Articles | Volume 21, issue 5
https://doi.org/10.5194/os-21-2555-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/os-21-2555-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Forcing-dependent submesoscale variability and subduction in a coastal sea area (Gulf of Finland, Baltic Sea)
Department of Marine Systems, Tallinn University of Technology, Tallinn, Estonia
Germo Väli
Department of Marine Systems, Tallinn University of Technology, Tallinn, Estonia
Taavi Liblik
Department of Marine Systems, Tallinn University of Technology, Tallinn, Estonia
Urmas Lips
Department of Marine Systems, Tallinn University of Technology, Tallinn, Estonia
Related authors
Taavi Liblik, Germo Väli, Kai Salm, Jaan Laanemets, Madis-Jaak Lilover, and Urmas Lips
Ocean Sci., 18, 857–879, https://doi.org/10.5194/os-18-857-2022, https://doi.org/10.5194/os-18-857-2022, 2022
Short summary
Short summary
An extensive measurement campaign and numerical simulations were conducted in the central Baltic Sea. The persistent circulation patterns were detected in steady weather conditions. The patterns included various circulation features. A coastal boundary current was observed along the eastern coast. The deep layer current towards the north was detected as well. This current is an important deeper limb of the overturning circulation of the Baltic Sea. The circulation regime has an annual cycle.
Silvie Lainela, Erik Jacobs, Stella-Theresa Luik, Gregor Rehder, and Urmas Lips
Biogeosciences, 21, 4495–4519, https://doi.org/10.5194/bg-21-4495-2024, https://doi.org/10.5194/bg-21-4495-2024, 2024
Short summary
Short summary
We evaluate the variability of carbon dioxide and methane in the surface layer of the north-eastern basins of the Baltic Sea in 2018. We show that the shallower coastal areas have considerably higher spatial variability and seasonal amplitude of surface layer pCO2 and cCH4 than measured in the offshore areas of the Baltic Sea. Despite this high variability, caused mostly by coastal physical processes, the average annual air–sea CO2 fluxes differed only marginally between the sub-basins.
Taavi Liblik, Daniel Rak, Enriko Siht, Germo Väli, Johannes Karstensen, Laura Tuomi, Louise C. Biddle, Madis-Jaak Lilover, Māris Skudra, Michael Naumann, Urmas Lips, and Volker Mohrholz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2272, https://doi.org/10.5194/egusphere-2024-2272, 2024
Preprint archived
Short summary
Short summary
Eight current meters were deployed to the seafloor across the Baltic to enhance knowledge about circulation and currents. The experiment was complemented by autonomous vehicles. Stable circulation patterns were observed at the sea when weather was steady. Strong and quite persistent currents were observed at the key passage for the deep-water renewal of the Northern Baltic Sea. Deep water renewal mostly occurs during spring and summer periods in the northern Baltic Sea.
Matthias Gröger, Manja Placke, H. E. Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022, https://doi.org/10.5194/gmd-15-8613-2022, 2022
Short summary
Short summary
Comparisons of oceanographic climate data from different models often suffer from different model setups, forcing fields, and output of variables. This paper provides a protocol to harmonize these elements to set up multidecadal simulations for the Baltic Sea, a marginal sea in Europe. First results are shown from six different model simulations from four different model platforms. Topical studies for upwelling, marine heat waves, and stratification are also assessed.
Stella-Theresa Stoicescu, Jaan Laanemets, Taavi Liblik, Māris Skudra, Oliver Samlas, Inga Lips, and Urmas Lips
Biogeosciences, 19, 2903–2920, https://doi.org/10.5194/bg-19-2903-2022, https://doi.org/10.5194/bg-19-2903-2022, 2022
Short summary
Short summary
Coastal basins with high input of nutrients often suffer from oxygen deficiency. In summer 2018, the extent of oxygen depletion was exceptional in the Gulf of Riga. We analyzed observational data and found that extensive oxygen deficiency appeared since the water layer close to the seabed, where oxygen is consumed, was separated from the surface layer. The problem worsens if similar conditions restricting vertical transport of oxygen occur more frequently in the future.
Taavi Liblik, Germo Väli, Kai Salm, Jaan Laanemets, Madis-Jaak Lilover, and Urmas Lips
Ocean Sci., 18, 857–879, https://doi.org/10.5194/os-18-857-2022, https://doi.org/10.5194/os-18-857-2022, 2022
Short summary
Short summary
An extensive measurement campaign and numerical simulations were conducted in the central Baltic Sea. The persistent circulation patterns were detected in steady weather conditions. The patterns included various circulation features. A coastal boundary current was observed along the eastern coast. The deep layer current towards the north was detected as well. This current is an important deeper limb of the overturning circulation of the Baltic Sea. The circulation regime has an annual cycle.
Andreas Lehmann, Kai Myrberg, Piia Post, Irina Chubarenko, Inga Dailidiene, Hans-Harald Hinrichsen, Karin Hüssy, Taavi Liblik, H. E. Markus Meier, Urmas Lips, and Tatiana Bukanova
Earth Syst. Dynam., 13, 373–392, https://doi.org/10.5194/esd-13-373-2022, https://doi.org/10.5194/esd-13-373-2022, 2022
Short summary
Short summary
The salinity in the Baltic Sea is not only an important topic for physical oceanography as such, but it also integrates the complete water and energy cycle. It is a primary external driver controlling ecosystem dynamics of the Baltic Sea. The long-term dynamics are controlled by river runoff, net precipitation, and the water mass exchange between the North Sea and Baltic Sea. On shorter timescales, the ephemeral atmospheric conditions drive a very complex and highly variable salinity regime.
Taavi Liblik, Germo Väli, Inga Lips, Madis-Jaak Lilover, Villu Kikas, and Jaan Laanemets
Ocean Sci., 16, 1475–1490, https://doi.org/10.5194/os-16-1475-2020, https://doi.org/10.5194/os-16-1475-2020, 2020
Short summary
Short summary
The upper mixed layer, shallower than the depth of the euphotic zone, is one of the preconditions for enhanced primary production in the ocean. In the Baltic Sea, the general understanding is that the upper mixed layer is much deeper in winter. In this study, we demonstrate that wintertime shallow stratification and an elevated phytoplankton biomass proxy, chlorophyll, are common in the Gulf of Finland. Stratification is invoked by the westward flow of riverine water forced by an easterly wind.
Cited articles
Alenius, P., Nekrasov, A., and Myrberg, K.: Variability of the baroclinic Rossby radius in the Gulf of Finland, Cont. Shelf Res., 23, 563–573, https://doi.org/10.1016/S0278-4343(03)00004-9, 2003.
Archer, M., Schaeffer, A., Keating, S., Roughan, M., Holmes, R., and Siegelman, L.: Observations of submesoscale variability and frontal subduction within the mesoscale eddy field of the Tasman Sea, J. Phys. Oceanogr., 50, 1509–1529, https://doi.org/10.1175/JPO-D-19-0131.1, 2020.
Boccaletti, G., Ferrari, R., and Fox-Kemper, B.: Mixed layer instabilities and restratification, J. Phys. Oceanogr., 37, 2228–2250, https://doi.org/10.1175/JPO3101.1, 2007.
Bosse, A., Testor, P., Damien, P., Estournel, C., Marsaleix, P., Mortier, L., Prieur, L., and Taillandier, V.: Wind-forced submesoscale symmetric instability around deep convection in the Northwestern Mediterranean Sea, Fluids, 6, 123, https://doi.org/10.3390/fluids6030123, 2021.
Burchard, H. and Bolding, K.: Comparative analysis of four second-moment turbulence closure models for the oceanic mixed layer, J. Phys. Oceanogr., 31, 1943–1968, https://doi.org/10.1175/1520-0485(2001)031<1943:CAOFSM>2.0.CO;2, 2001.
Burchard, H. and Bolding, K.: GETM – a general estuarine transport model, Scientific Documentation, Tech. Rep., EUR 20253 EN, Tech. Rep. European Commission, Ispra, Italy, https://op.europa.eu/en/publication-detail/-/publication/5506bf19-e076-4d4b-8648-dedd06efbb38 (last access: 1 October 2025), 2002.
Canuto, V. M., Howard, A., Cheng, Y., and Dubovikov, M. S.: Ocean turbulence. Part I: One-point closure model-momentum and heat vertical diffusivities, J. Phys. Oceanogr., 31, 1413–1426, https://doi.org/10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2, 2001.
Capet, X., McWilliams, J. C., Molemaker, M. J., and Shchepetkin, A. F.: Mesoscale to submesoscale transition in the California Current system. Part III: Energy balance and flux, J. Phys. Oceanogr., 38, 2256–2269, https://doi.org/10.1175/2008JPO3810.1, 2008.
Capo, E., McWilliams, J. C., and Jagannathan, A.: Flow-topography interaction along the Spanish slope in the Alboran Sea: Vorticity generation and connection to interior fronts, J. Geophys. Res.-Oceans, 128, e2022JC019480, https://doi.org/10.1029/2022JC019480, 2023.
Carpenter, J. R., Rodrigues, A., Schultze, L. K. P., Merckelbach, L. M., Suzuki, N., Baschek, B., and Umlauf, L.: Shear instability and turbulence within a submesoscale front following a storm, Geophys. Res. Lett., 47, https://doi.org/10.1029/2020GL090365, 2020.
Chrysagi, E., Umlauf, L., Holtermann, P., Klingbeil, K., and Burchard, H.: High-resolution simulations of submesoscale processes in the Baltic Sea: The role of storm events, J. Geophys. Res.-Oceans, 126, https://doi.org/10.1029/2020JC016411, 2021.
Dove, L. A., Thompson, A. F., Balwada, D., and Gray, A. R.: Observational evidence of ventilation hotspots in the Southern Ocean, J. Geophys. Res.-Oceans, 126, https://doi.org/10.1029/2021JC017178, 2021.
du Plessis, M., Swart, S., Ansorge, I. J., and Mahadevan, A.: Submesoscale processes promote seasonal restratification in the Subantarctic Ocean, J. Geophys. Res.-Oceans, 122, 2960–2975, https://doi.org/10.1002/2016JC012494, 2017.
Elken, J., Nõmm, M., and Lagemaa, P.: Circulation patterns in the Gulf of Finland derived from the EOF analysis of model results, Boreal Environ. Res., 16, 84–102, 2011.
Gräwe, U., Holtermann, P., Klingbeil, K., and Burchard, H.: Advantages of vertically adaptive coordinates in numerical models of stratified shelf seas, Ocean Model., 92, 56–68, https://doi.org/10.1016/j.ocemod.2015.05.008, 2015.
Gröger, M., Placke, M., Meier, H. E. M., Börgel, F., Brunnabend, S. E., Dutheil, C., Gräwe, U., Hieronymus, M., Neumann, T., Radtke, H., Schimanke, S., Su, J., and Väli, G.: The Baltic Sea Model Intercomparison Project (BMIP) – a platform for model development, evaluation, and uncertainty assessment, Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022, 2022.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hofmann, Z., von Appen, W.-J., Kanzow, T., Becker, H., Hagemann, J., Hufnagel, L., and Iversen, M. H.: Stepwise subduction observed at a front in the marginal ice zone in Fram Strait, J. Geophys. Res.-Oceans, 129, e2023JC020641, https://doi.org/10.1029/2023JC020641, 2024.
Hofmeister, R., Burchard, H., and Beckers, J. M.: Non-uniform adaptive vertical grids for 3D numerical ocean models, Ocean Model., 33, 70–86, https://doi.org/10.1016/j.ocemod.2009.12.003, 2010.
Hordoir, R., Axell, L., Höglund, A., Dieterich, C., Fransner, F., Gröger, M., Liu, Y., Pemberton, P., Schimanke, S., Andersson, H., Ljungemyr, P., Nygren, P., Falahat, S., Nord, A., Jönsson, A., Lake, I., Döös, K., Hieronymus, M., Dietze, H., Löptien, U., Kuznetsov, I., Westerlund, A., Tuomi, L., and Haapala, J.: Nemo-Nordic 1.0: a NEMO-based ocean model for the Baltic and North seas – research and operational applications, Geosci. Model Dev., 12, 363–386, https://doi.org/10.5194/gmd-12-363-2019, 2019.
Hosegood, P. J., Nightingale, P. D., Rees, A. P., Widdicombe, C. E., Woodward, E. M. S., Clark, D. R., and Torres, R. J.: Nutrient pumping by submesoscale circulations in the mauritanian upwelling system, Prog. Oceanogr., 159, 223–236, https://doi.org/10.1016/j.pocean.2017.10.004, 2017.
Jaeger, G. S., Mackinnon, J. A., Lucas, A. J., Shroyer, E., Nash, J., Tandon, A., Farrar, J. T., and Mahadevan, A.: How spice is stirred in the Bay of Bengal, J. Phys. Oceanogr., 50, 2669–2688, https://doi.org/10.1175/JPO-D-19-0077.s1, 2020.
Jhugroo, K., O'Callaghan, J., Stevens, C. L., Macdonald, H. S., Elliott, F., and Hadfield, M. G.: Spatial Structure of Low Salinity Submesoscale Features and Their Interactions With a Coastal Current, Front. Mar. Sci., 7, 557360, https://doi.org/10.3389/fmars.2020.557360, 2020.
Kikas, V. and Lips, U.: Upwelling characteristics in the Gulf of Finland (Baltic Sea) as revealed by Ferrybox measurements in 2007–2013, Ocean Sci., 12, 843–859, https://doi.org/10.5194/os-12-843-2016, 2016.
Klingbeil, K., Lemarié, F., Debreu, L., and Burchard, H.: The numerics of hydrostatic structured-grid coastal ocean models: State of the art and future perspectives, Ocean Model., 125, 80–105, https://doi.org/10.1016/j.ocemod.2018.01.007, 2018.
Klymak, J. M., Crawford, W., Alford, M. H., Mackinnon, J. A., and Pinkel, R.: Along-isopycnal variability of spice in the North Pacific, J. Geophys. Res.-Oceans, 120, 2287–2307, https://doi.org/10.1002/2013JC009421, 2015.
Kondo, J.: Air-sea bulk transfer coefficients in diabatic conditions, Bound.-Lay. Meteorol., 9, 91–112, https://doi.org/10.1007/BF00232256, 1975.
Krauss, W. and Brügge, B.: Wind-produced water exchange between the deep basins of the Baltic Sea, J. Phys. Oceanogr., 21, 373–384, https://doi.org/10.1175/1520-0485(1991)021<0373:WPWEBT>2.0.CO;2, 1991.
Lavrova, O. Y., Krayushkin, E. V., Strochkov, A. Y., and Nazirova, K. R.: Vortex structures in the Southeastern Baltic Sea: satellite observations and concurrent measurements, Proceedings Volume 10784, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, 2018, 1078404, https://doi.org/10.1117/12.2325463, 2018.
Lehmann, A., Myrberg, K., and Höflich, K.: A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990–2009, Oceanologia, 54, 369–393, https://doi.org/10.5697/oc.54-3.369, 2012.
Liblik, T. and Lips, U.: Variability of pycnoclines in a three-layer, large estuary: the Gulf of Finland, Boreal Environ. Res., 22, 27–47, 2017.
Liblik, T., Väli, G., Lips, I., Lilover, M. J., Kikas, V., and Laanemets, J.: The winter stratification phenomenon and its consequences in the Gulf of Finland, Baltic Sea, Ocean Sci., 16, 1475–1490, https://doi.org/10.5194/os-16-1475-2020, 2020.
Liblik, T., Väli, G., Salm, K., Laanemets, J., Lilover, M. J., and Lips, U.: Quasi-steady circulation regimes in the Baltic Sea, Ocean Sci., 18, 857–879, https://doi.org/10.5194/os-18-857-2022, 2022.
Lilover, M. J., Elken, J., Suhhova, I., and Liblik, T.: Observed flow variability along the thalweg, and on the coastal slopes of the Gulf of Finland, Baltic Sea, Estuar. Coast. Shelf Sci., 195, 23–33, https://doi.org/10.1016/j.ecss.2016.11.002, 2017.
Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., and Arheimer, B.: Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales, Hydrol. Res., 41, 295–319, https://doi.org/10.2166/nh.2010.007, 2010.
Lips, I., Lips, U., and Liblik, T: Consequences of coastal upwelling events on physical and chemical patterns in the central Gulf of Finland (Baltic Sea), Cont. Shelf Res., 29, 1836–1847, https://doi.org/10.1016/j.csr.2009.06.010, 2009.
Lips, I., Rünk, N., Kikas, V., Meerits, A., and Lips, U.: High-resolution dynamics of the spring bloom in the Gulf of Finland of the Baltic Sea, J. Mar. Syst., 129, 135–149, https://doi.org/10.1016/j.jmarsys.2013.06.002, 2014.
Lips, U., Lips, I., Liblik, T., and Kuvaldina, N.: Processes responsible for the formation and maintenance of sub-surface chlorophyll maxima in the Gulf of Finland, Estuar. Coast. Shelf Sci., 88, 339–349, https://doi.org/10.1016/j.ecss.2010.04.015, 2010.
Lips, U., Lips, I., Liblik, T., Kikas, V., Altoja, K., Buhhalko, N., and Rünk, N.: Vertical dynamics of summer phytoplankton in a stratified estuary (Gulf of Finland, Baltic Sea), Ocean Dynam., 61, 903–915, https://doi.org/10.1007/s10236-011-0421-8, 2011.
Lips, U., Kikas, V., Liblik, T., and Lips, I.: Multi-sensor in situ observations to resolve the sub-mesoscale features in the stratified Gulf of Finland, Baltic Sea, Ocean Sci., 12, 715–732, https://doi.org/10.5194/os-12-715-2016, 2016a.
Lips, U., Zhurbas, V., Skudra, M., and Väli, G.: A numerical study of circulation in the Gulf of Riga, Baltic Sea. Part I: Whole-basin gyres and mean currents, Cont. Shelf Res., 112, 1–13, https://doi.org/10.1016/j.csr.2015.11.008, 2016b.
Lips, U., Laanemets, J., Lips, I., Liblik, T., Suhhova, I., and Sonaar, Ü.: Wind-driven residual circulation and related oxygen and nutrient dynamics in the Gulf of Finland (Baltic Sea) in winter, Estuar. Coast. Shelf Sci., 195, 4–15, https://doi.org/10.1016/j.ecss.2016.10.006, 2017.
Mahadevan, A.: The impact of submesoscale physics on primary productivity of plankton, Annu. Rev. Mar. Sci., 8, 161–184, https://doi.org/10.1146/annurev-marine-010814-015912, 2016.
McDougall, T. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, SCOR/IAPSO WG127, 28 pp., ISBN 978-0-646-55621-5, https://www.teos-10.org/software.htm (last access: 1 October 2025), 2011.
Miracca-Lage, M., Becherer, J., Merckelbach, L., Bosse, A., Testor, P., and Carpenter, J. R.: Rapid restratification processes control mixed layer turbulence and phytoplankton growth in a deep convection region, Geophys. Res. Lett., 51, e2023GL107336, https://doi.org/10.1029/2023GL107336, 2024.
Naveira Garabato, A. C., Yu, X., Callies, J., Barkan, R., Polzin, K. L., Frajka-Williams, E. E., Buckingham, C. E., and Griffies, S. M.: Kinetic energy transfers between mesoscale and submesoscale motions in the open ocean's upper layers, J. Phys. Oceanogr., 52, 75–97, https://doi.org/10.1175/JPO-D-21-0099.1, 2022.
Peng, J.-P., Dräger-Dietel, J., North, R. P., and Umlauf, L.: Diurnal variability of frontal dynamics, instability, and turbulence in a submesoscale upwelling filament, J. Phys. Oceanogr., 51, 2825–2843, https://doi.org/10.1175/JPO-D-21-0033.1, 2021.
Ramachandran, S., Tandon, A., Mackinnon, J., Lucas, A. J., Pinkel, R., Waterhouse, A. F., Nash, J., Shroyer, E., Mahadevan, A., Weller, R. A., and Farrar, J. T.: Submesoscale processes at shallow salinity fronts in the Bay of Bengal: Observations during the winter monsoon, J. Phys. Oceanogr., 48, 479–509, https://doi.org/10.1175/JPO-D-16-0283.1, 2018.
Rudnick, D. L. and Cole, S. T.: On sampling the ocean using underwater gliders, J. Geophys. Res.-Oceans, 116, https://doi.org/10.1029/2010JC006849, 2011.
Rudnick, D. L. and Ferrari, R.: Compensation of horizontal temperature and salinity gradients in the ocean mixed layer, Science, 283, 526–529, https://doi.org/10.1126/science.283.5401.526, 1999.
Ruiz, S., Claret, M., Pascual, A., Olita, A., Troupin, C., Capet, A., Tovar-Sánchez, A., Allen, J., Poulain, P.-M., Tintoré, J., and Mahadevan, A.: Effects of oceanic mesoscale and submesoscale frontal processes on the vertical transport of phytoplankton, J. Geophys. Res.-Oceans, 124, 5999–6014, https://doi.org/10.1029/2019JC015034, 2019.
Salm, K., Liblik, T., and Lips, U.: Submesoscale variability in a mesoscale front captured by a glider mission in the Gulf of Finland, Baltic Sea, Front. Mar. Sci., 10, https://doi.org/10.3389/fmars.2023.984246, 2023.
Salm, K., Väli, G., Liblik, T., and Lips, U.: Glider missions in the Gulf of Finland, Baltic Sea 2018–2019 [data set], SEANOE, https://doi.org/10.17882/96561 (last access: 1 October 2025), 2023.
Shang, X., Shu, Y., Wang, D., Yu, J., Mao, H., Liu, D., Qiu, C., and Tang, H.: Submesoscale motions driven by down-front wind around an anticyclonic eddy with a cold core, J. Geophys. Res.-Oceans, 128, https://doi.org/10.1029/2022JC019173, 2023.
Siht, E., Väli, G., Liblik, T., Mishra, A., Buhhalko, N., and Lips, U.: Modeling the pathways of microplastics in the Gulf of Finland, Baltic Sea – sensitivity of parametrizations, Ocean Dynam., 75, 9, https://doi.org/10.1007/s10236-024-01649-0, 2025.
Suursaar, Ü. and Aps, R.: Spatio-temporal variations in hydro-physical and -chemical parameters during a major upwelling event off the southern coast of the Gulf of Finland in summer 2006, Oceanologia, 49, 209–228, 2007.
Tarry, D. R., Ruiz, S., Johnston, T. M. S., Poulain, P.-M., Özgökmen, T., Centurioni, L. R., Berta, M., Esposito, G., Farrar, J. T., Mahadevan, A., and Pascual, A.: Drifter observations reveal intense vertical velocity in a surface ocean front, Geophys. Res. Lett., 49, e2022GL098969, https://doi.org/10.1029/2022GL098969, 2022.
Taylor, J. R. and Thompson, A. F.: Submesoscale dynamics in the upper ocean, Annu. Rev. Fluid Mech., 55, 103–127, https://doi.org/10.1146/annurev-fluid-031422-095147, 2023.
Thomas, L. N., Tandon, A., and Mahadevan, A.: Submesoscale processes and dynamics, Geophys. Monogr. Ser., 177, 17–38, https://doi.org/10.1029/177GM04, 2008.
Uiboupin, R. and Laanemets, J.: Upwelling characteristics derived from satellite sea surface temperature data in the Gulf of Finland, Baltic Sea, Boreal Environ. Res., 14, 297–304, 2009.
Umlauf, L. and Burchard, H.: Second-order turbulence closure models for geophysical boundary layers. A review of recent work, Cont. Shelf Res., 25, 795–827, https://doi.org/10.1016/j.csr.2004.08.004, 2005.
Väli, G., Meier, H. E. M., and Elken, J.: Simulated halocline variability in the baltic sea and its impact on hypoxia during 1961–2007, J. Geophys. Res.-Oceans, 118, 6982–7000, https://doi.org/10.1002/2013JC009192, 2013.
Väli, G., Zhurbas, V., Lips, U., and Laanemets, J.: Submesoscale structures related to upwelling events in the Gulf of Finland, Baltic Sea (numerical experiments), J. Mar. Syst., 171, 31–42, https://doi.org/10.1016/j.jmarsys.2016.06.010, 2017.
Väli, G., Meier, H. E. M., Placke, M., and Dieterich, C.: River runoff forcing for ocean modeling within the Baltic Sea Model Intercomparison Project, Marine Sci. Rep., 113, https://doi.org/10.12754/msr-2019-0113, 2019.
Väli, G., Meier, H. E. M., Liblik, T., Radtke, H., Klingbeil, K., Gräwe, U., and Lips, U.: Submesoscale processes in the surface layer of the central Baltic Sea: A high-resolution modelling study, Oceanologia, 66, 78–90, https://doi.org/10.1016/j.oceano.2023.11.002, 2024.
Westerlund, A., Tuomi, L., Alenius, P., Miettunen, E., and Vankevich, R. E.: Attributing mean circulation patterns to physical phenomena in the Gulf of Finland, Oceanologia, 60, 16–31, https://doi.org/10.1016/j.oceano.2017.05.003, 2018.
Westerlund, A., Tuomi, L., Alenius, P., Myrberg, K., Miettunen, E., Vankevich, R. E., and Hordoir, R.: Circulation patterns in the Gulf of Finland from daily to seasonal timescales, Tellus A, 71, https://doi.org/10.1080/16000870.2019.1627149, 2019.
Wong, A., Keeley, R., Carval, T., and the Argo Data Management Team: Argo Quality Control Manual for CTD and Trajectory Data, ARCHIMER, https://doi.org/10.13155/33951, 2025.
Yang, Q., Zhao, W., Liang, X., Dong, J., and Tian, J.: Elevated mixing in the periphery of mesoscale eddies in the South China Sea, J. Phys. Oceanogr., 47, 895–907, https://doi.org/10.1175/JPO-D-16-0256.1, 2017.
Zhurbas, V., Väli, G., Golenko, M., and Paka, V.: Variability of bottom friction velocity along the inflow water pathway in the Baltic Sea, J. Mar. Syst., 184, 50–58, https://doi.org/10.1016/j.jmarsys.2018.04.008, 2018.
Zhurbas, V., Väli, G., and Kuzmina, N.: Striped texture of submesoscale fields in the northeastern Baltic Proper: Results of very high-resolution modelling for summer season, Oceanologia, 64, 1–21, https://doi.org/10.1016/j.oceano.2021.08.003, 2022.
Short summary
We show that the presence of submesoscale processes depends on atmospheric forcing and is evident in both glider observations and high-resolution numerical simulations. Peak submesoscale variability was found near the base of the upper mixed layer in spring and within the thermocline in summer. Coastal upwelling and topographically induced frontal instabilities likely drove subduction and the downward transport of surface waters and tracers.
We show that the presence of submesoscale processes depends on atmospheric forcing and is...
Special issue