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Abstract. Understanding the fate of gas seeping from the
seafloor is crucial for assessing the environmental impacts
of both natural and anthropogenic seep systems, such as
CH4 cold seeps, leaking gas wells, and future carbon cap-
ture projects. We present a comprehensive modeling frame-
work that integrates physical, chemical, and biological pro-
cesses to estimate the 3-dimensional water column dissolved
gas concentration field and 2-dimensional atmospheric flux
field resulting from seafloor seeps. The framework consists
of two main components: (1) a gas-phase model that calcu-
lates free gas dissolution and direct atmospheric release at the
seep site, and (2) a concentration model that combines par-
ticle dispersion modeling with an adaptive-bandwidth ker-
nel density estimator and customizable process modules. Ap-
plying the framework to a natural CH4 seep at 200 m depth
offshore northwestern Norway (20 May–20 June 2018), we
found that dissolved methane was advected northeastward
along the coast, spreading across shelves, reefs, and into
fjord systems. Within days, the vertical CH4 concentration
profile was near inverted, with near-surface maxima, facil-
itating atmospheric exchange. Diffusive emissions covered
large areas (> 105 km2) and was almost 3 times the local
free gas flux. Around 0.7 % of dissolved CH4 reached the
atmosphere during a 4 week period, microbial oxidation re-
moved around 65 %, while∼ 34 % remained in the water col-
umn. Uncertainties caused by a range of model framework
elements remain substantial, e.g. can estimates of microbial
oxidation removal change from 65 % to as low as 5.5 % or

as high as 91.4 % depending on rate coefficient assumptions.
Our framework provides a globally applicable tool that in-
tegrates free and dissolved gas dynamics and accommodates
advanced hydrodynamic modeling. Its ability to explicitly re-
solve spatiotemporal fields enables the inclusion of complex
physical and biogeochemical process modules and supports
not only the quantification of atmospheric fluxes but also ap-
plications that require explicit field representations, such as
assessing impacts on local ecosystems.

1 Introduction

Estimates of the contribution of seafloor gas seepage to at-
mospheric emissions and its impact on ocean environments
are highly uncertain due to limited data and understanding
of gas transformation and transport mechanisms in the water
column. Estimation of total atmospheric gas emissions from
seep areas (e.g. Myhre et al., 2016) rely largely on either ship
measurements or large-scale atmospheric inversion models.
The former of these approaches only gives information on
the local flux and requires some sort of up-scaling, while the
latter is unable to estimate dispersed sources and/or weaker
point sources precisely due to its rough scale and inabil-
ity to completely decouple atmospheric sources from sinks
(Thompson and Stohl, 2014). Quantifying dissolved gas in
the water column usually involves measuring dissolved gas
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via water samples (e.g. Silyakova et al., 2020) or using in
situ sensors (e.g. Gentz et al., 2014) which can be time-
consuming and often result in poor data coverage. New mod-
eling tools for constraining the environmental impacts of cur-
rent and future seabed gas seepage from both natural and man
made sources are therefore needed.

Gas released at the seabed can enter the atmosphere di-
rectly as free gas (bubbles) or via diffusive equilibrium of
dissolved gas that has reached the sea surface. To estimate the
total atmospheric emissions from a seabed seep and its dis-
solved distribution in the water column, one must be able to
model both pathways simultaneously. Gas content in bubbles
is constantly changing due to dissolution (gases in the bub-
ble dissolve in the liquid) and exsolution (gases already dis-
solved in the liquid enter the bubble) driven by partial pres-
sure gradients across the bubble rim. Additionally, chemical
and biological processes can modify local dissolved gas con-
tent. Estimating the gas distribution in the water column and
total atmospheric flux therefore requires a flexible framework
which can integrate processes governing the gas phase dy-
namics and the hydrodynamics, accommodate atmospheric
exchange, and other phenomena that modify water column
gas content. Previous modelling efforts have typically fo-
cused on single gas phase frameworks including only se-
lected processes (e.g. McGinnis et al., 2006; Graves et al.,
2015; Silyakova et al., 2020), however, key steps towards
modeling the complete system have been made recently in
Dissanayake et al. (2023) and Nordam et al. (2025). We aim
to further expand on these studies from a methodological per-
spective and provide a pilot framework which can integrate
all key processes governing free and dissolved transport and
transformation of seeped gas and give a realistic estimate
of the time varying 3-dimensional (3D) water column con-
centration field and 2-dimensional (2D) atmospheric release
field.

Our approach integrates a gas phase model with a hydro-
dynamic model using particle dispersion modeling (similar
to Dissanayake et al., 2023). It estimates the 3D distribu-
tion of gas in the water column and the total (free and dif-
fusive) atmospheric 2D gas release resulting from observed
seabed seepage. This approach offer flexible inclusion of at-
mospheric flux and chemical and biological process modules
affecting dissolved gas content in the water column. Explicit
concentrations (molecules per volume) are obtained using
kernel density estimation. Atmospheric dissolved flux esti-
mates are obtained using a bulk model and atmospheric free
gas flux via a gas phase model. We tested the framework by
quantifying direct and diffusive atmospheric fluxes as well as
3D dissolved gas distribution between 20 May and 20 June
2018 for a methane (CH4) seep area offshore Northwestern
Norway.

Figure 1. Model framework flowchart. The emboldened modeling
steps and associated numbers refer to the four subsections of the
Methods section. The “D” in the results column refers to spatial
dimensions.

2 Method

Our goals are two-fold: (i) Calculate the combined total
amount of seep-derived gas that reaches the atmosphere
– both direct free gas release and ventilation of dissolved
gas, and (ii) Estimate the impact of seeped gas on the
scalar dissolved gas concentration field, i.e., we seek the
anomaly 8′(x,y,z, t)=8(x,y,z, t)−80(x,y,z, t) caused
by the seeps, where 8(x,y,z, t) denotes the total concentra-
tion and 80(x,y,z, t) is a background concentration.

The outlined goals are achieved by adapting and inte-
grating existing and new models, of which output from one
model serves as a final result or feeds another model. We first
use seabed gas volume flux data and a two-phase gas model
to calculate the gas dissolution rates and direct atmospheric
gas (bubble) release. Dissolved injection rate output from the
gas phase model then feeds a concentration model that com-
bines an existing dispersion modeling framework with an
adaptive kernel density estimator, including an atmospheric
flux module and options for water column process modules.
Figure 1 shows the complete framework, with input data in
the left column, the modeling steps in the center column, and
the final results in the right column. Each modeling section
is detailed in the corresponding subsection.

2.1 Gas phase modeling

Free atmospheric gas fluxes and dissolved gas profiles in-
jected to the water column are initially modeled for each
observed seep using the seabed free gas flux data and the
M2PG1 gas phase model (Jansson et al., 2019). M2PG1 pro-
vides an integrated solution of dissolved and free gas in a
1-dimensional water column, with sources and sinks at both
horizontal and vertical model boundaries. It simultaneously
models gas exchange, dissolution, and associated dissolved
gas concentration of five gas species (methane (CH4), Ar-
gon (Ar), Carbon dioxide (CO2), Nitrogen (N2), and Oxy-
gen (O2)) across a user-defined initial spectrum of bubble
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sizes. The bubble size spectrum and gas distribution across
this spectrum vary freely across the spatio-temporal model
domain. The model includes several bubble shape and ris-
ing speed models, microbial oxidation of CH4 using first or-
der kinetics (Griffiths et al., 1982; Chan et al., 2019), diffu-
sive exchange with the atmosphere, dissolved transport due
to vertical turbulent exchange of water masses, as well as loss
due to advection across the model boundary (Jansson et al.,
2019). While dynamic solutions are permissible in M2PG1,
we have opted for a steady state solution in our modeling
framework.

The input parameters include seabed gas flux, bubble char-
acteristics (size distribution, rising speed, dirtiness, flatness),
temperature, salinity, microbial CH4 oxidation rate coeffi-
cients (MOx), ambient dissolved gas concentrations (for all
five gases), vertical mixing (turbulent) and local ocean cur-
rents. Seabed free gas flux data can in theory be obtained
by any means available, although hydroacoustics have been
used extensively due to its relatively straightforward deploy-
ability and large coverage (e.g. Ferré et al., 2020).

In our implementation of M2PG1 we used a new esti-
mation technique to determine the horizontal model domain
size in M2PG1. Horizontal domain size was previously cho-
sen ambiguously in M2PG1 (Jansson et al., 2019) and could
cause significant exchange rate errors. Our method removes
this ambiguity by estimating the horizontal bubble plume ex-
tent based on local conditions. Details are provided in Ap-
pendix A.

The steady-state output from the M2PG1 simulation pro-
vides two key results: (i) direct atmospheric gas flux and
(ii) injection rates of dissolved gas to the surrounding wa-
ter column. The former is a direct output in M2PG1 and the
latter, which are key input for the concentration modeling
steps (Sect. 2.2–2.4), can be derived from the dissolved gas
concentration profiles by calculating the dissolved gas loss q
[mol s−1] to the water column at the downstream boundary
of each M2PG1 grid cell. The steady-state mass flux assump-
tion gives:

q = A⊥MU(ϕM−ϕb), (1)

where A⊥M [m2] is the vertical grid cell area (Appendix A),
U [m s−1] the current speed, ϕM [mol m−3] the estimated
concentration within the grid cell and ϕb [mol m−3] the as-
sumed concentration at the upstream boundary.

2.2 Particle dispersion modeling

To estimate the unobservable dissolved gas concentration
field anomaly 8′(x,y,z, t), we must model the advection
and spread of the dissolved gas from the seeps. We chose
to simulate the transport and dispersion of the gas from the
release site using OpenDrift, which is a Lagrangian parti-
cle trajectory modeling software (Dagestad et al., 2018). In
practice, this means that we distribute (virtually) the released
CH4 over a discrete number of virtual particles, and up-

date the particle positions at discrete times tn for time-steps
n= 1,2,3, . . .,N according to the output from a hydrody-
namic model. Each timestep is separated by a time inter-
val 1t . We then define S[n] as the number of virtual par-
ticles seeded at the modeled seep sites at each time step.
This generates a total of Z =

∑N
n=1S[n] particles indexed by

ζ = 1,2,3, . . .,Z. Note that we throughout this manuscript
will use square “[·]” versus round “(·)” brackets to distin-
guish between discrete and continuous spatiotemporal argu-
ments, respectively.

Once particles are seeded, OpenDrift calculates the trajec-
tory of each particle individually by numerically solving a
stochastic differential equation which is consistent with the
Lagrangian representation of the advection-diffusion equa-
tion (see e.g. Spivakovskaya et al., 2007). The drift in particle
position η can be expressed as

dη = Uµ(η, t)dt +B(η, t)dW (t) (2)

where Uµ(η, t) represents displacement produced by the un-
derlying (mean) velocity field and the second term repre-
sents displacement from random, diffusive processes and is
composed of a diffusivity matrix B(η, t) and increments of
a Wiener process dW (t). The advective term (Uµ (η, t)) is
determined by velocity fields obtained from the hydrody-
namic model. OpenDrift represents the diffusivity B(η, t) as
a diagonal matrix with a horizontal and a vertical diffusiv-
ity. If available, these diffusivities can be directly read from
the hydrodynamic model output. Otherwise, OpenDrift can
also estimate the diffusivity coefficients using one of sev-
eral built-in parametrizations. Finally, OpenDrift returns in-
dividual (traceable) positions ηζ [n] for each seeded particle
at each time-step they spend in the model domain.

2.2.1 Particle mass

To associate the particle distribution with dissolved gas con-
tent, we latch a particle mass 0ζ to each seeded particle,
which explicitly corresponds to the number of moles each
particle represents (this mass has no influence on the parti-
cle buoyancy). Each particle is thus interpreted as a virtual
single-point representation of some local spatial distribution
of 0ζ moles of dissolved gas molecules.

The initial mass, i.e. mass at release, of an arbitrary parti-
cle ζ is scaled such that the total released particle mass from
all modeled seeps combined at timestep n approximates the
total number of moles of gas dissolved in the water column
during the time interval 1t centered on tn. In practice, we
distribute the integrated sum of modeled (using the gas phase
model) injected gas molecules from tn−1t/2 to tn+1t/2
evenly over the seeded particles. The mass of particle 0ζ
seeded at time-step n is then obtained by

0ζ [n] =

1t
P∑
p=0

ϒp[n]

S[n]
(3)
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where ϒ1[n],ϒ2[n], . . .,ϒP [n] [mol s−1] are total injected
dissolved gas from all P modeled seeps. Approximation to
the modeled dissolved gas release profiles at each modeled
seep is achieved by seeding different amount of particles at
different depths. Particle masses are then subsequently in-
dividually adjusted at each time-step to simulate processes
affecting gas content. Each particle thus has a successively
constructed mass time-series, where the current mass 0ζ [n]
is determined by the previous mass 0ζ [n− 1] and selected
mass modification functions.

2.2.2 Particle count

Our framework must be able to model an extensive 3-
dimensional domain (e.g. larger ocean regions), making
computational complexity a challenge. Both computation
time and estimation quality increase with the number of ac-
tive particles present in the domain. This makes it crucial
to be able to strike a decent compromise between the two,
which typically involves removal of particles that have been
present in the domain for a certain number of time-steps. To-
tal particle count 3[n] in the domain can be expressed as

3[n] =3[n− 1] + S[n] −L[n] −℘[n], (4)

where L[n] is the number of particles leaving the modelled
geographical domain, and ℘[n] the number of removed par-
ticles. A constant particle count is obtained when S[n] ∼
L[n]+℘[n]. Since ℘[n] represents non-physical loss of gas,
the model simulation would ideally run with a spin-up time
that ensures S[n] ∼ L[n]. Unfortunately, this typically results
in unreasonable computation times and/or spin-up periods,
making particle removal necessary. To limit errors caused
by removed particles, we apply a function that redistributes
mass from all removed particles to nearby non-removed par-
ticles. The redistribution is weighted according to the inverse
distance from the removed particle within a user defined dis-
tance limit dmax, giving a non-removed particle τ an added
mass of

γτ = 0θ
||ητ − ηθ ||

−1
2∑

ζ∈T ||ηζ − ηθ ||
−1
2

(5)

from the removed particle θ . Here, τ ∈ T and T is the set of
non-removed particles with indices ζ satisfying ‖ηζ−ηθ‖2 ≤
dmax, and ‖ · ‖2 denotes the Euclidean norm. This solution
changes the problem of non-physical loss of dissolved gas
to one of non-physical redistribution. This can affect model
results by shifting particle mass towards the seed location,
since the density of particles are in general higher closer
to the release point. However, we consider this artifact less
problematic than mass simply disappearing.

2.3 Grid Projected Adaptive-bandwidth Kernel
Density Estimator

Having an explicit relationship between dissolved gas con-
tent (of seep origin) and particle mass 0ζ allows us to infer
gas concentrations by evaluating the particle mass per unit
volume, which we refer to as the particle density. Let us as-
sume that the particles ζ = 0,1,2, . . .,Z are scaled/weighted
samples (using their mass 0ζ ) from an unknown, smooth,
underlying particle density field φ(x,y,z, t) which approx-
imates the seep-induced gas concentration anomaly field
8′(x,y,z, t). Estimation of 8′(x,y,z, t) can then be done
via the estimate φ̂ of φ(x,y,z, t) using the particle data set.

To get φ̂, we employ a discrete spatiotemporal grid
[i,j,k,n], where i = 1,2, . . ., I, j = 1,2, . . .,J, k =
1,2, . . .,K, n= 0,1,2, . . .,N , and I,J,K,N denote the
number of grid cells in east, north, vertical and temporal
dimensions, respectively. Grid cell center positions are
given by [xi,yj ,zk, tn], with horizontal resolution 1λ

(in both directions), vertical resolution 1z, and temporal
resolution 1t . We then bin all mass in the temporal and
vertical domains and obtain separate estimates φ̂[i,j ] of
φ(xi,yj ) for each resulting depth layer k and time-step n to
form the final estimate φ̂[i,j,k,n]. Obtaining φ̂[i,j,k,n]

thus translates to solving a series of 2-dimensional density
estimation problems (see e.g. Silverman, 1986).

Due to the extensive model domain and the need to obtain
one estimate for every depth layer and time-step (K×N esti-
mates), our density estimator needs to be fast and allow reli-
able density estimates from limited particle counts. It must
also handle regions with low and high concentrations and
concentration gradients as well as complex boundaries like
fjords and islands. A commonly used density estimator in
similar contexts is the histogram estimator, which unfortu-
nately has several well-known limitations in these applica-
tions (the histogram estimator and its drawbacks are detailed
in Appendix B). Previous studies on concentration estimation
from particle dispersion model data have shown that Ker-
nel Density Estimators (KDEs) can offer far superior infor-
mation exploitation than the histogram estimator and over-
come many of its drawbacks (see e.g. De Haan, 1999; Vi-
tali et al., 2006; Björnham et al., 2015; Barbero et al., 2024;
Yang et al., 2026). One remaining challenge in our specific
application, however, is the lack of available KDEs tailored
to coastal ocean regions that appropriately adapt to spatial
density variability (adaptive bandwidth) and complex bound-
ary geometries (bathymetry). We therefore formulated a new
2-dimensional adaptive-bandwidth KDE to provide our den-
sity estimates.

Kernel density estimation is a standard non-parametric
way to estimate the density of a random variable using kernel
functions (Silverman, 1986). This offers density estimates
that are differentiable, grid cell size independent and gener-
ally more realistic than histogram estimators, without lower
density limitations. In our case, a kernel density estimate in-
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volves placing a symmetric, smooth, and weighted kernel
function at each particle position. By summing up the ker-
nel contributions, the density field φ̂ at position r0 located
within the volume V can be estimated via the general kernel
density estimator formula

φ̂(r0)=
1
V

Z∑
ζ=1

0ζKh
(
||r0− ηζ ||2

)
. (6)

Here,Kh(ξ)≡ (1/h)K(ξ/h), whereK(ξ) is a non-negative,
normalized, and symmetric kernel function, h a bandwidth
(smoothing) parameter, and r0 the estimate position.

It is well established that the choice of kernel shape
K(ξ) is of less importance, as long as it adheres to the
kernel function requirements. We define the base kernel
K(ξ) as a standardized 2-dimensional Gaussian, i.e. K(ξ)=
exp

(
−ξ2/2

)
/2π .

Selecting an appropriate bandwidth h is crucial, as a poor
choice can cause large errors (De Haan, 1999), particularly
due to over-smoothing (Larsen et al., 2002). Several meth-
ods exist for selecting h by evaluating the statistical proper-
ties of the collected data, but they typically rely on strict as-
sumptions on the underlying field. For heterogeneous fields,
such as ours, where statistical properties vary across the
domain, local adaptation of h is necessary to give realis-
tic density estimates in both high and low particle count
areas. Furthermore, the presence of complex boundaries in
the form of bathymetry and coastlines introduces additional
challenges, both for providing valid estimates and for com-
putational complexity. To handle these challenges, we have
proposed a KDE that is bathymetry bounded and estimates a
locally adapted kernel bandwidth h using an expanded ver-
sion of Silverman’s rule (Silverman, 1986) which accommo-
dates correlated, weighted data. Computational complexity is
constrained via grid-projection and pre-computation of ker-
nels. Testing and validation of the estimator were done using
synthetic simulations (see Appendix C).

2.3.1 Grid projection and pre-computed kernels

To improve computational times, we have implemented a
grid-projected estimator (Sole-Mari et al., 2019). This in-
volves obtaining a preliminary density φ̃[i,j ] using the his-
togram estimator via Eq. (B1), i.e. calculate the accumulated
particle mass of all particles within each grid cell. All mass
then belongs to a discrete grid, where any difference in posi-
tion r between two locations of interest [i,j ] and [i0,j0] can
be expressed as (i− i0,j − j0)1λ.

Furthermore, we pre-compute a set of normalized kernels
with fixed, discrete bandwidths given by:

h[ω] =
ω1λ

3
, where ω = 0,1,2, . . .�. (7)

Each initial non-discrete bandwidth estimate h′ from the
data-driven bandwidth algorithm is then mapped to the near-
est candidate in h[ω]. Kernel support is set to±ω1λ beyond

which the kernel contribution is set to zero. Leaked kernel
mass is added back across the kernel domain using the Ker-
nel function.

These simplifications make complexity scale with particle-
containing cells instead of particles. It also allows for fast
vectorized operations which drastically reduce computation
time while giving negligible errors for large grids (Sole-Mari
et al., 2019).

2.3.2 Data-driven adaptive bandwidth selector

The conventional Silverman’s rule of thumb (Silverman,
1986) selects the optimal bandwidth h that minimizes the in-
tegrated mean square error under the assumption of Gaussian
distributed data with variance σ 2. For a d-dimensional Gaus-
sian kernel, one obtains

h=

(
4

d + 2

) 1
d+4
N−

1
d+4 σ, (8)

where N is the number of data samples, i.e., the number of
particles. For d = 2, the expression simplifies to

h=N−
1
6 σ. (9)

Here we modify Silverman’s rule to yield reasonable esti-
mates for our multi-modal, correlated, non-homogeneous,
weighted data set by: (i) adapting h locally for a square
shaped horizontal “adaptation” grid of size P ×P surround-
ing each particle containing grid cell where we assume near
normal, unimodal distribution, (ii) estimating the effective
(uncorrelated) sample size Neff and (iii) implementing bias
corrections to a σ -estimator for weighted data-sets. The size
P is determined by an integral length scale estimate (as out-
lined below) of the entire I×J 2-D grid. For an arbitrary cell
[i,j ], the adaptation grid is defined by letting l andm be dis-
crete indices on the grid such that 1≤ l,m≤ P with step size
1λ in both directions. The number of particles contained in
the local grid (prior to grid projection) is denoted as Ng, and
the pre-computed histogram density φ̃ serves as the underly-
ing data for obtaining estimates of the local h. We will now
describe the procedure of obtaining estimates of Neff and σ
to get the local h for an arbitrary adaptation grid.

Spatial correlations present in environmental data decrease
the effective degrees of freedom in the sample set and we
must therefore estimate and use the effective sample sizeNeff
to obtain a reasonable h for the local grid (e.g. Larsen et al.,
2002). To estimate the effective number of spatially uncorre-
lated samples, a measure of correlation length is employed.
We use the so-called integral length scale known from turbu-
lence theory and statistical physics, see e.g., Yaglom (1987),
Frisch (1995), and Pécseli (2000) as our objective measure of
the correlation length. The correlation length Lc in terms of
the integral length scale is formally defined by (Frisch, 1995)
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Lc =

∞∫
0
|R(%)|d%

R(0)
, (10)

where R(%)= E {φ(x)φ(x+ %)} is the spatial autocorrela-
tion function (ACF) of a continuous univariate spatial ran-
dom process φ(x), % is a spatial lag coordinate, and E {·} is
the statistical expectation operator.

We now proceed by defining a local integral length scale
Lc for the binned adaptation window. First, we estimate the
local one-dimensional ACF of φ̃ along each row l and col-
umnm of the square grid by using the standard unbiased ACF
estimator (e.g. Percival and Walden, 1993)

R̂row
l [λ] =

1
P − λ

P−λ∑
m=1

φ̃l,mφ̃l,m+λ for l = 1,2, . . .,P (11)

R̂col
m [λ] =

1
P − λ

P−λ∑
l=1

φ̃l,mφ̃l+λ,m for m= 1,2, . . .,P (12)

where φ̃l,m is the binned particle density in grid cell [l,m]
and λ= 0,1, . . .,P − 1 is the discrete horizontal spatial lag
index. Assuming local spatial homogeneity, we then arith-
metically average the ACF estimates over all P rows and
columns, respectively, to yield two one-dimensional ACF es-
timates as

R̂row
[λ] =

1
P

P∑
l=1

R̂row
l [λ] and

R̂col
[λ] =

1
P

P∑
m=1

R̂col
m [λ]. (13)

We now assume local spatial isotropy and let the arithmetic
average of the two perpendicular ACFs serve as a represen-
tative single ACF for the adaptation window

R̂[λ] =
1
2

(
R̂row
[λ] + R̂col

[λ]
)
. (14)

Using the estimated ACF, we can finally estimate the local
one-dimensional integral length scale L̂c for the adaptation
window by discretizing Eq. (10) as

L̂c =

P−1∑
λ=0
|R̂[λ]|1λ

R̂[0]
. (15)

We now express the correlation length in terms of the asso-
ciated number of samples as Nc = L̂c/1λ. It is easy to show
that 1≤Nc ≤ P . We then define the number of effectively
uncorrelated particles Neff as

Neff =
Ng

Nc
, (16)

and it directly follows that Ng/P ≤Neff ≤Ng. The interpre-
tation of Neff is straightforward: if all particles are spatially
uncorrelated, thenNeff =Ng, and if all particles are fully cor-
related (e.g., if they are all trapped in a coherent structure),
then Neff attains its lower limit Neff =Ng/P .

To obtain an estimate σ̂ 2 of the variance σ 2 in the two-
dimensional binned data, we need to account for the loss of
degrees of freedom due to shortening of the residual vec-
tor (Bessel’s correction) and weighting as well as increased
variance due to the binning process itself. The estimate of
variance for the binned particle density φ̃l,m, can then be ex-
pressed as

σ̂ 2 =

(∑
l,mφ̃l,m‖r l,m−µ‖

2
2∑

l,mφ̃l,m

)(
1

1−B

)
+ σ 2

b , (17)

where r l,m denotes the grid cell center point position vectors,∑
l,m ≡

P∑
l=1

P∑
m=1

, and

µ=

∑
l,mφ̃l,mr l,m∑
l,mφ̃l,m

(18)

is the weighted mean position vector, and
(

1
1−B

)
, where

B =
∑
l,mφ̃

2
l,m(∑

l,mφ̃l,m

)2 , (19)

is a bias correction term that accounts for Bessel’s correc-
tion and the reduced degrees of freedom due to uneven sam-
ple weights (Kish, 1965, pp. 86–88). The variance increase
due to the binning process (Sheppard’s correction, see e.g.
Vardeman, 2005) is included through the correction term
σ 2

b =1λ
2/12.

The final local bandwidth estimate (for each particle-
containing grid cell) then follows from Eq. (9):

ĥ=N
−

1
6

eff σ̂ . (20)

2.3.3 Boundary solution

We establish a boundary solution for the density estimator
by interpolating bathymetry data onto the model grid across
all predefined depth layers, creating a matrix of “permissi-
ble” and “impermissible” cells for gas. The boundary control
is imposed at the kernel estimation stage before summation,
by directly modifying kernels whose support contains imper-
missible cells (see Fig. 2). While being computationally in-
tensive, this greatly simplifies the boundary control and en-
tirely omits the difficulties of finding a reliable boundary so-
lution that handles the complex bathymetry and physical pro-
cesses appropriately.

Impermissible cells are treated as impenetrable obstacles,
reflecting that dissolved gas cannot cross land or shallow
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Figure 2. Sample kernel with support i,j = 0,1, . . .,10, contain-
ing impermissible cells in its kernel support. Density is indicated
by blue shading and impermissible cells (Bathymetry/land) and
blocked cells where mass from the shown kernel is not permitted
to access are shown as black and yellow colored cells, respectively.
Cells identified as being in the line of sight between the kernel cen-
ter (green dot) and cell [1,8], according to Bresenham’s line algo-
rithm, are grayed out (although there is nothing particular about this
line).

bathymetric boundaries. Any density within, or “blocked” by
impermissible cells, is considered misplaced. A cell is de-
fined as blocked if it lacks a clear line of sight to the kernel
center. We determine line of sight using Bresenham’s line al-
gorithm (Bresenham, 1965). This is an efficient incremental
algorithm relying solely on integer arithmetics that identify
grid cells located between an origin cell (x0,y0) and a tar-
get cell (x1,y1) (Fig. 2). The algorithm is implemented on a
normalized grid with unit cell lengths and initialized by first
defining the direction, or step coefficients sx and sy in the x
and y directions, respectively:

sx =

{
1, if x0 < x1

−1, if x0 > x1
, sy =

{
1, if y0 < y1,

−1, if y0 > y1.
,

(21)

and an error term ε = dx−dy, where dx = |x1−x0| and dy =
|y1−y0|. The algorithm then iteratively updates (x0,y0), us-
ing ε to determine whether to step in x or y direction (sx , sy
are not updated) via the following criteria:

2ε >−dy : x0⇒ x0+ sx and

2ε < dx : y0⇒ y0+ sy . (22)

At each time step, (x0,y0) is added to the list of grid cells,
thereby iteratively forming the line of sight to the target cell.
Density in blocked or impermissible cells are redistributed to
permissible cells according to the kernel function.

2.4 Atmospheric flux and mass modification functions

Changes in dissolved gas content due to processes within or
at the boundaries of the water column are included by mod-
ifying the particle masses. Total mass change of a particle ζ
is estimated at each time-step n using predefined mass mod-
ification functions that couple particle properties to the grid-
ded field processes. Here, our modeling framework is rela-
tively flexible, and can even accommodate models where it
is necessary to keep track of higher order parameters, such
as microbe stocks (e.g. a Monod model). This is made pos-
sible since we can model any parameter explicitly across the
domain. We will only describe mass modification due to dis-
solved atmospheric exchange of gas here, but a mass modi-
fication function for microbial oxidation of CH4 is presented
in the application section (Sect. 3).

Atmospheric flux can be implemented following any the-
ory using the surface layer concentration as input data. Here
we propose a simple solution by applying the bulk equation
from Wanninkhof (2014):

F = κ (8atm−8sw) , (23)

where F [mol m−2 s−1] is the gas flux across the sea-air in-
terface, κ [m s−1] is the gas transfer velocity, and 8atm and
8sw [mol m−3] are atmospheric and surface water concen-
trations, respectively. The gas transfer velocity κ can be ex-
pressed as

κ(Ua,Ts)= CκU
2
a

(
Sc(Ts)

660

)−1/2

, (24)

where Sc(Ts) and Cκ are empirically derived constants and
Ua is the wind speed 10 m above the sea surface. The
Schmidt number Sc(Ts) is the empirically derived, gas-
specific temperature-dependent ratio between sea water kine-
matic water viscosity and the diffusion coefficient of the gas.
The Cκ coefficient lumps together a set of various processes
that govern sea/air exchange and has been determined for
CO2 and a wind speed range of 4<Ua < 15 m s−1 using in-
verse modeling for global estimates. Validity for other gases
and wind ranges is not fully known.

Let the gridded estimate of the 2D spatiotemporal atmo-
spheric flux field β(x,y, t) be denoted β̂[i,j,n], using the
same horizontal and temporal grid cells as φ̂[i,j,k,n]. We
then assume an initial equilibrium between the atmospheric
concentration and background surface concentration, which
is disturbed by the (modeled) seep-derived dissolved gas.
The difference between surface water and atmospheric con-
centration in Eq. (23) is then simply the surface layer (k = 0)
concentration φ̂[i,j,0,n]. To obtain an estimate of the gas
transfer coefficient κ , we project re-analysis atmospheric
10 m above sea level wind speed and sea surface temperature
data onto all i,j, and ns, delivering the gridded gas transfer
coefficient field estimate κ̂[i,j,n] using Eq. (24). The grid-
ded atmospheric dissolved flux field estimate is then given

https://doi.org/10.5194/os-21-3031-2025 Ocean Sci., 21, 3031–3054, 2025



3038 K. O. Dølven et al.: Modeling water column gas migration

by

β̂[i,j,n] = κ̂[i,j,n] φ̂[i,j,0,n] 1λ21t, (25)

where β̂[i,j,n] is the integrated atmospheric flux from grid
cell [i,j,n].

Loss of gas due to atmospheric flux is implemented by
modifying the mass of all particles present in the surface
layer. To ensure efficient computation and mass conserva-
tion, we assume that the entire contribution to the atmo-
spheric flux from a surface layer particle occurs within the
grid cell where that particle resides, disregarding the effects
of mass distribution through the density kernels. Errors asso-
ciated with this assumption are expected to be small, since
wind and temperature fields and consequently, gas transfer
velocities are generally smooth on typical kernel bandwidth
scales. It is also mass conserving, because atmospheric flux
varies linearly with dissolved gas concentration (Eq. 25).
Furthermore, since grid cell concentration depends linearly
on the total cell gas content (i.e., the sum of all particle
masses in that cell) and the gridded gas transfer velocity, rel-
ative flux contributions from particles can be estimated using
products of particle masses and cell specific gas transfer ve-
locities. The mass loss due to atmospheric exchange for a
surface layer particle α at time-step n can then be expressed
as

γα[n] =
0α[n]̂κ[c(α),n]∑
ζ∈A0ζ [n]̂κ[c(ζ ),n]

I∑
i=1

J∑
j=1

β̂[i,j,n], (26)

where α ∈A and A denotes the set of all surface-layer par-
ticles, and c(α) denotes the indices i,j where particle α re-
sides.

3 Application

We applied the modeling framework to a well documented
natural CH4 seep site offshore northwestern Norway located
in the Hola trough (Fig. 3), where coral reefs and CH4 seeps
coexist (Chand et al., 2008). These seeps were investigated
not only to assess the mechanisms governing CH4 fluxes to
the atmosphere, but also to evaluate their potential impact
on cold water coral ecosystems (Sert et al., 2025; Argentino
et al., 2025). A thorough description of the data, site charac-
teristics, environmental conditions, and seabed flux estimates
are presented in Ferré et al. (2024). In short, the observed
seeps are weak, and our focus is therefore on examining sys-
tem dynamics and fractional distribution of gas, rather than
on quantifying environmental impacts or contributions to the
atmospheric CH4 budget.

We modeled the resulting direct and diffusive atmospheric
gas release, as well as 3D concentration from 45 observed
CH4 seeps for the period between 20 May and 20 June 2018.
A 1-month period was chosen since it captures a relatively

wide range of periodic variability in both ocean and atmo-
spheric circulation patterns and yields relatively modest com-
putation times. The OpenDrift simulation required 2–3 d on
a supercomputer and the concentration modeling 5–6 h on a
workstation laptop.

3.1 Seep gas phase modeling

Free and dissolved gas profiles and direct free atmospheric
gas flux were modeled individually for each of the 45 seeps
using M2PG1 (see Sect. 2.1) to steady state, using observed
and inferred input data and settings, as outlined in the fol-
lowing sections.

3.1.1 Gas phase modeling input data and settings

Temperature and salinity data were extracted from a Conduc-
tivity Temperature Depth (CTD) cast performed in 20 May
2018 (Figs. 3 and 4a). Seabed gas flux for each seep was es-
timated using single beam echosounder data (Simrad EK-60
scientific SBE splitbeam echosounder) obtained between 20
and 22 May 2018 and are presented in Ferré et al. (2024). All
other input parameters had to be inferred as outlined in the
following paragraphs since we lack observations.

M2PG1 requires an initial bubble size distribution, and
we used the polynomial fit to visual observations of bub-
bles as presented in Veloso et al. (2015). Note that since
M2PG1 takes into account the non-spherical shape of bub-
bles, the bubble size distribution is given using the effective
radius rE = (a2b)1/3, where a and b are the major and mi-
nor axis of the spheroid, respectively (Fig. 4b). We used the
bubble rising speed model from Fan and Tsuchiya (1990)
using their recommendation for bubble contamination, and
the linear flatness parametrization from Jansson et al. (2019)
(see Fig. 4b and c). We describe and discuss the bubble ris-
ing speed model and deformation parametrization selection
in Appendix D.

The horizontal domain size was determined using Ap-
pendix A and an assumed barotropic current of U =

0.1 m s−1, horizontal diffusivity Dh = 0.01 m2 s−1, rising
speed 〈w〉 = 0.25 m s−1 and a H = 200 m deep water col-
umn. We estimated σw using the bubble rise spectrum (Fig. 5)
to σw = 0.025 m s−1. This resulted in an estimated model
area of AM ∼ 88 m2 and grid cell side-lengths 9.4 m. Verti-
cal and temporal resolution does not affect grid cell concen-
tration but must obey the Courant-Friedrichs-Lewy numeri-
cal stability condition. Here we use a grid cell height of 1 m
to obtain A⊥M = 9.4 m2 and a time-step of 0.0625 s.

We assumed a constant vertical mixing coefficient ofDv =

0.001 m2 s−1 and background dissolved gas concentrations
were set to the default values from Jansson et al. (2019) at
6.8×10−4 mol L−1, 2.5×10−4 mol L−1, 2.5×10−5 mol L−1,
2× 10−9 mol L−1 and 1.5× 10−8 mol L−1 for N2, O2, CO2,
CH4, and Ar, respectively.

Ocean Sci., 21, 3031–3054, 2025 https://doi.org/10.5194/os-21-3031-2025



K. O. Dølven et al.: Modeling water column gas migration 3039

Figure 3. Bathymetric map of the application area and location of Conductivity Temperature Depth (CTD) station, observed seep-associated
flares indicated by yellow and pink dots during the 20–22 May 2018 survey. Seeding locations (where particles in the particle trajectory
model is released), estimated as the flux weighted average position of the incorporated seeps, are indicated by the yellow and pink triangle
(see Sect. 3.2). Coloring reflects which seeding location each seep observation is pooled into.

Figure 4. Input parameters used in the M2PG1 model runs. (a) Conservative temperature and absolute salinity (at the CTD station obtained
in 20 May 2018. (b) Bubble size distribution (Veloso et al., 2015) and bubble rising speed (Fan and Tsuchiya, 1990) for different bubble
sizes as a function of effective radius rE = (a2b)1/3. (c) Bubble flatness and surface area for various bubble sizes as function of effective
radius for Jansson et al. (2019), Leblond et al. (2014), and Spherical flatness parametrization. Note that the linear flatness (Jansson flatness)
appears non-linear in the figure since its linearity is with major spheroid axis and not effective radius.
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Figure 5. Probability density for bubble rising speed of bubbles in
the bubble plume using the bubble rising speed model from Fan
and Tsuchiya (1990) and bubble size distribution from Veloso et al.
(2015).

Figure 6. Maximum CH4 oxidation rate coefficients (kox) obtained
from datasets found in literature and detailed in Appendix E and Ta-
ble E1. The x-axis is logarithmic, meaning that the bars cover dif-
ferent ranges, i.e. the histogram bars are narrower at smaller scales.
Vertical dashed lines indicate simple average and median of the val-
ues in the table. For the application offshore Northwestern Norway,
we used the average of all compiled values.

We provide an overview of microbial oxidation rate coef-
ficient (kox) observations presented in literature and their as-
sociated uncertainty in Appendix E and Fig. 6. Here, we use
the simple average kox = 3.6×10−7 s−1 of the full compiled
dataset in Table E1 which include cold seep environments,
hydrothermal vents, and human-made releases.

Figure 7. (a) Vertical profiles of total free gas content for the 5
gases (colored axes) and the total free gas (black, lower x-axis) in
the water column for all seeps combined. (b) Distribution of gas
content on bubble sizes for all seeps and gases combined at different
depths (note power in scale). (c) Free atmospheric gas flux at the sea
surface for the 45 seeps (logarithmic color scale).

3.1.2 Gas phase modeling results

Most of the CH4 gas is dissolved in the water column, with
concentration appearing to decrease near exponentially to-
wards the sea surface (Fig. 7a). Hourly seabed gas flow rate
was ∼ 97 mol of which 93 % dissolved below 100 m depth
and only ∼ 0.28 % reaching the atmosphere. Integrated at-
mospheric release from free gas over the 1-month period
was 183.1 mol. Free CH4 gas content closely follows the to-
tal free gas content throughout the water column (Fig. 7a)
and loss of total free gas volume (bubble shrinkage, collapse,
and dissolution) dominates over other gases replacing CH4
in bubbles. The resulting change in dissolved gas profiles for
the four other gases (N2, O2, CO2 and Ar) due to bubble tran-
sit, i.e. the transport of gas molecules by entering bubbles,
rising, and subsequently dissolving at shallower depths, was
therefore negligible (never exceeding 0.1 % of background
values). Atmospheric flux from the 45 seeps varied consider-
ably from < 10−7 to ∼ 10−5 [mol s−1] (Fig. 7c), mostly due
to large variations in seabed fluxes (Ferré et al., 2024). Dis-
solved gas injection rates, which are needed as input in the
particle dispersion modeling step, were calculated using the
modeled (by M2PG1) dissolved gas profiles (not shown) and
Eq. (1) and are shown for the 45 seeps in Fig. 8a.
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Figure 8. (a) Dissolved CH4 release rate profiles (qm) for all ob-
served seeps on a logarithmic scale for the two cluster groups (see
Fig. 3 for seep/group locations, group west in yellow and group East
in pink), and (b) Resulting accumulated dissolved CH4 release rate
from each groups (lines, upper x-axis) and histogram of released
particles at each modeling time-step (hourly). The smaller bottom
bar at the western cluster reflects the slightly shallower depth in this
area.

3.2 Particle data set

Using OpenDrift, we simulated a particle data set of N par-
ticles with associated 4D-positions (3D space and time) for
the 1-month period, as described in Sect. 2.2.

The advective and diffusive components for the drift
model (Eq. 2) were determined using velocity vectors and
diffusivity coefficients (throughout the water column) ob-
tained from the NorKyst-800 hydrodynamic modeling sys-
tem. NorKyst-800 is based on the Regional Ocean Modeling
System (ROMS, Shchepetkin and McWilliams, 2005) frame-
work and is a terrain-following, free-surface, primitive equa-
tions model with 35 vertical layers and a horizontal resolu-
tion of 800 m (Albretsen et al., 2011). The model is eddy-
permitting and can resolve major fjord systems and other
coastal bathymetric features such as troughs. Vertical turbu-
lent exchange is computed using the General Length Scale
closure scheme (Umlauf and Burchard, 2003). OpenDrift has
an option to automatically check if diffusivity coefficients
are reasonable from a physical perspective, and we used a
non-zero fallback value of D = 0.2 m2 s−1 when OpenDrift
deemed the input data unphysical. OpenDrift did not exces-
sively use the fallback value, and from tests where we in-
creased and decreased the value, we found that the choice of
fallback value had negligible impact on the results.

We seeded 500 particles every time-step with a particle
lifetime of 4 weeks and simulated particle trajectories by
updating their positions every 5 min. The effect of vertical
mixing on the particle trajectory was modeled using a sub-
timestep of 30 s. We configured OpenDrift to store the parti-
cle positions every full hour during the simulation.

The initial particle mass was calculated using seabed gas
flux data and Eq. (3). To saturate the particle field prior to
the study period, the simulation was initiated on 20 April (1-
month spin-up time). With this setup, total particle mass in
the domain would increase in the first 10–15 d of the study
period due to the re-distribution of removed particle mass.
However, particle count would remain approximately con-
stant, with 3∼ 330 000 particles present at each time-step.

Due to the wide range in seep intensity and relatively
closely clustered seep positions (Fig. 7) combined with the
limitation of 500 release particles each time-step, we chose
to aggregate the seeps into two seeding locations to promote
smooth release profiles and reduce round-off effects. Group-
ing was done based on visual inspection of the seep posi-
tions (Fig. 3) and seed locations were calculated using the
flux-weighted average position of each group, given by:

r =

∑
g∈Gϒgrg∑
g∈Gϒg

, (27)

where G denotes the set of all seep indices included in the
seed position. The seed locations and their associated seeps
are indicated by matching colored triangles and dots in Fig.
3. The 500 particles were then distributed according to the
injection rate profiles for each seed location with a 1 m ver-
tical resolution, resulting in the profiles/histograms shown in
Fig. 8b.

3.3 Concentration and atmospheric flux estimation

Concentration and atmospheric fluxes were estimated on a
[i,j,k,n] grid with cell sizes 1λ= 800 m, 1z= 25 m, and
1t = 3600 s, covering the time period between 20 May and
20 June and geographical region between (12.5° E, 68.5° N),
(12.0° E, 72.1° N), (21° E, 72° N), and (20.1° E, 68.45° N).
Although particle data were technically available outside of
this region, we chose this boundary to avoid potential edge
effects in the hydrodynamic model and to constrain compu-
tation time. Kernel bandwidths were estimated for each cell
location in the 4D grid (each [i,j,k,n]) using a P ×P sized
adaptation grid where we determined P using an integral
length scale estimate of every 2D (i,j ) layer of the parti-
cle data. The size of P , typically varying between ∼ 7000
and ∼ 20 000 m, agreed reasonably well with observations
and theory on meso-scale eddy sizes in the region (Dugstad
et al., 2021). Boundary conditions were implemented as de-
scribed in Sect. 2.3.3 using [i,j ]-interpolated IBCAO v. 4
bathymetry data (Jakobsson et al., 2012). Spatiotemporal gas
transfer velocities κ̂[i,j,n] were estimated from grid inter-
polated ERA V reanalysis wind and sea surface temperature
data (Hersbach et al., 2023) which, together with the sur-
face layer concentration estimates φ̂[i,j,0,n], gave the at-
mospheric flux field estimates β̂[i,j,n] using Eq. (25).

Particle mass was adjusted at each time-step using the
mass modification terms (γ ) for atmospheric flux (Eq. 26)
and redistribution from removed particles (Eq. 5). We also
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added a mass modification term for microbial oxidation, a
crucial process when simulating the evolution of dissolved
CH4 content in the ocean (Appendix E). We used a simple
first order kinetics formula (Eq. E1), with the same rate co-
efficient kox = 3.6×10−7 s−1 as in the gas phase model (see
Appendix E and Fig. 6 for the determination of kox). Micro-
bial oxidation was then included by imposing a mass loss
γox = kox1t0ζ [n] at each time-step. In principle, this cor-
responds to discretization of Eq. (E1) using a standard first
order forward finite difference scheme. Mass modification of
any particle at any time step could then be calculated by sum-
ming up the three applied mass modification terms: (i) mass
loss to microbial oxidation, (ii) mass loss to the atmosphere
and (iii) mass gained from nearby removed particles.

3.4 Application results

The results from the gas phase modeling step is shown and
described in Sect. 3.1.2 and the dissolved concentrations, at-
mospheric flux and fate of CH4 molecules in the modeled do-
main in the following sections. Animations of the time vary-
ing 3D CH4 concentration field and 2D diffusive release field
are shown in Video S1 (https://doi.org/10.5446/69942, Døl-
ven, 2025c) and Video S2 (https://doi.org/10.5446/69941,
Dølven, 2025d), respectively. It is important to note that the
modeling results presented are subject to a wide range of rel-
atively uncertain assumptions concerning various model co-
efficients and that the main aim here is to test the modeling
framework and investigate the dynamics of the system, rather
than conclude about absolute values.

3.4.1 3D CH4 concentration field

The averaged distribution pattern of CH4 throughout the
study period is strongly affected by generally northeastward
currents that transports gas along the coast, following the
shelf and shelf break. The gas enters the more open fjord
systems, and to a lesser degree inner fjords. North of 70°
the CH4 plume disperses more, branching into a northward
plume leaving the coast and a coastal plume that keeps fol-
lowing the coastline. The concentration anomaly is gener-
ally small, around 2–4 orders of magnitude lower than typ-
ical oceanic CH4 background concentration values (∼ 3×
10−6 mol m−3, Fig. 9), due to the weak seabed release.

The 3D concentration field is very dynamic due to the en-
ergetic regional current regimes, and shows variability on
ranging from tidal (∼ 12 h) to fortnightly periods. A visual
representation of the temporal variability of the top 9 lay-
ers in the water column (down to 200 m depth) is shown in
Video S1.

Most of the CH4 is displaced upward relatively quickly
from the trough and pushed on top of the shelf break (Fig.
9). Vertical distribution of CH4 is therefore characterized by
a quick (a few days) shift from CH4 being mainly located
close to the seafloor at the release site (∼ 150–200 m depth)

to shallower depths (Fig. 10). A thorough analysis of mech-
anisms causing the rapid shift in location of CH4 is outside
the scope of this study, however, upwelling within troughs
and along the shelf break is well documented in this region
(e.g. Slagstad et al., 1999).

3.4.2 Diffusive CH4 flux to the atmosphere, microbial
oxidation and non-physical redistribution and
loss

The time-integrated 2D diffusive atmospheric CH4 release
over the study period is shown in Fig. 11 and the complete
time series can be found in Video S2. Within the model do-
main, most of the CH4 remains in the water column or is
consumed by microbes, with a total of∼ 0.76 % (∼ 528 mol)
being exchanged diffusively with the atmosphere. This diffu-
sive release is roughly three times greater than the local free
gas release (0.27 %) and does not account for any diffusive
release occurring outside of the model domain. The diffu-
sive flux extends across a broad area spanning several hun-
dred kilometers and shows pronounced temporal variability
that is strongly correlated with wind speed (Fig. 13a), al-
though no clear effect of surface water depletion is observed
after storm events. Microbial CH4 consumption exceeds at-
mospheric flux by a factor one to two orders of magnitude,
emphasizing its crucial role in regulating dissolved CH4 lev-
els (Fig. 13b). Loss from the domain due to particles leaving
the model domain is also substantial (∼ 5 to ∼ 50 times the
atmospheric loss) and shows clear tidal excursions patterns
with periodic variability (Fig. 13c). Non-physical methane
loss due to removed isolated particles (i.e. too far away to be
re-distribution) is on the same order of magnitude as loss to
the atmosphere via diffusive release (Fig. 13d).

3.4.3 Fate of released CH4

We analyzed the vertical redistribution and partitioning of
CH4 among available sinks within the model domain over
a four week period (the particle lifetime). This analysis is
important not only for evaluating CH4 molecules potential
to reach the atmosphere, but also in cases impacts on water
column and/or seafloor ecosystems are of interest. Excluding
removed particles and particles leaving the model domain,
the accumulated fractional water column CH4 loss due to at-
mospheric exchange shows an exponential increase the first
couple of days, with a subsequent near linear slope until the
end of the four week period. The initial rapid gradient in-
crease in atmospheric loss fraction corresponds to a verti-
cal redistribution of dissolved CH4, where the concentration
maximum shifts from∼ 200 to∼ 10 m depth (Fig. 10). After
four weeks, around 0.7 % of dissolved CH4 molecules had
been transferred to the atmosphere (Fig. 12a and b). Micro-
bial oxidation dominates over both atmospheric diffusive and
free-gas fluxes transforming 65 %, while around 34 % of the
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Figure 9. Nine depth layers of modification (i.e. the estimate φ̂ of the anomaly8′(x,y,z, t))) to the CH4 concentration on 1 May as indicated
on top of each panel. Typical background concentration in the ocean is∼ 3×10−6 mol m−3 for reference. The bathymetric boundary for the
different layers are delineated with a grey contourline.

CH4 remains in the water column at the end of the particle
lifetime.

3.4.4 Interpretation of results

Diffusive exchange of CH4 exceeds the local free gas release
and spreads over a large ocean region, making it almost im-
possible to detect and quantify using conventional measur-
ing instrument. This also poses a challenge for atmospheric
inversion models, since these are better at detecting point
sources rather than weak releases over large regions (Thomp-
son and Stohl, 2014). These limitations highlight the uncer-
tainty in quantifying the impact of seabed seepage on the at-
mospheric CH4 budget, particular when considering the po-
tential increased seepage in recent decades due to e.g. thaw-
ing marine permafrost, hydrate dissociation (e.g. Serov et al.,

2015; Ruppel and Kessler, 2017), and anthropogenic distur-
bances of the seafloor (e.g. drilling).

Although here, the estimated total atmospheric flux is
small, the impact of more extensive seepage (such as e.g.
Mau et al., 2017) could be significant and at the same time
difficult to observe and/or trace.

Even though the dissolved gas spreads out over cold water
coral reef areas, the CO2 generated by microbial oxidation
is likely too small to have any measurable effect on the lo-
cal ocean environment and cold water corals. This primarily
reflects the weak seabed fluxes. For more intense and/or lo-
calized seepage, e.g. a leaking gas well, this might not be the
case. It is also worth noting that the influence of seabed gas
seepage on cold-water coral ecosystems remains a sparsely
explored field of research.
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Figure 10. Fractional vertical distribution of CH4 in the water col-
umn 28 d after release. Color scale shows the fraction of total depth
integrated CH4 in the water column.

Figure 11. Modeled accumulated diffusive release of CH4 within
the model domain from the seeps between 20 May and 20 June
2018.

An additional major caveat, both regarding atmospheric
fluxes and potential impact on the ocean environment, is the
uncertainty caused by the microbial oxidation rate coefficient
kox assumption in methane oxidation rates (MOx), which
vary by several orders of magnitude and correspond to half-
lives for dissolved methane (or methane turnover) ranging
from 5 d to nearly 2 years (Fig. 6, Table E1). To examine
sensitivity to kox, we conducted a limited coefficient-sweep
experiment, rerunning the framework using the lowest and
highest reported “cold seep” rate coefficients from Table E1:
0.02×10−6 s−1 (low) and 0.98×10−6 s−1 (high) (Gründger
et al., 2021), as well as two intermediate values.

The low and high rate coefficient runs resulted in a∼ 34 %
increase (705 mol) and ∼ 41 % decrease (309 mol), respec-
tively, in atmospheric emissions during over the model do-

Figure 12. (a) Accumulated fractional loss to atmospheric ex-
change and microbial oxidation and fraction CH4 that remains in
the water column and (b) accumulated fractional loss to atmo-
spheric exchange and microbial oxidation in days after release.

main and particle lifetime. The impact on the final fate of
dissolved CH4 molecules were also considerable (Table 1).
After 4 weeks,∼ 5.5 % of dissolved CH4 were consumed and
1.16 % released to the atmosphere in the low rate coefficient
run, compared to ∼ 91 % consumed and 0.36 % released in
the high rate coefficient run. These results highlights the im-
portance of selecting a suitable MOx rate coefficient and il-
lustrates the huge span of results one can obtain when coeffi-
cients in the modeling framework are poorly constrained. It is
also important to note that since MOx is a biologically medi-
ated process, it can vary substantially on relatively small spa-
tiotemporal scales (Valentine et al., 2001; Ruff et al., 2015)
depending on a wide range of factors, including CH4 con-
centration, water temperature, salinity (Steinle et al., 2015;
Osudar et al., 2015), nutrient availability (Knief, 2015), and
the presence of trace elements (Hanson and Hanson, 1996).
Thus, assuming a constant rate coefficient is in itself a po-
tentially problematic simplification, since it will most likely
vary considerably across the model domain. One would, for
instance, expect MOx to decrease with the distance from
seep area due to rapid dilution of methane and varying envi-
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Figure 13. (a) Loss of CH4 from the water column from atmospheric equilibrium, (b) microbial oxidation, (c) particles leaving the model
domain and (d) mass loss due to deactivation of particles that are unable to redistribute its mass.

Table 1. Fate of CH4 4 weeks after it is dissolved in water using a
sweep of different microbial oxidation rate coefficients (kox).

kox (10−6 s−1) 0.02 0.18 0.36 0.67 0.98

MOx (%) 5.5 31.3 65.2 83.7 91.4
Atmospheric release (%) 1.2 1.1 0.7 0.5 0.36
Remains in WC (%) 93.3 67.6 34.1 15.8 8.2
Diffusive release (mol) 705 640 528 392 309

ronmental stress for the CH4 oxidizing microbes. To reduce
the uncertainty concerning MOx rates, future studies must
therefore not only constrain rate coefficients, but also im-
prove our ability to model MOx dynamics within modeling
frameworks. Including more complex MOx parametrizations
is possible in our framework since we allow explicit model-
ing of higher order fields at each time-step and location in the
modeling domain.

Another important source for uncertainty in the modeled
fate of CH4 arise from the atmospheric bulk model. The
atmospheric gas transfer coefficient function (Eq. 24) was
derived based on, and designed for global CO2 estimates
(Wanninkhof, 2014) and has an estimated uncertainty of
∼ 20 %, even for its intended use. We must expect consid-
erably higher uncertainties due to our application in a local
coastal region (as opposed to an ocean basin), where wind

speeds may exceed the validity range, and since the specific
coefficient Cκ has been determined solely for CO2.

Uncertainties in the eddy diffusivity, vertical transport and
distribution are also expected to be large. The choice of grid
cell thickness can also modify the end result. If the grid cells
are too thin, and temporal resolution too coarse, there is a
risk of depletion of the surface layer between the model out-
put time-steps. On the other hand, if the grid cells are too
thick, one would incorporate CH4 from depths where ex-
change with the atmosphere is unrealistic, thereby violating
the assumptions of the atmospheric exchange bulk model.
One can evaluate whether the surface thickness is sufficiently
thick by comparing typical values for Eq. (26) with the typi-
cal mass of surface layer particles and ensure that the atmo-
spheric loss is considerably smaller than the surface layer gas
content (i.e. that γα[n] � 0τ [n] always).

4 Conclusions

We implemented and applied a new framework for modeling
the impact of seabed gas seepage on spatiotemporal water
column concentrations and atmospheric gas exchange with
the ocean. The application uncovered and highlighted impor-
tant aspects of the dynamics regarding the fate of seeped gas
from the seabed, such as a highly distributed diffusive re-
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lease which considerably exceeds local free atmospheric gas
fluxes.

Estimation uncertainties arise from a relatively wide range
of sources which should be addressed in future studies. In
particular, mass loss due to microbial oxidation pose a sig-
nificant challenge since rate coefficients are shown to exhibit
large variability which cause considerable differences in the
modeled atmospheric fluxes and concentrations. Current pa-
rameterizations of mass loss due to atmospheric ventilation
are also simple and developed for large scale ocean regions,
not coastal areas. Our results are also sensitive to poorly re-
solved diffusivity coefficients, which can greatly affect the
water column distribution of dissolved gas. A steady state as-
sumption for the seepage itself might also be a problematic
assumption in areas where seepage is known to vary strongly
over time (e.g. Ferré et al., 2020).

From a pure modeling perspective, non-physical re-
distribution of dissolved gas is also a source for potential er-
ror and when estimating the final fate of gas, the limitation in
model domain size makes inference about final state difficult.
In cases where the aim is to estimate the final fate of released
gas, one could argue that it is more suitable to use a 1D ap-
proach, e.g. as suggested in Nordam et al. (2025). Using a
steady state solution of the gas phase model is also a draw-
back and might currently cause significant errors, especially
for intense seep sites where background gas concentrations
can be significantly altered.

On the other hand, the framework is flexible and reason-
ably fast and makes it possible to employ complex, locally
adapted existing hydrodynamic models and can include ad-
vanced process modules, thereby capturing not only ideal-
ized processes but also complex hydrodynamic and chem-
ical/biological phenomena. It has a wide range of poten-
tial applications, not only for monitoring known gas seeps,
but also for risk assessments concerning future potential in-
creased seepage due to e.g. hydrate thawing (James et al.,
2016), leaking gas wells, and integrity of subsea legacy car-
bon storage reservoirs (e.g. Torsæter et al., 2024) and other
leaking industrial installations. Certain studies also requires
a 3D spatiotemporal concentration field, e.g. when study-
ing the potential effect of seepage on biological processes
in a specific area. Aspects of the framework (e.g. the kernel
density estimator) can also be complementary to established
frameworks for post-processing and analysis of ocean parti-
cle dispersion data and contaminant spreading in the ocean in
general (e.g. the ChemicalDrift module, Aghito et al., 2023).

Aside from improving process and atmospheric exchange
modules, future developments should consider a full on-line
coupling between concentration model and gas phase model
as well as a proper validation study to ensure realistic results.

Appendix A: M2PG1 Model Grid Cell Dimensions

Here we propose a solution for determining a reasonable hor-
izontal model grid cell size assumption for M2PG1, as no
established method currently exist. Since M2PG1 assumes
horizontally invariant concentrations within the predefined
model domain, the choice of the horizontal model domain
size directly affects the concentration within the model grid
cells and, in turn, gas transfer and dissolution. Defining the
horizontal dimensions of the model grid cells must therefore
be done with care and should reflect the horizontal extent of
the modeled bubble plume to obtain realistic results. We de-
termine the horizontal and vertical gas phase model grid cell
area, respectively denoted AM and A⊥M, by modeling the
2-dimensional spread of the bubble cloud.

We assume that the seeps are point sources and that the
bubbles drift with a barotropic current with mean speed U
and random velocity fluctuations governed by a horizontal
diffusivity Dh. In this framework, horizontal bubble spread
is caused by (i) differences in accumulated horizontal dis-
placement resulting from varying rising speeds of bubbles
with different sizes (slow/fast bubbles spend more/less time
in the velocity field) and (ii) turbulent (random) effects in the
horizontal flow, modeled as diffusion. The horizontal extent
of the bubble plume increases towards the sea surface and
we use the estimated spread at half of the total water column
depthH to minimize estimation errors at the surface/bottom.

The spread due to differences in rising speed can be es-
timated using the probability density P for bubble rising
speeds wo in the bubble cloud. The distribution of rising
speeds for bubbles in the bubble cloud can be described by
the discrete probability P [wo], and can be derived from the
chosen initial discrete bubble size distribution (BSD) and
bubble rising speed model. This is done by estimating the
bubble rising speed of all bubbles in the BSD and re-bin the
results, using the fractional weights from the BSD, according
to bubble sizes. We obtain the weighted distribution average
and standard deviation as

〈w〉 =

∑
owoP [wo]∑
oP [wo]

and

σw =

√∑
o(wo−〈w〉)

2P [wo]∑
oP [wo]

, (A1)

wherewo are discrete rising speeds, P [wo] associated proba-
bilities, 〈w〉 the weighted average, and σw weighted the stan-
dard deviation (see Fig. 5 for an example). Note that the
BSD is expected to change with height above the seafloor
(which also changes P [wo]). For the purpose of this calcula-
tion, however, we assume the BSD remains unchanged.

Along-flow spread 1xrs can then be expressed as

1xrs = U1tmax, where

1tmax =
H

2

[
1

〈w〉− σw
−

1
〈w〉+ σw

]
. (A2)
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Horizontal displacement due to current diffusivity acts in
both along-flow (x) and cross-flow (y) direction and can be
expressed by the 2D Gaussian solution to the diffusion equa-
tion for a point source,

p(x,y, t)=
1

√
4πDht

e−(x
2
+y2)/4Dht , (A3)

where p(x,y, t) is the normalized count of bubbles at posi-
tion (x,y) and time t and 4Dht is the variance of the spread
in both directions. We constrain diffusive spread using twice
the standard deviation 2σD of the distribution at H =H/2
given by

1xD =1yD = 2
√

2Dh ·
√

0.5tH where tH =
H

〈w〉
. (A4)

and

AM = (1xrs +1xD)1yD (A5)

giving horizontal grid cell side lengths of
√
AM (since

M2PG1 uses square cells).
An estimate of the vertical grid cell area, which is needed

to estimate dissolved gas injection profiles is easily obtained
and defined as

A⊥M =
√
AM1zM, (A6)

where zM is the vertical grid cell size.

Appendix B: The histogram estimator

A commonly used density estimator based on data from par-
ticle dispersion models is the histogram estimator. The his-
togram estimator for the concentration estimate φ̂ at position
r0 using a predefined grid with grid cell volume V can be
expressed as

φ̂(r0)=
1
V

Z∑
ζ=1

0ζK(r0,ηζ ), (B1)

where 0ζ and ηζ represent the mass and positions (respec-
tively) of particles, and

K(r0,ηζ )=


1 when ηζ shares the same

grid cell as r0,

0 otherwise.

(B2)

Using the histogram estimator implies modeling a smooth,
continuously distributed property with a discontinuous,
quantized, and piece-wise constant function, which intro-
duces several drawbacks with this estimator-property pair-
ing. Firstly, the estimator is highly dependent on the choice
of grid cell size: fine grids result in noisy and unrealistic es-
timates in regions with medium to low particle counts, while

coarse grids lead to significant loss of information in areas
with high particle counts. Secondly, the histogram estimator
can be sensitive to the chosen position of the origin. In ad-
dition, the minimum concentration estimate is limited to one
particle per grid cell, which can significantly influence e.g.
atmospheric flux estimates (for instance if that concentration
exceeds the atmospheric background concentration).

Some of these issues can be mitigated by adjusting the grid
cell size, however, the problems prevail in highly heteroge-
neous domains containing regions with low particle satura-
tion (unless one adobts an unstructured grid). Seeding more
particles is always a remedy, however, we are still left with
inefficient use of the particle position data and potentially
unfeasible computational complexity (see Sect. 2.2.2). We
have therefore formulated an adaptive bandwidth, 2D grid-
projected Kernel Density Estimator (KDE) specifically for
OpenDrift output data to calculate the concentration field.

Appendix C: Density estimator testing and validation

The adaptive kernel density estimator was developed, tested,
and compared with other estimators using a numerical toy
model that generates data resembling typical OpenDrift data.
The toy model gives full control of all parameters and allows
to efficiently test various scenarios due to the low computa-
tional cost of each run. Here we compare the adaptive band-
width KDE against other estimators as explained below.

C1 Toy model and test simulation

The synthetic data was designed to mimic output data from
OpenDrift by seeding particles at seed location r0 and calcu-
lating their position at time step T (at time T1t) as

rT = r0+

T−1∑
ϑ=0

(
Uϑ1t + ξϑ

√
2D1t

)
, (C1)

where Uϑ = [uϑ ,vϑ ] represents a spatially uniform, time
varying velocity field, ϑ = 0,1,2,3, . . .,T and 1t is the
modeling time-step, ξϑ = [ξϑ,x,ξϑ,y] where each component
is sampled from a standard normal distribution N (0,1) and
D represents a diffusivity coefficient (assuming isotropy).
The velocity Uϑ was calculated as

Uϑ =
U0+4ϑ

‖U0+4ϑ‖
‖U0‖ (C2)

where U0 = (u0,v0) gives the initial velocity, 4ϑ =

(sin[ ϑ50 ]u0,v0) and || · || gives the euclidean norm. The nor-
malization with ‖U0‖ is necessary to ensure conservation
of mass in the field. We choose U0 = (0.1,0) and D = 0.14
and released a total of 2× 106 particles from a point source
at r0 = (10,10) over the course of 400 timesteps. The his-
togram density estimate (Eq. B1) of the full simulation was
considered the simulation “Ground-truth” and is shown in
Fig. C1. The computation time for generating the test data
was 8.3 s with a Intel Core Ultra 9 185H processor.
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Figure C1. Left: Synthetically generated particle dispersion model data for 2× 106 particles (purple) and randomly picked “test data” of
2000 particles (green dots) in a domain with a simple “impermissible” elliptic boundary. Right: Histogram estimate of the full 2×106 particle
dataset, representing the “ground truth” in the test scenario for the adaptive kernel density estimator.

Figure C2. Density estimates using the test dataset (N = 2000, green dots in Fig. C1) using, from left to right, a histogram estimator,
a Silverman (non-adaptive) bandwidth estimator from the scipy.kde package, a Time-dependent bandwidth kernel density estimator
(TKDE) with boundary control, and the Adaptive bandwidth kernel density estimator (AKDE) developed here. The upper panel figures show
the density estimates and the lower panel figures the residuals from the ground truth estimate shown in Fig. C1. The impermissible region
(land/bathymetry) is shaded in grey.

C2 Testing and evaluation of different estimators

We implemented and tested four estimators (i) The his-
togram estimator, (ii) An Time-dependent bandwidth esti-
mator, (iii) The Silverman bandwidth estimator from the
gaussian_kde function from the scipy.kde python
package, and (iv) The adaptive bandwidth estimator used in
the present study. All estimators were tested on a data set
where we picked every 1000th particle from the full data set
of 2×106 resulting in a total of 2000 particles for density es-
timation. All estimates were done grid-projected as described
in Sect. 2.3.1 and for the final time-step only and all particles
had a mass of 1.

For the histogram estimator estimate, we used Eq. (B1)
and for the time-varying bandwidth estimator, we defined the
bandwidth as

htv =
√

4Dtϑ (C3)

which is the theoretically ideal bandwidth for the time-
varying estimate. In a real-world scenario, the diffusion co-
efficient varies and we cannot estimate the correct diffu-
sion coefficient unless information about the local diffusiv-
ity is given from the hydrodynamic model. Although the
bandwidth function could be suitable when such informa-
tion is available, complex bathymetry may introduce chal-
lenges as discussed below. For the estimate using the pro-
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vided scipy.kde.gaussian_kde, we used default set-
tings and the bw_method='silverman' setting (SciPy
Community, 2024). We refer to the package documenta-
tion for details (URL in the reference list). For the adaptive
bandwidth estimator, we followed the algorithm described
in Sect. 2.3.2 and estimated h locally for each particle-
containing grid cell. For the “in-house” coded estimators (all
but scipy.kde.gaussian) we included the boundary
control explained in Sect. 2.3.3.

A comparison of the four estimators and a residual anal-
ysis plot are shown in Fig. C2. In addition to a visual com-
parison, we evaluate how the max values in the field aligns
and do a simple R2 statistic. The Histogram estimator gives
a noisy result, with a very high max value of 9000 com-
pared to 5672 for the ground truth and a low R2

= 0.53.
The the non-adaptive Silverman results in an unrealistically
smooth estimate, with a very low maximum value of 927 and
low R2

= 0.59. While the time varying bandwidth estima-
tor works relatively well in the open “unbounded” part of
the domain, it over-smooths when encountering the bound-
ary – highlighting a problem with time varying bandwidth in
bounded domains where the stochastic process is limited by
physical obstacles. Nonetheless, it performs better than the
non-adaptive Silverman and Histogram estimators, achiev-
ing an R2

= 0.71. The adaptive bandwidth estimator is in
general slightly over-smooth, however, it significantly out-
performs the three other estimators with a maximum value
of 4531, which is the closest to the ground truth of 5672 and
has a high R2

= 0.90 (Fig. C2).
The total computation time for doing all the KDE esti-

mates (including the kernel adaptation) were less than 1 sec-
ond with a Intel Core Ultra 9 185H processor, and the adap-
tive kernel density estimator was only slightly slower than
the gaussian_kde function from the scipy.kde pack-
age (both ≤ 10−3). A simple comparative performance study
as well as script for further testing and evaluation of the adap-
tive kernel density estimator and the estimators used for com-
parison is available in (Dølven and Hanssen, 2025) and corre-
sponding GitHub repository (https://github.com/KnutOlaD/
akd_estimator/releases/tag/v1.2.0, last access: 12 November
2025).

Appendix D: Rising speed model and flatness
parametrization

It is well-known that the terminal bubble rise velocity Ub
varies non-linearly with the bubble size (e.g., Fan and
Tsuchiya, 1990; Leifer and Patro, 2002). In addition, it de-
pends on fluid and gas parameters, and the degree of con-
tamination. Fan and Tsuchiya (1990, Eq. 2.11) showed that
the terminal bubble rise velocity can be written as

Ub =
(
U−cb1 +U

−c
b2
)−1/c

, (D1)

where Ub1 dominates for small bubbles, and Ub2 dominates
for large bubbles. The dimensionless parameter c (called n
in Fan and Tsuchiya, 1990 and d in Leifer and Patro, 2002)
is a measure of the degree of contamination, which directly
affects the surface tension of the bubbles. By fitting Eq. (D1)
to multiple experimental data sets, Fan and Tsuchiya (1990)
found that 0.8≤ c ≤ 1.6, where the lower limit corresponds
to contaminated bubbles, and the upper limits corresponds
to clean bubbles. We follow their recommendation, and ap-
ply c = 1.2 for our assumed moderately contaminated condi-
tions, see Fig. 4b and Jansson et al. (2019) for further details.

Bubble deformation is an important factor in bubble disso-
lution and exchange rates of gas since it changes the surface
area to volume ratio of the bubbles. Deformation can be char-
acterized by a dimensionless flatness ratio, defined as f ≡
a/b. In addition to spherical flatness, two parametrization
options are available in M2PG1: Leblond flatness (Leblond
et al., 2014), where f = 0.45+ 1.4ln(a/bref) for a > 1.48
and Jansson flatness (Jansson et al., 2019), where f = 1+
0.3064(a/bref) (coined here, referred to as “linear flatness” in
Jansson et al. (2019) and bref = 1 mm. While Jansson flatness
parametrization has support for bubbles where a < 1.48 mm,
it lacks an empirical basis other than a fair agreement with
Leblond for relatively small bubbles. The divergence be-
tween the two models at larger bubble sizes (Fig. 4c) can lead
to misrepresentations when modeling distributions that are
skewed towards larger bubbles. Nonetheless, we use Jansson
flatness parametrization since here our observations indicate
that most of the gas is confined to smaller bubble sizes (Ferré
et al., 2024).

Appendix E: Brief review of existing estimates of MOx
rate coefficients

Oxidation of CH4 to carbon dioxide is achieved by sev-
eral groups of aerobic methanotrophs and reaction rates
vary substantially, depending on existing microbial consor-
tia, stoichiometry of the involving nutrients, and overall suc-
cession of the methanotrophs (Hanson and Hanson, 1996).
Nonetheless, reaction rate measurements with radiotracer as-
says highlight first-order reaction kinetics and a CH4 decay
rate following

dφ(t)
dt
=−koxφ(t) ⇒ φ(t)= φ0e

−koxt (E1)

where kox is the reaction rate and φ0 = φ(0) the initial con-
centration. Most measurements of microbial CH4 oxidation
(MOx) in marine environments are focused on locations
where CH4 concentrations exceed the background levels.
The rates of CH4 oxidation in suboxic zones, hydrothermal
vents, and cold seeps exhibit substantial variability, spanning
several orders of magnitude from 10−8 to 10−2 nM s−1, pri-
marily due to spatiotemporal fluctuations in CH4 concentra-
tions. In contrast, half-life or CH4 oxidation rate constants
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(kox) are independent of CH4 concentration and provide a
more accurate representation of the water column’s MOx ca-
pacity. The rate coefficients (kox) range from 0.02× 10−6 to
1.74× 10−6 s−1, corresponding to halving times of approxi-
mately five days to two years. However, CH4 can remain sta-
ble for decades in oxygen-limited environments where aero-
bic CH4 oxidation is inhibited.

Table E1. Methane Oxidation Rate Coefficients (kox) in units of 10−6 s−1 (µHz) from various studies. We have obtained the maximum kox
reported in the studies unless ranges are given. Half-lives are calculated by solving for φ(t0.5)= 0.5φ0 in Eq. (E1), i.e. t0.5 = ln(2)/kox. In
Gründker et al. (2021) only May data was included from 2016 and the difference in turnover time between 2016 and 2017 is because the
maximum rate coefficient was 1.85× 10−8 s−1 in 2016 and 2.01× 10−8 s−1 in 2017, but this difference is rounded off in the table.

Location Temp (°C) φ (nM) kox 10−6 s−1 t0.5 (days) Reference

Oxic/anoxic interface

Cariaco Trench, Caribbean Sea – < 12 100 0.03 277 Ward et al. (1987)
Saanich Inlet, British Columbia 9 < 1580 0.02 535 Ward et al. (1989)
Eastern Tropical North Pacific – 19 0.10 77 Pack et al. (2015)

Hydrothermal plume

Juan De Fuca v. – < 390 1.74 5 de de Angelis et al. (1993)

Man-made accidents

Deepwater Horizon, Gulf of Mexico −0 < 183 000 0.73 11 Valentine et al. (2010)
North Sea gas blowout 10 < 42 097 0.41 20 Steinle et al. (2016)

Seep environment

Cape Lookout Bight, North Carolina 23–27 < 740 0.08 107 Sansone and Martens (1978)
Santa Barbara Channel, California 5–16 < 1900 0.09 93 Mau et al. (2012)
Boknis Eck, Baltic Sea 1–3 300–466 0.50 16 Steinle et al. (2017)
South China Sea 2–5 < 1000 0.04 229 Mau et al. (2020)
Hudson Canyon, US Atlantic – < 335 0.93 9 Weinstein et al. (2016)
Elson Lagoon, Alaska −1.8 <53.8 0.12 69 Uhlig et al. (2018)

Cold seeps – Svalbard Continental margin

Norskebanken 4.7 < 83.1 0.06 125 Sert et al. (2023)
Hinlopen Trough 3.5 < 874 0.23 35 De de Groot et al. (2024)
Prins Karl Forland (2015) ∼ 3 < 334 0.98 8 Gründger et al. (2021)
Prins Karl Forland (2016) ∼ 1.5 < 437 0.02 433 Gründger et al. (2021)
Prins Karl Forland (2017) ∼ 3 < 262 0.02 385 Gründger et al. (2021)
Prins Karl Forland 1.6–4.8 < 524 0.21 38 Gentz et al. (2014)
Hornsundbanken > 3 < 878 0.41 20 Mau et al. (2017)
Isfjordenbanken > 3 < 100 0.62 13 Mau et al. (2017)
Storfjordrenna −0.5 < 82 0.22 36 Sert et al. (2020)
Storfjorden −1.5 < 72.3 0.35 23 Mau et al. (2013)
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Code and data availability. Code for creating input data to
and output data from M2PG1 as well as running the model
in batch for multiple seeps is freely available at DOI:
https://doi.org/10.5281/zenodo.15042452 (Dølven, 2025a)
or GitHub (https://github.com/KnutOlaD/M2PG1_functions/
releases/tag/v1.0.0, last access: 12 November 2025). The
adaptive kernel density estimator and testing of the adap-
tive kernel density estimator can be accessed at DOI:
https://doi.org/10.5281/zenodo.17588979 (Dølven and Hanssen,
2025) or GitHub (https://github.com/KnutOlaD/akd_estimator/
releases/tag/v1.2.1, last access: 12 November 2025) and the
code for the whole framework, as well as seed profiles, in-
cluding the code used for running OpenDrift can be accessed
at DOI: https://doi.org/10.5281/zenodo.17350322 (Dølven and
Espenes, 2025a) or at GitHub (https://github.com/KnutOlaD/
Methane_concentration_modelling/releases/tag/v1.0.1, last
access: 12 November 2025). The particle position output
data from the OpenDrift model run can be accessed at DOI:
https://doi.org/10.5281/zenodo.15042308 (Dølven and Espenes,
2025b).

Video supplement. Video S1 can be accessed at DOI:
https://doi.org/10.5446/69942 (Dølven, 2025c) and Video S2
can be accessed at DOI: https://doi.org/10.5446/69941 (Dølven,
2025d).
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