Articles | Volume 21, issue 5
https://doi.org/10.5194/os-21-2305-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-2305-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mesoscale dynamics of an intrathermocline eddy in the Canary Eddy Corridor
Luis P. Valencia
CORRESPONDING AUTHOR
University Institute for Research in Sustainable Aquaculture and Marine Ecosystems (IU-ECOAQUA), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Las Palmas, Spain
Ángel Rodríguez-Santana
University Institute for Research in Sustainable Aquaculture and Marine Ecosystems (IU-ECOAQUA), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Las Palmas, Spain
Borja Aguiar-González
University Institute for Research in Sustainable Aquaculture and Marine Ecosystems (IU-ECOAQUA), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Las Palmas, Spain
Javier Arístegui
Institute of Oceanography and Global Change (IOCAG), University of Las Palmas de Gran Canaria (ULPGC), Telde, Las Palmas, Spain
Xosé A. Álvarez-Salgado
Institute of Marine Research, Spanish National Research Council (CSIC), Vigo, Pontevedra, Spain
Josep Coca
Cartográfica de Canarias S.A. (GRAFCAN), Las Palmas de Gran Canaria, Las Palmas, Spain
María D. Gelado-Caballero
Department of Chemistry, University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Las Palmas, Spain
Antonio Martínez-Marrero
Institute of Oceanography and Global Change (IOCAG), University of Las Palmas de Gran Canaria (ULPGC), Telde, Las Palmas, Spain
Related authors
No articles found.
Librada Ramírez, Leonardo J. Pozzo-Pirotta, Aja Trebec, Víctor Manzanares-Vázquez, José L. Díez, Javier Arístegui, Ulf Riebesell, Stephen D. Archer, and María Segovia
Biogeosciences, 22, 1865–1886, https://doi.org/10.5194/bg-22-1865-2025, https://doi.org/10.5194/bg-22-1865-2025, 2025
Short summary
Short summary
We studied the potential effects of increasing ocean alkalinity on a natural plankton community in subtropical waters of the Atlantic near Gran Canaria, Spain. Alkalinity is the capacity of water to resist acidification, and plankton are usually microscopic plants (phytoplankton) and animals (zooplankton), often less than 2.5 cm in length. This study suggests that increasing ocean alkalinity did not have a significant negative impact on the plankton community studied.
Laura Marín-Samper, Javier Arístegui, Nauzet Hernández-Hernández, and Ulf Riebesell
Biogeosciences, 21, 5707–5724, https://doi.org/10.5194/bg-21-5707-2024, https://doi.org/10.5194/bg-21-5707-2024, 2024
Short summary
Short summary
This study exposed a natural community to two non-CO2-equilibrated ocean alkalinity enhancement (OAE) deployments using different minerals. Adding alkalinity in this manner decreases dissolved CO2, essential for photosynthesis. While photosynthesis was not suppressed, bloom formation was mildly delayed, potentially impacting marine food webs. The study emphasizes the need for further research on OAE without prior equilibration and on its ecological implications.
Álvaro Cubas, Francisco Machín, Daura Vega-Moreno, Eugenio Fraile-Nuez, and Borja Aguiar-González
EGUsphere, https://doi.org/10.5194/egusphere-2024-3913, https://doi.org/10.5194/egusphere-2024-3913, 2024
Preprint withdrawn
Short summary
Short summary
This research explores how ocean currents and wind influence the movement of floating materials, such as marine litter, in the Canary Current System. Using surface drifters, we tested different factors, including wind and wave effects, to improve the accuracy of simulations. Our findings reveal that wind and wave forces are crucial for predicting how floating debris travels. This work helps refine models for tracking marine pollution, aiding in better environmental management and cleaner oceans.
Laura Marín-Samper, Javier Arístegui, Nauzet Hernández-Hernández, Joaquín Ortiz, Stephen D. Archer, Andrea Ludwig, and Ulf Riebesell
Biogeosciences, 21, 2859–2876, https://doi.org/10.5194/bg-21-2859-2024, https://doi.org/10.5194/bg-21-2859-2024, 2024
Short summary
Short summary
Our planet is facing a climate crisis. Scientists are working on innovative solutions that will aid in capturing the hard to abate emissions before it is too late. Exciting research reveals that ocean alkalinity enhancement, a key climate change mitigation strategy, does not harm phytoplankton, the cornerstone of marine ecosystems. Through meticulous study, we may have uncovered a positive relationship: up to a specific limit, enhancing ocean alkalinity boosts photosynthesis by certain species.
Tania Pereira-Vázquez, Borja Aguiar-González, Ángeles Marrero-Díaz, Marta Veny, and Ángel Rodríguez-Santana
EGUsphere, https://doi.org/10.5194/egusphere-2024-1166, https://doi.org/10.5194/egusphere-2024-1166, 2024
Preprint archived
Short summary
Short summary
We explore the seasonal dynamics of the Western Boundary Current System of the Weddell Sea Gyre using two ocean circulation models and observational data. Our analysis aims to evaluate the goodness of ocean reanalysis products in capturing these dynamics and to lay the groundwork for future interannual variability studies. We also report a previously unknown current, the Inner Weddell Current. Our results provide valuable insights for understanding a key region for the global ocean circulation.
Marta Veny, Borja Aguiar-González, Ángeles Marrero-Díaz, Tania Pereira-Vázquez, and Ángel Rodríguez-Santana
Ocean Sci., 20, 389–415, https://doi.org/10.5194/os-20-389-2024, https://doi.org/10.5194/os-20-389-2024, 2024
Short summary
Short summary
This study examines the seasonal patterns of chlorophyll-a (chl-a) blooms in the Bransfield Strait using remote sensing data supported by novel and historical in situ observations. Through satellite data we show that we can identify two distinct phytoplankton niches along a thermal front known as the Peninsula Front: the Transitional Bellingshausen Water and Transitional Weddell Water pools. These findings enable the first climatological description of the chl-a blooms in the Bransfield Strait.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Kristian Spilling, Jonna Piiparinen, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Maria T. Camarena-Gómez, Elisabeth von der Esch, Martin A. Fischer, Markel Gómez-Letona, Nauzet Hernández-Hernández, Judith Meyer, Ruth A. Schmitz, and Ulf Riebesell
Biogeosciences, 20, 1605–1619, https://doi.org/10.5194/bg-20-1605-2023, https://doi.org/10.5194/bg-20-1605-2023, 2023
Short summary
Short summary
We carried out an enclosure experiment using surface water off Peru with different additions of oxygen minimum zone water. In this paper, we report on enzyme activity and provide data on the decomposition of organic matter. We found very high activity with respect to an enzyme breaking down protein, suggesting that this is important for nutrient recycling both at present and in the future ocean.
Jens Hartmann, Niels Suitner, Carl Lim, Julieta Schneider, Laura Marín-Samper, Javier Arístegui, Phil Renforth, Jan Taucher, and Ulf Riebesell
Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, https://doi.org/10.5194/bg-20-781-2023, 2023
Short summary
Short summary
CO2 can be stored in the ocean via increasing alkalinity of ocean water. Alkalinity can be created via dissolution of alkaline materials, like limestone or soda. Presented research studies boundaries for increasing alkalinity in seawater. The best way to increase alkalinity was found using an equilibrated solution, for example as produced from reactors. Adding particles for dissolution into seawater on the other hand produces the risk of losing alkalinity and degassing of CO2 to the atmosphere.
Allanah Joy Paul, Lennart Thomas Bach, Javier Arístegui, Elisabeth von der Esch, Nauzet Hernández-Hernández, Jonna Piiparinen, Laura Ramajo, Kristian Spilling, and Ulf Riebesell
Biogeosciences, 19, 5911–5926, https://doi.org/10.5194/bg-19-5911-2022, https://doi.org/10.5194/bg-19-5911-2022, 2022
Short summary
Short summary
We investigated how different deep water chemistry and biology modulate the response of surface phytoplankton communities to upwelling in the Peruvian coastal zone. Our results show that the most influential drivers were the ratio of inorganic nutrients (N : P) and the microbial community present in upwelling source water. These led to unexpected and variable development in the phytoplankton assemblage that could not be predicted by the amount of inorganic nutrients alone.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Nadia Burgoa, Francisco Machín, Ángel Rodríguez-Santana, Ángeles Marrero-Díaz, Xosé Antón Álvarez-Salgado, Bieito Fernández-Castro, María Dolores Gelado-Caballero, and Javier Arístegui
Ocean Sci., 17, 769–788, https://doi.org/10.5194/os-17-769-2021, https://doi.org/10.5194/os-17-769-2021, 2021
Short summary
Short summary
The circulation patterns in the confluence of the North Atlantic subtropical and tropical gyres delimited by the Cape Verde Front were examined during a field cruise in summer 2017. The collected hydrographic data, O2 and inorganic nutrients along the perimeter of a closed box embracing the Cape Verde Frontal Zone allowed for the independent estimation of the transport of these properties.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Cited articles
Alvarez, M., Pérez, F., Shoosmith, D. R., and Bryden, H. L.: Unaccounted role of Mediterranean Water in the drawdown of anthropogenic carbon, Journal of Geophysical Research: Oceans, 110, 1–18, https://doi.org/10.1029/2004JC002633, 2005. a, b, c
Arístegui, J., Sangrà, P., Hernández-León, S., Cantón, M., Hernández-Guerra, A., and Kerling, J. L.: Island-induced eddies in the Canary Islands, Deep-Sea Research I, 41, 1509–1525, https://doi.org/10.1016/0967-0637(94)90058-2, 1994. a, b, c, d
Arístegui, J., Tett, P., Hernández-Guerra, A., Basterretxea, G., Montero, M., Wild, K., Sangrá, P., Hernández-Leon, S., Canton, M., García-Braun, J., Pacheco, M., and Barton, E.: The influence of island-generated eddies on chlorophyll distribution: a study of mesoscale variation around Gran Canaria, Deep Sea Research Part I: Oceanographic Research Papers, 44, 71–96, https://doi.org/10.1016/S0967-0637(96)00093-3, 1997. a, b, c, d
Armi, L. and Zenk, W.: Large Lenses of Highly Saline Mediterranean Water, Journal of Physical Oceanography, 14, 1560–1576, https://doi.org/10.1175/1520-0485(1984)014<1560:LLOHSM>2.0.CO;2, 1984. a, b, c, d
Aviso+: Mesoscale Eddy Trajectory Atlas Product Handbook META3.2 Delayed Time, Aviso+ [data set], https://doi.org/10.24400/527896/a01-2022.005.220209, 2022. a, b
Barboni, A., Coadou-Chaventon, S., Stegner, A., Le Vu, B., and Dumas, F.: How subsurface and double-core anticyclones intensify the winter mixed-layer deepening in the Mediterranean Sea, Ocean Sci., 19, 229–250, https://doi.org/10.5194/os-19-229-2023, 2023. a, b
Barceló-Llull, B., Sangrà, P., Pallàs-Sanz, E., Barton, E. D., Estrada-Allis, S. N., Martínez-Marrero, A., Aguiar-González, B., Grisolía, D., Gordo, C., Rodríguez-Santana, Á., Marrero-Díaz, Á., and Arístegui, J.: Anatomy of a subtropical intrathermocline eddy, Deep-Sea Research Part I: Oceanographic Research Papers, 124, 126–139, https://doi.org/10.1016/j.dsr.2017.03.012, 2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Barton, E.: Island Wakes, in: Encyclopedia of Ocean Sciences, edited by: Press, E. A., Elsevier, 1397–1403, https://doi.org/10.1006/rwos.2001.0140, 2001. a, b
Barton, E. D., Arístegui, J., Tett, P., Cantón, M., García-Braun, J., Hernández-León, S., Nykjaer, L., Almeida, C., Almunia, J., Ballesteros, S., Basterretxea, G., Escánez, J., García-Weill, L., Hernández-Guerra, A., López-Laatzen, F., Molina, R., Montero, M. F., Navarro-Pérez, E., Rodríguez, J. M., Lenning, K. V., Vélez, H., and Wild, K.: The transition zone of the Canary Current upwelling region, Progress in Oceanography, 41, 455–504, https://doi.org/10.1016/S0079-6611(98)00023-8, 1998. a, b
Barton, E. D., Basterretxea, G., Flament, P., Mitchelson-Jacob, E. G., Jones, B., Arístegui, J., and Herrera, F.: Lee region of Gran Canaria, Journal of Geophysical Research: Oceans, 105, 17173–17193, https://doi.org/10.1029/2000jc900010, 2000. a
Bashmachnikov, I., Nascimento, Â., Neves, F., Menezes, T., and Koldunov, N. V.: Distribution of intermediate water masses in the subtropical northeast Atlantic, Ocean Sci., 11, 803–827, https://doi.org/10.5194/os-11-803-2015, 2015. a
Basterretxea, G., Barton, E. D., Tett, P., Sangrà, P., Navarro-Perez, E., and Arístegui, J.: Eddy and deep chlorophyl maximum response to wind-shear in the lee of Gran Canaria, Deep-Sea Research I, 49, 1087–1101, https://doi.org/10.1016/S0967-0637(02)00009-2, 2002. a, b
Belkin, I., Foppert, A., Rossby, T., Fontana, S., and Kincaid, C.: A Double-Thermostad Warm-Core Ring of the Gulf Stream, Journal of Physical Oceanography, 50, 489–507, https://doi.org/10.1175/JPO-D-18-0275.1, 2020. a
Benítez-Barrios, V. M., Pelegrí, J. L., Hernández-Guerra, A., Lwiza, K. M., Gomis, D., Vélez-Belchí, P., and Hernández-León, S.: Three-dimensional circulation in the NW Africa coastal transition zone, Progress in Oceanography, 91, 516–533, https://doi.org/10.1016/j.pocean.2011.07.022, 2011. a
Bosse, A., Testor, P., Mayot, N., Prieur, L., D'Ortenzio, F., Mortier, L., Goff, H. L., Gourcuff, C., Coppola, L., Lavigne, H., and Raimbault, P.: A submesoscale coherent vortex in the Ligurian Sea: From dynamical barriers to biological implications, Journal of Geophysical Research: Oceans, 122, 6196–6217, https://doi.org/10.1002/2016JC012634, 2017. a
Bosse, A., Fer, I., Lilly, J. M., and Søiland, H.: Dynamical controls on the longevity of a non-linear vortex: The case of the Lofoten Basin Eddy, Scientific Reports, 9, https://doi.org/10.1038/s41598-019-49599-8, 2019. a, b, c
Brannigan, L., Marshall, D. P., Garabato, A. C., Nurser, A. J., and Kaiser, J.: Submesoscale instabilities in mesoscale eddies, Journal of Physical Oceanography, 47, 3061–3085, https://doi.org/10.1175/JPO-D-16-0178.1, 2017. a
Bretherton, F. P., Davis, R. E., and Fandry, C. B.: A technique for objective analysis and desing of oceanographic experiments applied to MODE-73, Deep-Sea Research, 23, 559–582, https://doi.org/10.1016/0011-7471(76)90001-2, 1976. a
Bretherton, F. P., McPhade, M. J., and Kraus, E. B.: Design studies for Climatological Measurements of Heat Storage, Journal of Physical Oceanography, 14, 318–337, https://doi.org/10.1175/1520-0485(1984)014<0318:DSFCMO>2.0.CO;2, 1984. a
Caldeira, R. M., Stegner, A., Couvelard, X., Araújo, I. B., Testor, P., and Lorenzo, A.: Evolution of an oceanic anticyclone in the lee of Madeira Island: In situ and remote sensing survey, Journal of Geophysical Research: Oceans, 119, 1195–1216, https://doi.org/10.1002/2013JC009493, 2014. a, b, c, d
Candela, J., Beardsley, R. C., and Limeburner, R.: Separation of tidal and subtidal currents in ship-mounted acoustic Doppler current profiler observations, Journal of Geophysical Research, 97, 769–788, https://doi.org/10.1029/91JC02569, 1992. a
Cardoso, C., Caldeira, R. M., Relvas, P., and Stegner, A.: Islands as eddy transformation and generation hotspots: Cabo Verde case study, Progress in Oceanography, 184, https://doi.org/10.1016/j.pocean.2020.102271, 2020. a, b
Cerdán-García, E., Álvarez Salgado, X. A., Arístegui, J., Martínez-Marrero, A., and Benavides, M.: Eddy-driven diazotroph distribution in the subtropical North Atlantic: horizontal variability prevails over particle sinking speed, Communications Biology, 7, https://doi.org/10.1038/s42003-024-06576-w, 2024. a
Chaigneau, A., Eldin, G., and Dewitte, B.: Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007), Progress in Oceanography, 83, 117–123, https://doi.org/10.1016/j.pocean.2009.07.012, 2009. a, b
Chaigneau, A., Texier, M. L., Eldin, G., Grados, C., and Pizarro, O.: Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats, Journal of Geophysical Research: Oceans, 116, https://doi.org/10.1029/2011JC007134, 2011. a, b, c, d, e
Chelton, D. B., de Szoeke, R. A., Schlax, M. G., Naggar, K. E., and Siwertz, N.: Geographical Variability of the First Baroclinic Rossby Radius of Deformation, Journal of Physical Oceanography, 28, 433–460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2, 1998. a, b
Chelton, D. B., Schlax, M. G., Samelson, R. M., and de Szoeke, R. A.: Global observations of large oceanic eddies, Geophysical Research Letters, 34, 1–5, https://doi.org/10.1029/2007GL030812, 2007. a
Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, Progress in Oceanography, 91, 167–216, https://doi.org/10.1016/j.pocean.2011.01.002, 2011. a, b, c
Chin, T. M., Vazquez-Cuervo, J., and Armstrong, E. M.: A multi-scale high-resolution analysis of global sea surface temperature, Remote Sensing of Environment, https://doi.org/10.1016/j.rse.2017.07.029, 2017. a
Chopra, K. and Hubert, L.: Mesoscale Eddies in Wake of Islands, Journal of Atmospheric Sciences, 22, 652–657, https://doi.org/10.1175/1520-0469(1965)022<0652:MEIWOI>2.0.CO;2, 1965. a
Chopra, K. P.: Atmospheric and Oceanic Flow Problems Introduced By Islands, VIMS Contribution No. 489, in: Advances in Geophysics, vol. 16, edited by: Landsberg, H. and Van Mieghem, J., Elsevier, 297–421, https://doi.org/10.1016/S0065-2687(08)60354-4, 1973. a
Contreras, M., Pizarro, O., Dewitte, B., Sepulveda, H. H., and Renault, L.: Subsurface Mesoscale Eddy Generation in the Ocean off Central Chile, Journal of Geophysical Research: Oceans, 124, 5700–5722, https://doi.org/10.1029/2018JC014723, 2019. a
Copernicus-GlobColour: Global Ocean Colour, Bio-Geo-Chemical, L3 (daily) from Satellite Observations (1997–ongoing) product, E.U. Copernicus Marine Service Information (CMEMS), Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00280, 2022. a, b, c
Copernicus Marine Service: European Seas Gridded L4 Sea Surface Heights and Derived Variables NRT altimetry product, E.U. Copernicus Marine Service (CMEMS) [data set], https://doi.org/10.48670/moi-00142, 2023. a
Cornejo D'Ottone, M., Bravo, L., Ramos, M., Pizarro, O., Karstensen, J., Gallegos, M., Correa-Ramirez, M., Silva, N., Farias, L., and Karp-Boss, L.: Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean, Biogeosciences, 13, 2971–2979, https://doi.org/10.5194/bg-13-2971-2016, 2016. a, b
Crameri, F.: Scientific colour maps, https://doi.org/10.5281/zenodo.8409685, 2023. a
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in science communication, Nature Communications, 11, 5444, https://doi.org/10.1038/s41467-020-19160-7, 2020. a
D'Asaro, E. A.: Generation of submesoscale vortices: A new mechanism, Journal of Geophysical Research: Oceans, 93, 6685–6693, https://doi.org/10.1029/jc093ic06p06685, 1988. a, b, c
de Marez, C., Carton, X., L'Hégaret, P., Meunier, T., Stegner, A., Vu, B. L., and Morvan, M.: Oceanic vortex mergers are not isolated but influenced by the β-effect and surrounding eddies, Scientific Reports, 10, https://doi.org/10.1038/s41598-020-59800-y, 2020. a
Dilmahamod, A. F., Aguiar-González, B., Penven, P., Reason, C. J., Ruijter, W. P. D., Malan, N., and Hermes, J. C.: SIDDIES Corridor: A Major East-West Pathway of Long-Lived Surface and Subsurface Eddies Crossing the Subtropical South Indian Ocean, Journal of Geophysical Research: Oceans, 123, 5406–5425, https://doi.org/10.1029/2018JC013828, 2018. a, b, c, d, e, f, g
Dilmahamod, A. F., Karstensen, J., Dietze, H., Löptien, U., and Fennel, K.: Generation Mechanisms of Mesoscale Eddies in the Mauritanian Upwelling Region, Journal of Physical Oceanography, 52, 161–182, https://doi.org/10.1175/JPO-D-21-0092.1, 2022. a
Djurfeldt, L.: Circulation and mixing in a coastal upwelling embayment; Gulf of Arauco, Chile, Continental Shelf Research, 9, 1003–1016, https://doi.org/10.1016/0278-4343(89)90004-6, 1989. a
Dong, C., McWilliams, J. C., Liu, Y., and Chen, D.: Global heat and salt transports by eddy movement, Nature Communications, 5, https://doi.org/10.1038/ncomms4294, 2014. a
Douglass, E. M. and Richman, J. G.: Analysis of ageostrophy in strong surface eddies in the Atlantic Ocean, Journal of Geophysical Research: Oceans, 120, 1490–1507, https://doi.org/10.1002/2014JC010350, 2015. a, b
Dugan, J. P., Mied, R. P., Mignerey, P. C., and Schuetz, A. F.: Compact, intrathermocline eddies in the Sargasso Sea, Journal of Geophysical Research: Oceans, 87, 385–393, https://doi.org/10.1029/JC087iC01p00385, 1982. a, b
Estrada-Allis, S. N., Barceló-Llull, B., Pallàs-Sanz, E., Rodríguez-Santana, A., Souza, J. M., Mason, E., Mcwilliams, J. C., and Sangrà, P.: Vertical velocity dynamics and mixing in an anticyclone near the Canary Islands, Journal of Physical Oceanography, 49, 431–451, https://doi.org/10.1175/JPO-D-17-0156.1, 2019. a
Feistel, R.: A new extended Gibbs thermodynamic potential of seawater, Progress in Oceanography, 58, 43–114, https://doi.org/10.1016/S0079-6611(03)00088-0, 2003. a
Feistel, R.: A Gibbs function for seawater thermodynamics for −6 to 80 °C and salinity up to 120 g kg−1, Deep Sea Research Part I: Oceanographic Research Papers, 55, 1639–1671, https://doi.org/10.1016/j.dsr.2008.07.004, 2008. a
Fernández-Castro, B., Evans, D. G., Frajka-Williams, E., Vic, C., and Naveira-Garabato, A. C.: Breaking of internal waves and turbulent dissipation in an anticyclonic mode water eddy, Journal of Physical Oceanography, 50, 1893–1914, https://doi.org/10.1175/JPO-D-19-0168.1, 2020. a, b
Flierl, G. R.: A simple model for the structure of warm and cold core rings, Journal of Geophysical Research: Oceans, 84, 781–785, https://doi.org/10.1029/JC084iC02p00781, 1979. a
Fu, M., Dong, C., Dong, J., and Sun, W.: Analysis of Mesoscale Eddy Merging in the Subtropical Northwest Pacific Using Satellite Remote Sensing Data, Remote Sensing, 15, https://doi.org/10.3390/rs15174307, 2023. a
Garnesson, P., Mangin, A., Fanton d'Andon, O., Demaria, J., and Bretagnon, M.: The CMEMS GlobColour chlorophyll a product based on satellite observation: multi-sensor merging and flagging strategies, Ocean Sci., 15, 819–830, https://doi.org/10.5194/os-15-819-2019, 2019. a
Garreau, P., Dumas, F., Louazel, S., Stegner, A., and Vu, B. L.: High-Resolution Observations and Tracking of a Dual-Core Anticyclonic Eddy in the Algerian Basin, Journal of Geophysical Research: Oceans, 123, 9320–9339, https://doi.org/10.1029/2017JC013667, 2018. a, b
Gordon, A. L., Giulivi, C. F., Lee, C. M., Hunt, H., Bower, A., and Talley, L.: Japan/East Sea Intrathermocline Eddies, Journal of Physical Oceanography, 32, 1960–1974, https://doi.org/10.1175/1520-0485(2002)032<1960:JESIE>2.0.CO;2, 2002. a
Hebert, D.: The available potential energy of an isolated feature, Journal of Geophysical Research: Oceans, 93, 556–564, https://doi.org/10.1029/jc093ic01p00556, 1988. a
Hebert, D., Oakey, N., and Ruddick, B.: Evolution of a Mediterranean Salt Lens: Scalar Properties, Journal of Physical Oceanography, 20, 1468–1483, https://doi.org/10.1175/1520-0485(1990)020<1468:EOAMSL>2.0.CO;2, 1990. a
Hernández-Guerra, A., Arístegui, A., Cantón, M., and Nykjaer, L.: Phytoplankton pigment patterns in the canary islands area as determined using coastal zone colour scanner data, International Journal of Remote Sensing, 14, 1431–1437, https://doi.org/10.1080/01431169308953977, 1993. a, b
Hernández-Hernández, N., Arístegui, J., Montero, M. F., Velasco-Senovilla, E., Baltar, F., Marrero-Díaz, Á., Martínez-Marrero, A., and Rodríguez-Santana, Á.: Drivers of Plankton Distribution Across Mesoscale Eddies at Submesoscale Range, Frontiers in Marine Science, 7, https://doi.org/10.3389/fmars.2020.00667, 2020. a
Hogan, P. J. and Hurlburt, H. E.: Why do Intrathermocline Eddies form in the Japan/East Sea? A Modeling Perspective, Oceanography, 19, 134–143, https://doi.org/10.5670/oceanog.2006.50, 2006. a
Hormazabal, S., Combes, V., Morales, C. E., Correa-Ramirez, M. A., Lorenzo, E. D., and Nuñez, S.: Intrathermocline eddies in the coastal transition zone off central Chile (31–41° S), Journal of Geophysical Research: Oceans, 118, 4811–4821, https://doi.org/10.1002/jgrc.20337, 2013. a, b, c
Ioannou, A., Stegner, A., Tuel, A., LeVu, B., Dumas, F., and Speich, S.: Cyclostrophic Corrections of AVISO/DUACS Surface Velocities and Its Application to Mesoscale Eddies in the Mediterranean Sea, Journal of Geophysical Research: Oceans, 124, 8913–8932, https://doi.org/10.1029/2019JC015031, 2019. a, b, c
Ioannou, A., Speich, S., and Laxenaire, R.: Characterizing Mesoscale Eddies of Eastern Upwelling Origins in the Atlantic Ocean and Their Role in Offshore Transport, Frontiers in Marine Science, 9, https://doi.org/10.3389/fmars.2022.835260, 2022. a, b
Jiménez, B., Sangrà, P., and Mason, E.: A numerical study of the relative importance of wind and topographic forcing on oceanic eddy shedding by tall, deep water islands, Ocean Modelling, 22, 146–157, https://doi.org/10.1016/j.ocemod.2008.02.004, 2008. a
Jiménez-Rincón, J. A., Cianca, A., Ferrero-Martín, C., and Izquierdo, A.: A Glider View of the Spreading and Mixing Processes of Antarctic Intermediate Water in the Northeastern Subtropical Atlantic, Journal of Marine Science and Engineering, 11, https://doi.org/10.3390/jmse11030576, 2023. a
JPL MUR MEaSUREs Project: GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (v4.1), NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC) [data set], Pasadena, CA, USA, https://doi.org/10.5067/GHGMR-4FJ04, 2015. a, b
Johnson, G. C. and Mctaggart, K. E.: Equatorial pacific 13 °C water eddies in the eastern subtropical south pacific ocean, Journal of Physical Oceanography, 40, 226–236, https://doi.org/10.1175/2009JPO4287.1, 2010. a, b
Joyce, T. M., Toole, J. M., Klein, P., and Thomas, L. N.: A near-inertial mode observed within a Gulf Stream warm-core ring, Journal of Geophysical Research: Oceans, 118, 1797–1806, https://doi.org/10.1002/jgrc.20141, 2013. a
Karstensen, J., Schütte, F., Pietri, A., Krahmann, G., Fiedler, B., Grundle, D., Hauss, H., Körtzinger, A., Löscher, C. R., Testor, P., Vieira, N., and Visbeck, M.: Upwelling and isolation in oxygen-depleted anticyclonic modewater eddies and implications for nitrate cycling, Biogeosciences, 14, 2167–2181, https://doi.org/10.5194/bg-14-2167-2017, 2017. a, b, c, d
Kolodziejczyk, N., Testor, P., Lazar, A., Echevin, V., Krahmann, G., Chaigneau, A., Gourcuff, C., Wade, M., Faye, S., Estrade, P., Capet, X., Mortier, L., Brehmer, P., Schütte, F., and Karstensen, J.: Subsurface Fine-Scale Patterns in an Anticyclonic Eddy Off Cap-Vert Peninsula Observed From Glider Measurements, Journal of Geophysical Research: Oceans, 123, 6312–6329, https://doi.org/10.1029/2018JC014135, 2018. a
Kostianoy, A. and Belkin, I.: A Survey of Observations on Intrathermocline Eddies in the World Ocean, in: Mesoscale/Synoptic Coherent structures in Geophysical Turbulence, Elsevier Oceanography Series, vol. 50, edited by: Nihoul, J. and Jamart, B., Elsevier, 821–841, https://doi.org/10.1016/S0422-9894(08)70223-X, 1989. a
Kunze, E.: The Mean and Near-Inertial Velocity Fields in a Warm-Core Ring, Journal of Physical Oceanography, 16, 1444–1461, https://doi.org/10.1175/1520-0485(1986)016<1444:TMANIV>2.0.CO;2, 1986. a, b
Langdon, C.: Determination of Dissolved Oxygen in Seawater By Winkler Titration using Amperometric Technique, in: The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines. Version 1, ICPO Publication Series Number 134, edited by: Hood, E., Sabine, C., and Sloyan, B., 1–18, https://doi.org/10.25607/OBP-1350, 2010. a
La Violette, P. E.: A Satellite-Aircraft Thermal Study of the Upwelled Waters off Spanish Sahara, Journal of Physical Oceanography, 4, 676–684, https://doi.org/10.1175/1520-0485(1974)004<0676:ASATSO>2.0.CO;2, 1974. a, b
Le Traon, P. Y.: A Method for Optimal Analysis of Fields with Spatially Variable Mean, Journal of Geophysical Research, 95, 13543–13547, https://doi.org/10.1029/JC095iC08p13543, 1990. a
Machín, F. J. and Pelegrí, J. L.: Interacción de remolinos de agua Mediterránea con agua intermedia Antártica al noroeste de África, Scientia Marina, 80, 205–214, https://doi.org/10.3989/scimar.04289.06A, 2016. a, b
Marchesiello, P. and Estrade, P.: Eddy activity and mixing in upwelling systems: A comparative study of Northwest Africa and California, International Journal of Earth Sciences, 98, 299–308, https://doi.org/10.1007/s00531-007-0235-6, 2009. a
Martínez-Marrero, A., Barceló-Llull, B., Pallàs-Sanz, E., Aguiar-González, B., Estrada-Allis, S. N., Gordo, C., Grisolía, D., Rodríguez-Santana, A., and Arístegui, J.: Near-Inertial Wave Trapping Near the Base of an Anticyclonic Mesoscale Eddy Under Normal Atmospheric Conditions, Journal of Geophysical Research: Oceans, 124, 8455–8467, https://doi.org/10.1029/2019JC015168, 2019. a, b
Mason, E., Pascual, A., and McWilliams, J. C.: A new sea surface height-based code for oceanic mesoscale eddy tracking, Journal of Atmospheric and Oceanic Technology, 31, 1181–1188, https://doi.org/10.1175/JTECH-D-14-00019.1, 2014. a, b
Mcgillicuddy, D. J.: Formation of intrathermocline lenses by eddy-wind interaction, Journal of Physical Oceanography, 45, 606–612, https://doi.org/10.1175/JPO-D-14-0221.1, 2015. a
McWilliams, J. C.: Submesoscale, Coherent Vortices in the Ocean, Reviews of Geophysics, 23, 165–182, https://doi.org/10.1029/RG023i002p00165, 1985. a, b, c, d
McWilliams, J. C.: Vortex Generation Through Balanced Adjustment, Journal of Physical Oceanography, 18, 1178–1192, https://doi.org/10.1175/1520-0485(1988)018<1178:VGTBA>2.0.CO;2, 1988. a, b
Molemaker, M. J., McWilliams, J. C., and Dewar, W. K.: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California undercurrent, Journal of Physical Oceanography, 45, 613–629, https://doi.org/10.1175/JPO-D-13-0225.1, 2015. a
Morris, T., Aguiar-González, B., Ansorge, I., and Hermes, J.: Lagrangian Evolution of Two Madagascar Cyclonic Eddies: Geometric Properties, Vertical Structure, and Fluxes, Journal of Geophysical Research: Oceans, 124, 8193–8218, https://doi.org/10.1029/2019JC015090, 2019. a, b, c
Müller, P.: Ertel's potential vorticity theorem in physical oceanography, Reviews of Geophysics, 33, 67–97, https://doi.org/10.1029/94RG03215, 1995. a
Nauw, J. J., van Aken, H. M., Lutjeharms, J. R., and de Ruijter, W. P.: Intrathermocline eddies in the Southern Indian Ocean, Journal of Geophysical Research: Oceans, 111, https://doi.org/10.1029/2005JC002917, 2006. a, b
Olson, D. B.: The Physical Oceanography of Two Rings Observed by the Cyclonic Ring Experiment. Part II: Dynamics, Journal of Physical Oceanography, 10, 514–528, https://doi.org/10.1175/1520-0485(1980)010<0514:TPOOTR>2.0.CO;2, 1980. a
Pacheco, M., García-Weil, L., Rodríguez, G. R., Tejera, A., and Luque, A.: Upwelling Filaments in the Northwest African Coastal Transition Zone (NACTZ); Satellite Images and Laboratory Simulations, in: IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), 3015–3017, https://doi.org/10.1109/IGARSS.2001.978239, 2001. a
Pegliasco, C., Delepoulle, A., Mason, E., Morrow, R., Faugère, Y., and Dibarboure, G.: META3.1exp: a new global mesoscale eddy trajectory atlas derived from altimetry, Earth Syst. Sci. Data, 14, 1087–1107, https://doi.org/10.5194/essd-14-1087-2022, 2022. a
Pelegrí, J. L., Arístegui, J., Cana, L., González-Dávila, M., Hernández-Guerra, A., Hernández-León, S., Marrero-Díaz, A., Montero, M. F., Sangrà, P., and Santana-Casiano, M.: Coupling between the open ocean and the coastal upwelling region off northwest Africa: Water recirculation and offshore pumping of organic matter, Journal of Marine Systems, 54, 3–37, https://doi.org/10.1016/j.jmarsys.2004.07.003, 2005. a, b
Penven, P., Halo, I., Pous, S., and Marié, L.: Cyclogeostrophic balance in the Mozambique Channel, Journal of Geophysical Research: Oceans, 119, 1054–1067, https://doi.org/10.1002/2013JC009528, 2014. a, b, c
Pidcock, R., Martin, A., Allen, J., Painter, S. C., and Smeed, D.: The spatial variability of vertical velocity in an Iceland basin eddy dipole, Deep-Sea Research Part I: Oceanographic Research Papers, 72, 121–140, https://doi.org/10.1016/j.dsr.2012.10.008, 2013. a
Piedeleu, M., Sangra, P., Sánchez-Vidal, A., Fabrés, J., Gordo, C., and Calafat, A.: An observational study of oceanic eddy generation mechanisms by tall deep-water islands (Gran Canaria), Geophysical Research Letters, 36, https://doi.org/10.1029/2008GL037010, 2009. a
Pingree, R. and Garcia-Soto, C.: Annual westward propagating anomalies near 26° N and eddy generation south of the Canary Islands: Remote sensing (altimeter/SeaWiFS) and in situ measurement, Journal of the Marine Biological Association of the United Kingdom, 84, 1105–1115, https://doi.org/10.1017/S0025315404010549h, 2004. a, b
Prater, M. D. and Sanford, T. B.: A Meddy off Cape St. Vincent. Part I: Description, Journal of Physical Oceanography, 24, 1572–1586, https://doi.org/10.1175/1520-0485(1994)024<1572:AMOCSV>2.0.CO;2, 1994. a
Richardson, P. L., Walsh, D., Armi, L., Schröder, M., and Price, J. F.: Tracking Three Meddies with SOFAR Floats, Journal of Physical Oceanography, 19, 371–382, https://doi.org/10.1175/1520-0485(1989)019<0371:TTMWSF>2.0.CO;2, 1989. a
Richardson, P. L., Bower, A. S., and Zenk, W.: A census of Meddies tracked by floats, Progress in Oceanography, 45, 209–250, https://doi.org/10.1016/S0079-6611(99)00053-1, 2000. a
Rodríguez-Marroyo, R., Álvaro Viúdez, and Ruiz, S.: Vortex merger in oceanic tripoles, Journal of Physical Oceanography, 41, 1239–1251, https://doi.org/10.1175/2011JPO4582.1, 2011. a
Ruddick, B. and Hebert, D.: The Mixing of Meddy “Sharon”, in: Small Scale Turbulence and Mixing in the Ocean, Elsevier Oceanography Series, vol. 46, edited by: Nihoul, J. and Jamart, B., 249–261, https://doi.org/10.1016/S0422-9894(08)70551-8, 1988. a
Rudnick, D. L. and Luyten, J. R.: Intensive surveys of the Azores Front 1. Tracers and dynamics, Journal of Geophysical Research: Oceans, 101, 923–939, https://doi.org/10.1029/95JC02867, 1996. a
Rykova, T. and Oke, P. R.: Stacking of EAC Eddies Observed From Argo, Journal of Geophysical Research: Oceans, 127, https://doi.org/10.1029/2022JC018679, 2022. a
Sangrà, P., Pelegrí, J. L., Hernández-Guerra, A., Arregui, I., Martín, J. M., Marrero-Díaz, A., Martínez, A., Ratsimandresy, A. W., and Rodríguez-Santana, A.: Life history of an anticyclonic eddy, Journal of Geophysical Research: Oceans, 110, 1–19, https://doi.org/10.1029/2004JC002526, 2005. a, b, c, d, e, f, g, h
Sangrà, P., Auladell, M., Marrero-Díaz, A., Pelegrí, J. L., Fraile-Nuez, E., Rodríguez-Santana, A., Martín, J. M., Mason, E., and Hernández-Guerra, A.: On the nature of oceanic eddies shed by the Island of Gran Canaria, Deep-Sea Research Part I: Oceanographic Research Papers, 54, 687–709, https://doi.org/10.1016/j.dsr.2007.02.004, 2007. a, b, c, d
Sangrà, P., Pascual, A., Ángel Rodríguez-Santana, Machín, F., Mason, E., McWilliams, J. C., Pelegrí, J. L., Dong, C., Rubio, A., Arístegui, J., Marrero-Díaz, Á., Hernández-Guerra, A., Martínez-Marrero, A., and Auladell, M.: The Canary Eddy Corridor: A major pathway for long-lived eddies in the subtropical North Atlantic, Deep-Sea Research Part I: Oceanographic Research Papers, 56, 2100–2114, https://doi.org/10.1016/j.dsr.2009.08.008, 2009. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Schmid, C., Schäfer, H., Guillermo, P., and Zenk, W.: The Vitória Eddy and Its Relation to the Brazil Current, Journal of Physical Oceanography, 25, 2532–2546, https://doi.org/10.1175/1520-0485(1995)025<2532:TVEAIR>2.0.CO;2, 1995. a, b
Schütte, F., Brandt, P., and Karstensen, J.: Occurrence and characteristics of mesoscale eddies in the tropical northeastern Atlantic Ocean, Ocean Sci., 12, 663–685, https://doi.org/10.5194/os-12-663-2016, 2016. a, b
Shakespeare, C. J.: Curved Density Fronts: Cyclogeostrophic Adjustment and Frontogenesis, Journal of Physical Oceanography, 46, 3193–3207, https://doi.org/10.1175/JPO-D-16-0137.1, 2016. a, b, c
Shapiro, G. I. and Meschanov, S. L.: Distribution and spreading of Red Sea Water and salt lens formation in the northwest Indian Ocean, Deep-Sea Research, 38, 21–34, https://doi.org/10.1016/0198-0149(91)90052-H, 1991. a
Thomas, L. N.: Formation of intrathermocline eddies at ocean fronts by wind-driven destruction of potential vorticity, Dynamics of Atmospheres and Oceans, 45, 252–273, https://doi.org/10.1016/j.dynatmoce.2008.02.002, 2008. a
Thomas, L. N., Taylor, J. R., Ferrari, R., and Joyce, T. M.: Symmetric instability in the Gulf Stream, Deep-Sea Research Part II: Topical Studies in Oceanography, 91, 96–110, https://doi.org/10.1016/j.dsr2.2013.02.025, 2013. a
Thomsen, S., Kanzow, T., Krahmann, G., Greatbatch, R. J., Dengler, M., and Lavik, G.: The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent and its impact on the near-coastal salinity, oxygen, and nutrient distributions, Journal of Geophysical Research: Oceans, 121, 476–501, https://doi.org/10.1002/2015JC010878, 2016. a, b
Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M., and DiMarco, S. F.: True Colors of Oceanography: Guidelines for Effective and Accurate Colormap Selection, Oceanography, 29, 9–13, 2016. a
Tomczak, M. and Godfrey, J. S.: Regional Oceanography: An Introduction, in: 2nd Edn., Daya Publishing House, Delhi, India, ISBN 978-8170353065, 2004. a
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, Bulletin of the American Meteorological Society, 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998. a
Uchida, H., Imawaki, S., and Hu, J.-H.: Comparison of Kuroshio surface velocities derived from satellite altimeter and drifting buoy data, Journal of Oceanography, 54, 115–122, https://doi.org/10.1007/BF02744385, 1998. a
Valencia, L. P. and Aguiar-González, B.: Bentayga life-cycle as seen from satellite altimetry, TIB AV-Portal [video supplement], https://doi.org/10.5446/69688, 2025. a, b, c, d
Valencia, L. P., Rodríguez-Santana, Á., Aguiar-González, B., Arístegui, J., Álvarez-Salgado, X. A., Coca, J., and Martínez-Marrero, A.: Bentayga Eddy in situ Dataset (eIMPACT2 survey), Zenodo [data set], https://doi.org/10.5281/zenodo.14911706, 2025. a
Van Camp, L., Nykjier, L., Mittelstaedt, E., and Schlittenhardt, P.: Upwelling and boundary circulation off Northwest Africa as depicted by infrared and visible satellite observations, Progress in Oceanography, 26, 357–402, https://doi.org/10.1016/0079-6611(91)90012-B, 1991. a, b
Yu, L. S., Bosse, A., Fer, I., Orvik, K. A., Bruvik, E. M., Hessevik, I., and Kvalsund, K.: The Lofoten Basin eddy: Three years of evolution as observed by Seagliders, Journal of Geophysical Research: Oceans, 122, 6814–6834, https://doi.org/10.1002/2017JC012982, 2017. a, b
Short summary
We studied a rotating body of water south of the Canary Islands, known as an intrathermocline eddy. With an isolated core below the surface, it showed distinct energy patterns and structure. Satellite images and field data suggest it interacted with productive coastal waters, while its year-long life cycle unfolded surrounded by other vortices. These features point to a role in offshore transport and regional circulation, emphasizing the need for sustained, integrated ocean monitoring.
We studied a rotating body of water south of the Canary Islands, known as an intrathermocline...