., and James, R. H.: Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard, Journal of Geophysical Research: Oceans, 120, 6185–6201, https://doi.org/10.1002/2015JC011084, 2015. a
Griffiths, R. P., Caldwell, B. A., Cline, J. D., Broich, W. A., and Morita, R. Y.: Field Observations of Methane Concentrations and Oxidation Rates in the Southeastern Bering Sea, Applied and Environmental Microbiology, 44, 435–446, 1982. a
Gründger, F., Probandt, D., Knittel, K., Carrier, V., Kalenitchenko, D., Silyakova, A., Serov, P., Ferré, B., Svenning, M. M., and Niemann, H.: Seasonal shifts of microbial methane oxidation in Arctic shelf waters above gas seeps, Limnology and Oceanography, https://doi.org/10.1002/lno.11731, 2021. a, b, c, d
Hanson, R. S. and Hanson, T. E.: Methanotrophic bacteria, Microbiological Reviews, 60, 439–471, https://doi.org/10.1128/mr.60.2.439-471.1996, 1996. a, b
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.adbb2d47, 2023. a
Jakobsson, M., Mayer, L. A., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H.-W., Zarayskaya A, Y., Accettella, D., Armstrong, A., Anderson, R. M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V., Hall, J. K., Hell, B., Hestvik, O. B., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D., Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G., and Weatherall, P.: The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0, Geophysical Research Letters, https://doi.org/10.1029/2012GL052219, 2012. a
James, R. H., Bousquet, P., Bussmann, I., Haeckel, M., Kipfer, R., Leifer, I., Niemann, H., Ostrovsky, I., Piskozub, J., Rehder, G., Treude, T., Vielstädte, L., and Greinert, J.: Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review, Limnology and Oceanography, 61, S283–S299, https://doi.org/10.1002/lno.10307, 2016. a
Jansson, P., Ferré, B., Silyakova, A., Dølven, K., and Omstedt, A.: A new numerical model for understanding free and dissolved gas progression toward the atmosphere in aquatic methane seepage systems, Limnology and Oceanography: Methods, 17, https://doi.org/10.1002/lom3.10307, 2019. a, b, c, d, e, f, g, h
Kish, L.: Survey Sampling, John Wiley and Sons Inc., New York, ISBN 047148900X, 1965. a
Knief, C.: Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker, Frontiers in Microbiology, 6, https://doi.org/10.3389/fmicb.2015.01346, 2015. a
Larsen, Y., Hanssen, A., Krane, B., Pécseli, H. L., and Trulsen, J.: Time-resolved statistical analysis of nonlinear electrostatic fluctuations in the ionospheric E region, Journal of Geophysical Research: Space Physics, 107, https://doi.org/10.1029/2001JA900125, 2002. a
Leblond, I., Scalabrin, C., and Berger, L.: Acoustic monitoring of gas emissions from the seafloor. Part I: Quantifying the volumetric flow of bubbles, Marine Geophysical Research, 35, 191–210, https://doi.org/10.1007/s11001-014-9223-y, 2014. a, b
Leifer, I. and Patro, R. K.: The bubble mechanism for methane transport from the shallow sea bed to the surface: A review and sensitivity study, Continental Shelf Research, 22, 2409–2428, https://doi.org/10.1016/S0278-4343(02)00065-1, 2002. a, b
Mau, S., Heintz, M. B., and Valentine, D. L.: Quantification of CH4 loss and transport in dissolved plumes of the Santa Barbara Channel, California, Continental Shelf Research, 32, 110–120, https://doi.org/10.1016/j.csr.2011.10.016, 2012. a
Mau, S., Blees, J., Helmke, E., Niemann, H., and Damm, E.: Vertical distribution of methane oxidation and methanotrophic response to elevated methane concentrations in stratified waters of the Arctic fjord Storfjorden (Svalbard, Norway), Biogeosciences, 10, 6267–6278, https://doi.org/10.5194/bg-10-6267-2013, 2013. a
Mau, S., Römer, M., Torres, M. E., Bussmann, I., Pape, T., Damm, E., Geprägs, P., Wintersteller, P., Hsu, C.-W., Loher, M., and Bohrmann, G.: Widespread methane seepage along the continental margin off Svalbard – from Bjørnøya to Kongsfjorden, Scientific Reports, 7, 42997, https://doi.org/10.1038/srep42997, 2017. a, b, c
Mau, S., Tu, T.-H., Becker, M., dos Santos Ferreira, C., Chen, J.-N., Lin, L.-H., Wang, P.-L., Lin, S., and Bohrmann, G.: Methane Seeps and Independent Methane Plumes in the South China Sea Offshore Taiwan, Frontiers in Marine Science, 7, https://doi.org/10.3389/fmars.2020.00543, publisher: Frontiers, 2020. a
McGinnis, D. F., Greinert, J., Artemov, Y., Beaubien, S. E., and Wüest, A.: Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere?, Journal of Geophysical Research: Oceans, 111, https://doi.org/10.1029/2005JC003183, 2006. a
Myhre, C. L., Ferré, B., Platt, S. M., Silyakova, A., Hermansen, O., Allen, G., Pisso, I., Schmidbauer, N., Stohl, A., Pitt, J., Jansson, P., Greinert, J., Percival, C., Fjaeraa, A. M., O'Shea, S. J., Gallagher, M., Le Breton, M., Bower, K. N., Bauguitte, S. J. B., Dalsøren, S., Vadakkepuliyambatta, S., Fisher, R. E., Nisbet, E. G., Lowry, D., Myhre, G., Pyle, J. A., Cain, M., and Mienert, J.: Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere, Geophysical Research Letters, 43, 4624–4631, https://doi.org/10.1002/2016GL068999, 2016. a
Nordam, T., Dissanayake, A. L., Brakstad, O. G., Hakvåg, S., Øverjordet, I. B., Litzler, E., Nepstad, R., Drews, A., and Röhrs, J.: Fate of Dissolved Methane from Ocean Floor Seeps, Environmental Science & Technology, 59, 8516–8526, https://doi.org/10.1021/acs.est.5c03297, 2025. a, b
Osudar, R., Matoušů, A., Alawi, M., Wagner, D., and Bussmann, I.: Environmental factors affecting methane distribution and bacterial methane oxidation in the German Bight (North Sea), Estuarine, Coastal and Shelf Science, 160, 10–21, https://doi.org/10.1016/j.ecss.2015.03.028, 2015. a
Pack, M. A., Heintz, M. B., Reeburgh, W. S., Trumbore, S. E., Valentine, D. L., Xu, X., and Druffel, E. R. M.: Methane oxidation in the eastern tropical North Pacific Ocean water column, Journal of Geophysical Research: Biogeosciences, 120, 1078–1092, https://doi.org/10.1002/2014JG002900, 2015. a
Percival, D. B. and Walden, A. T.: Spectral Analysis for Physical Applications, Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511622762, 1993. a
Pécseli, H.: Fluctuations in Physical Systems, Cambridge University Press, Cambridge, UK, ISBN: 9780521655927, 2000. a
Ruff, S. E., Biddle, J. F., Teske, A. P., Knittel, K., Boetius, A., and Ramette, A.: Global dispersion and local diversification of the methane seep microbiome, Proceedings of the National Academy of Sciences, 112, 4015–4020, https://doi.org/10.1073/pnas.1421865112, 2015. a
Ruppel, C. D. and Kessler, J. D.: The interaction of climate change and methane hydrates, Reviews of Geophysics, 55, 126–168, https://doi.org/10.1002/2016RG000534, 2017. a
Sansone, F. J. and Martens, C. S.: Methane oxidation in Cape Lookout Bight, North Carolina, Limnology and Oceanography, 23, 349–355, https://doi.org/10.4319/lo.1978.23.2.0349, 1978. a
SciPy Community: SciPy: Scientific Library for Python –
scipy.stats.gaussian_kde function, https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html (last access: 20 September 2024), 2024. a
Serov, P., Portnov, A., Mienert, J., Semenov, P., and Ilatovskaya, P.: Methane release from pingo-like features across the South Kara Sea shelf, an area of thawing offshore permafrost, Journal of Geophysical Research: Earth Surface, 120, 1515–1529, https://doi.org/10.1002/2015JF003467, 2015. a
Sert, M. F., D'Andrilli, J., Gründger, F., Niemann, H., Granskog, M. A., Pavlov, A. K., Ferré, B., and Silyakova, A.: Compositional Differences in Dissolved Organic Matter Between Arctic Cold Seeps Versus Non-Seep Sites at the Svalbard Continental Margin and the Barents Sea, Frontiers in Earth Science, 8, 552731, https://doi.org/10.3389/feart.2020.552731, 2020. a
Sert, M. F., Schweitzer, H. D., de Groot, T. R., Kekäläinen, T., Jänis, J., Bernstein, H. C., Ferré, B., Gründger, F., Kalenitchenko, D., and Niemann, H.: Elevated methane alters dissolved organic matter composition in the Arctic Ocean cold seeps, Frontiers in Earth Science, 11, https://doi.org/10.3389/feart.2023.1290882, 2023. a
Sert, M. F., Bernstein, H. C., Dølven, K. O., Petters, S., Kekäläinen, T., Jänis, J., Corrales-Guerrero, J., and Ferré, B.: Cold Seeps and Coral Reefs in Northern Norway: Carbon Cycling in Marine Ecosystems With Coexisting Features, Journal of Geophysical Research: Biogeosciences, 130, e2024JG008475, https://doi.org/10.1029/2024JG008475, 2025. a
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Modelling, 9, 347–404, https://doi.org/10.1016/j.ocemod.2004.08.002, 2005. a
Silyakova, A., Jansson, P., Serov, P., Ferré, B., Pavlov, A. K., Hattermann, T., Graves, C. A., Platt, S. M., Myhre, C. L., Gründger, F., and Niemann, H.: Physical controls of dynamics of methane venting from a shallow seep area west of Svalbard, Continental Shelf Research, 194, 104030, https://doi.org/10.1016/j.csr.2019.104030, 2020. a, b
Slagstad, D., Tande, K. S., and Wassman, P.: Modelled carbon fluxes as validated by field dta on the north Norwegian shelf during the productive period in 1994, Sarsia, 84, 303–317, https://doi.org/10.1080/00364827.1999.10420434, 1999. a
Sole-Mari, G., Bolster, D., Fernàndez-Garcia, D., and Sanchez-Vila, X.: Particle density estimation with grid-projected and boundary-corrected adaptive kernels, Advances in Water Resources, 131, 103382, https://doi.org/10.1016/j.advwatres.2019.103382, 2019. a, b
Spivakovskaya, D., Heemink, A. W., and Deleersnijder, E.: Lagrangian modelling of multi-dimensional advection-diffusion with space-varying diffusivities: theory and idealized test cases, Ocean Dynamics, 57, 189–203, https://doi.org/10.1007/s10236-007-0102-9, 2007. a
Steinle, L., Graves Carolyn A., Treude Tina, Ferré Bénédicte, Biastoch Arne, Bussmann Ingeborg, Berndt Christian, Krastel Sebastian, James Rachael H., Behrens Erik, Böning Claus W., Greinert Jens, Sapart Célia-Julia, Scheinert Markus, Sommer Stefan, Lehmann Moritz F., and Niemann Helge: Water column methanotrophy controlled by a rapid oceanographic switch, Nature Geoscience, 8, 378, https://doi.org/10.1038/ngeo2420, 2015. a
Steinle, L., Schmidt, M., Bryant, L., Haeckel, M., Linke, P., Sommer, S., Zopfi, J., Lehmann, M. F., Treude, T., and Niemannn, H.: Linked sediment and water-column methanotrophy at a man-made gas blowout in the North Sea: Implications for methane budgeting in seasonally stratified shallow seas: Linked sediment and water methanotrophy, Limnology and Oceanography, 61, S367–S386, https://doi.org/10.1002/lno.10388, 2016. a
Steinle, L., Maltby, J., Treude, T., Kock, A., Bange, H. W., Engbersen, N., Zopfi, J., Lehmann, M. F., and Niemann, H.: Effects of low oxygen concentrations on aerobic methane oxidation in seasonally hypoxic coastal waters, Biogeosciences, 14, 1631–1645, https://doi.org/10.5194/bg-14-1631-2017, 2017. a
Thompson, R. L. and Stohl, A.: FLEXINVERT: an atmospheric Bayesian inversion framework for determining surface fluxes of trace species using an optimized grid, Geosci. Model Dev., 7, 2223–2242, https://doi.org/10.5194/gmd-7-2223-2014, 2014. a, b
Torsæter, M., Bello-Palacios, A., Borgerud, L., Nygård, O.-K., Frost, T., Hofstad, H., and Andrews, J.: Evaluating legacy well leakage risk in CO2 storage, Proc. 17th Int. Conf. on Greenhouse Gas Control Technologies, 19 pp., https://doi.org/10.2139/ssrn.5062896, 2024. a
Uhlig, C., Kirkpatrick, J. B., D'Hondt, S., and Loose, B.: Methane-oxidizing seawater microbial communities from an Arctic shelf, Biogeosciences, 15, 3311–3329, https://doi.org/10.5194/bg-15-3311-2018, 2018. a
Umlauf, L. and Burchard, H.: A generic length-scale equation for geophysical turbulence models, Journal of Marine Research, 61, 235–265, https://doi.org/10.1357/002224003322005087, 2003. a
Valentine, D. L., Blanton, D. C., Reeburgh, W. S., and Kastner, M.: Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel River Basin, Geochimica et Cosmochimica Acta, 65, 2633–2640, 2001. a
Valentine, D. L., Kessler, J. D., Redmond, M. C., Mendes, S. D., Heintz, M. B., Farwell, C., Hu, L., Kinnaman, F. S., Yvon-Lewis, S., Du, M., Chan, E. W., Tigreros, F. G., and Villanueva, C. J.: Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill, Science, 330, 208–211, https://doi.org/10.1126/science.1196830, 2010. a
Vardeman, S.: Sheppard's correction for variances and the “quantization noise model”, IEEE Transactions on Instrumentation and Measurement, 54, 2117–2119, https://doi.org/10.1109/TIM.2005.853348, 2005. a
Veloso, M., Greinert, J., Mienert, J., and Batist, M.: A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: Examples from the Arctic offshore NW-Svalbard, Limnology and Oceanography: Methods, 13, https://doi.org/10.1002/lom3.10024, 2015. a, b
Vitali, L., Monforti, F., Bellasio, R., Bianconi, R., Sachero, V., Mosca, S., and Zanini, G.: Validation of a Lagrangian dispersion model implementing different kernel methods for density reconstruction, Atmospheric Environment, 40, 8020–8033, https://doi.org/10.1016/j.atmosenv.2006.06.056, 2006. a
Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited, Limnology and Oceanography: Methods, 12, 351–362, https://doi.org/10.4319/lom.2014.12.351, 2014. a, b
Ward, B. B., Kilpatrick, K. A., Novelli, P. C., and Scranton, M. I.: Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters, Nature, 327, 226–229, https://doi.org/10.1038/327226a0, 1987. a
Ward, B. B., Kilpatrick, K. A., Wopat, A. E., Minnich, E. C., and Lidstrom, M. E.: Methane oxidation in Saanich inlet during summer stratification, Continental Shelf Research, 9, 65–75, https://doi.org/10.1016/0278-4343(89)90083-6, 1989. a
Weinstein, A., Navarrete, L., Ruppel, C., Weber, T. C., Leonte, M., Kellermann, M. Y., Arrington, E. C., Valentine, D. L., Scranton, M. I., and Kessler, J. D.: Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability, Geochemistry, Geophysics, Geosystems, 17, 3882–3892, https://doi.org/10.1002/2016GC006421, 2016. a
Yaglom, A.: Correlation Theory of Stationary and Related Random Functions, Springer-Verlag, New York, NY, https://doi.org/10.1007/978-1-4612-4628-2, 1987. a
Yang, L., Fang, S., Wang, Z., Song, J., Li, X., and Chen, Y.: Optimizing and evaluating multiple kernel density estimators for local-scale atmospheric dispersion modeling at a representative AP1000 nuclear power plant site in China, Nuclear Engineering and Technology, 58, 103880, https://doi.org/10.1016/j.net.2025.103880, 2026. a
Short summary
We modeled how gas seeping from the seafloor spreads in the ocean and how much reaches the atmosphere. Using gas-exchange and hydrodynamic models, we estimated gas dissolution, atmospheric release, and 3D concentration fields. Applied to a methane seep offshore Norway, most methane dissolved and much was consumed by microbes, though uncertainties remain due to microbial and mixing assumptions.
We modeled how gas seeping from the seafloor spreads in the ocean and how much reaches the...