Articles | Volume 21, issue 5
https://doi.org/10.5194/os-21-2041-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-2041-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Physical drivers and parameter sensitivities of pearl river-derived sediment dispersal on the Northern South China Sea Shelf: a modeling study
Guang Zhang
School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China
Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
Suan Hu
School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China
Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
Xiaolong Yu
School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China
Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
Heng Zhang
School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China
Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China
Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
Related authors
Zhongyuan Lin, Guang Zhang, Huazhi Zou, and Wenping Gong
Ocean Sci., 20, 181–199, https://doi.org/10.5194/os-20-181-2024, https://doi.org/10.5194/os-20-181-2024, 2024
Short summary
Short summary
From 2021 to 2022, a particular sub-estuary (East River estuary) suffered greatly from an enhanced salt intrusion. We conducted observation analysis, numerical simulations, and analytical solution to unravel the underlying mechanisms. This study is of help in the investigation of salt dynamics in sub-estuaries connected to main estuaries and of implications for mitigating salt intrusion problems in the regions.
Jay Lee, James T. Liu, Yu-Shih Lin, Tung-Yuan Ho, Chen-Tung Arthur Chen, Wenping Gong, and Chau-Ron Wu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2502, https://doi.org/10.5194/egusphere-2025-2502, 2025
Short summary
Short summary
This study explored how freshwater from the river and rainfall, modulated by contrasting wind regimes, influences the distribution of particles on the northern South China Sea shelf. Using biogeochemical signals as tracers, we tracked particles in different water masses across this dynamic region. The results show how natural forces shape particle transport and help explain how land-derived materials travel through coastal waters and potentially influence the seafloor environment.
Zhongyuan Lin, Guang Zhang, Huazhi Zou, and Wenping Gong
Ocean Sci., 20, 181–199, https://doi.org/10.5194/os-20-181-2024, https://doi.org/10.5194/os-20-181-2024, 2024
Short summary
Short summary
From 2021 to 2022, a particular sub-estuary (East River estuary) suffered greatly from an enhanced salt intrusion. We conducted observation analysis, numerical simulations, and analytical solution to unravel the underlying mechanisms. This study is of help in the investigation of salt dynamics in sub-estuaries connected to main estuaries and of implications for mitigating salt intrusion problems in the regions.
Rui Zhang, Bo Hong, Lei Zhu, Wenping Gong, and Heng Zhang
Ocean Sci., 18, 213–231, https://doi.org/10.5194/os-18-213-2022, https://doi.org/10.5194/os-18-213-2022, 2022
Short summary
Short summary
(1) The intensity of the longitudinal estuarine circulation kept increasing as the estuary width continued to decrease.
(2) The changes in water depth were the dominant factor affecting lateral circulation intensity.
(3) The changes in the estuarine circulation were dominated by the changes in the baroclinic pressure gradient force and advection.
Cited articles
Bever, A. J. and MacWilliams, M. L.: Simulating sediment transport processes in San Pablo Bay using coupled hydrodynamic, wave, and sediment transport models, Mar. Geol., 345, 235–253, https://doi.org/10.1016/j.margeo.2013.06.012, 2013.
Bever, A. J., Harris, C. K., Sherwood, C. R., and Signell, R. P.: Deposition and flux of sediment from the Po River, Italy: An idealized and wintertime numerical modeling study, Mar. Geol., 260, 69–80, https://doi.org/10.1016/j.margeo.2009.01.007, 2009.
Bian, C., Jiang, W., and Greatbatch, R. J.: An exploratory model study of sediment transport sources and deposits in the Bohai Sea, Yellow Sea, and East China Sea, J. Geophys. Res.-Oceans, 118, 5908–5923, https://doi.org/10.1002/2013JC009116, 2013.
Bijvelds, M. D. J. P.: Numerical modelling of estuarine flow over steep topography, Doctoral dissertation, Delft University of Technology, https://resolver.tudelft.nl/uuid:39c0c858-579a-47fa-a911-4a4114949a11 (last access: 11 September 2025), 2001.
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions: 1. Model description and validation, J. Geophys. Res.-Oceans, 104, 7649–7666, https://doi.org/10.1029/98JC02622, 1999.
Brand, A., Lacy, J. R., Hsu, K., Hoover, D., Gladding, S., and Stacey, M. T.: Wind-enhanced resuspension in the shallow waters of South San Francisco Bay: Mechanisms and potential implications for cohesive sediment transport, J. Geophys. Res., 115, https://doi.org/10.1029/2010jc006172, 2010.
Briggs, K. B., Cartwright, G., Friedrichs, C. T., and Shivarudruppa, S.: Biogenic effects on cohesive sediment erodibility resulting from recurring seasonal hypoxia on the Louisiana shelf, Cont. Shelf Res., 93, 17–26, https://doi.org/10.1016/j.csr.2014.11.005, 2015.
Bryan, K.: A numerical method for the study of the circulation of the world ocean, J. Comput. Phys., 4, 347–376, https://doi.org/10.1016/0021-9991(69)90004-7, 1969.
Burchard, H., Schuttelaars, H. M., and Ralston, D. K.: Sediment Trapping in Estuaries, Annu. Rev. Mar. Sci., 10, 371–395, https://doi.org/10.1146/annurev-marine-010816-060535, 2018.
Cao, L., Liu, J., Shi, X., He, W., and Chen, Z.: Source-to-sink processes of fluvial sediments in the northern South China Sea: Constraints from river sediments in the coastal region of South China, J. Asian Earth Sci., 185, 104020, https://doi.org/10.1016/j.jseaes.2019.104020, 2019.
Cao, Z., Ren, J., Deng, Z., Ye, L., and Wu, J.: Small-scale spatial variability in erosion threshold and bedform for cohesive sediment measured by 3D Sonar, J. Hydrol., 650, 132513, https://doi.org/10.1016/j.jhydrol.2024.132513, 2025.
Caruso, M. J., Gawarkiewicz, G. G., and Beardsley, R. C.: Interannual variability of the Kuroshio intrusion in the South China Sea, J. Oceanogr., 62, 559–575, https://doi.org/10.1007/s10872-006-0076-0, 2006.
Chapman, D. C.: Numerical Treatment of Cross-Shelf Open Boundaries in a Barotropic Coastal Ocean Model, J. Phys. Oceanogr., 15, 1060–1075, 1985.
Charnock, H.: Wind stress on a water surface, Q. J. Roy. Meteor. Soc., 81, 639–640, https://doi.org/10.1002/qj.49708135027, 1955.
Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R., Hogan, P. J., Wallcraft, A. J., Baraille, R., and Bleck, R.: The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system, J. Marine Syst., 65, 60–83, https://doi.org/10.1016/j.jmarsys.2005.09.016, 2007.
Chen, S.-N., Geyer, W. R., Sherwood, C. R., and Ralston, D. K.: Sediment transport and deposition on a river-dominated tidal flat: An idealized model study, J. Geophys. Res., 115, https://doi.org/10.1029/2010jc006248, 2010.
Chen, Y., Deng, B., Saito, Y., Wang, Z., Yang, X., and Wu, J.: Pearl River sediment dispersal over its associated delta–estuary–shelf system during the Holocene, Sedimentology, 70, 2331–2354, https://doi.org/10.1111/sed.13123, 2023.
Chen, Z., Pan, J., and Jiang, Y.: Role of pulsed winds on detachment of low salinity water from the Pearl River Plume Upwelling and mixing processes, J. Geophys. Res.-Oceans, 121, 2769–2788, https://doi.org/10.1002/2015JC011337, 2016.
Chen, Z., Gong, W., Cai, H., Chen, Y., and Zhang, H.: Dispersal of the Pearl River plume over continental shelf in summer, Estuar. Coast. Shelf S., 194, 252–262, https://doi.org/10.1016/j.ecss.2017.06.025, 2017a.
Chen, Z., Pan, J., Jiang, Y., and Lin, H.: Far-reaching transport of Pearl River plume water by upwelling jet in the northeastern South China Sea, J. Marine Syst., 173, 60–69, https://doi.org/10.1016/j.jmarsys.2017.04.008, 2017b.
Cheng, P., Li, M., and Li, Y.: Generation of an estuarine sediment plume by a tropical storm, J. Geophys. Res.-Oceans, 118, 856–868, https://doi.org/10.1002/jgrc.20070, 2013.
Choi, S. M., Seo, J. Y., and Ha, H. K.: Contribution of local erosion enhanced by winds to sediment transport in intertidal flat, Mar. Geol., 465, 107171, https://doi.org/10.1016/j.margeo.2023.107171, 2023.
Church, J. A. and White, N. J.: A 20th century acceleration in global sea-level rise, Geophys. Res. Lett., 33, https://doi.org/10.1029/2005gl024826, 2006.
Cui, Y., Wu, J., Ren, J., and Xu, J.: Physical dynamics structures and oxygen budget of summer hypoxia in the Pearl River Estuary, Limnol. Oceanogr., 64, 131–148, https://doi.org/10.1002/lno.11025, 2018.
Cui, Y., Wu, J., Tan, E., and Kao, S. J.: Role of Particle Resuspension in Maintaining Hypoxic Level in the Pearl River Estuary, J. Geophys. Res.-Oceans, 127, https://doi.org/10.1029/2021jc018166, 2022.
Dai, S. B., Yang, S. L., and Cai, A. M.: Impacts of dams on the sediment flux of the Pearl River, southern China, Catena, 76, 36–43, https://doi.org/10.1016/j.catena.2008.08.004, 2008.
Dalyander, P. S., Butman, B., Sherwood, C. R., Signell, R. P., and Wilkin, J. L.: Characterizing wave- and current- induced bottom shear stress: U.S. middle Atlantic continental shelf, Cont. Shelf Res., 52, 73–86, https://doi.org/10.1016/j.csr.2012.10.012, 2013.
Deng, Y., Liu, Z., Zu, T., Hu, J., Gan, J., Lin, Y., Li, Z., Quan, Q., and Cai, Z.: Climatic Controls on the Interannual Variability of Shelf Circulation in the Northern South China Sea, J. Geophys. Res.-Oceans, 127, e2022JC018419, https://doi.org/10.1029/2022JC018419, 2022.
Dong, H., Jia, L., He, Z., Yu, M., and Shi, Y.: Application of parameters and paradigms of the erosion and deposition for cohesive sediment transport modelling in the Lingdingyang Estuary, China, Appl. Ocean Res., 94, 101999, https://doi.org/10.1016/j.apor.2019.101999, 2020.
Dong, L., Su, J., Wong, L., Cao, Z., and Chen, J.: Seasonal variation and dynamics of the Pearl River plume, Cont. Shelf Res., 24, 1761–1777, https://doi.org/10.1016/j.csr.2004.06.006, 2004.
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse Modeling of barotropic ocean tides, J. Atmos. Ocean. Tech., 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:Eimobo>2.0.Co;2, 2002.
Eidam, E. F., Nittrouer, C. A., Ogston, A. S., DeMaster, D. J., Liu, J. P., Nguyen, T. T., and Nguyen, T. N.: Dynamic controls on shallow clinoform geometry: Mekong Delta, Vietnam, Cont. Shelf Res., 147, 165–181, https://doi.org/10.1016/j.csr.2017.06.001, 2017.
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment, J. Geophys. Res.-Oceans, 101, 3747–3764, https://doi.org/10.1029/95JC03205, 1996.
Flather, R. A.: A tidal model of the north-west European continental shelf, Memoires Societe Royale des Sciences de Liege, 10, 141–164, 1976.
Fox, J. M., Hill, P. S., Milligan, T. G., Ogston, A. S., and Boldrin, A.: Floc fraction in the waters of the Po River prodelta, Cont. Shelf Res., 24, 1699–1715, https://doi.org/10.1016/j.csr.2004.05.009, 2004.
Gan, J., Cheung, A., Guo, X., and Li, L.: Intensified upwelling over a widened shelf in the northeastern South China Sea, J. Geophys. Res., 114, https://doi.org/10.1029/2007jc004660, 2009.
Gan, J., San Ho, H., and Liang, L.: Dynamics of Intensified Downwelling Circulation over a Widened Shelf in the Northeastern South China Sea, J. Phys. Oceanogr., 43, 80–94, https://doi.org/10.1175/jpo-d-12-02.1, 2013.
Gao, S. and Collins, M. B.: Holocene sedimentary systems on continental shelves, Mar. Geol., 352, 268–294, https://doi.org/10.1016/j.margeo.2014.03.021, 2014.
Gao, X., Chen, S., Xie, X., Long, A., and Ma, F.: Non-aromatic hydrocarbons in surface sediments near the Pearl River estuary in the South China Sea, Environ. Pollut., 148, 40–47, https://doi.org/10.1016/j.envpol.2006.11.001, 2007.
Gao, X., Arthur Chen, C.-T., Wang, G., Xue, Q., Tang, C., and Chen, S.: Environmental status of Daya Bay surface sediments inferred from a sequential extraction technique, Estuar. Coast. Shelf S., 86, 369–378, https://doi.org/10.1016/j.ecss.2009.10.012, 2010.
Ge, Q., Liu, J. P., Xue, Z., and Chu, F.: Dispersal of the Zhujiang River (Pearl River) derived sediment in the Holocene, Acta Oceanol. Sin., 33, 1–9, https://doi.org/10.1007/s13131-014-0407-8, 2014.
Ge, Q., Xue, Z., Yao, Z., Zang, Z., and Chu, F.: Anti-phase relationship between the East Asian winter monsoon and summer monsoon during the Holocene?, J. Ocean U. China, 16, 175–183, https://doi.org/10.1007/s11802-017-3098-x, 2017.
Ge, Q., Xu, D., Ye, L., Yang, K., and Yao, Z.: Linking Monsoon Activity with River-Derived Sediments Deposition in the Northern South China Sea, J. Ocean U. China, 18, 1098–1104, https://doi.org/10.1007/s11802-019-4155-4, 2019.
Georgiou, I. Y., FitzGerald, D. M., Sakib, M. M., Messina, F., Kulp, M. A., and Miner, M. D.: Storm Dynamics Control Sedimentation and Shelf-Bay-Marsh Sediment Exchange Along the Louisiana Coast, Geophys. Res. Lett., 51, e2024GL111344, https://doi.org/10.1029/2024GL111344, 2024.
Geyer, W. R., Hill, P. S., and Kineke, G. C.: The transport, transformation and dispersal of sediment by buoyant coastal flows, Cont. Shelf Res., 24, 927–949, https://doi.org/10.1016/j.csr.2004.02.006, 2004.
Gong, W., Chen, Y., Zhang, H., and Chen, Z.: Effects of Wave–Current Interaction on Salt Intrusion During a Typhoon Event in a Highly Stratified Estuary, Estuar. Coast., 41, 1904–1923, https://doi.org/10.1007/s12237-018-0393-8, 2018a.
Gong, W., Lin, Z., Chen, Y., Chen, Z., Shen, J., and Zhang, H.: Effect of waves on the dispersal of the Pearl River plume in winter, J. Marine Syst., 186, 47–67, https://doi.org/10.1016/j.jmarsys.2018.05.003, 2018b.
Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser, E., Di, L. E., Fennel, K., Geyer, W. R., Hermann, A. J., Lanerolle, L., Levin, J., McWilliams, J. C., Miller, A. J., Moore, A. M., Powell, T. M., Shchepetkin, A. F., Sherwood, C. R., Signell, R. P., Warner, J. C., and Wilkin, J.: Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System, J. Comput. Phys., 227, 3595–3624, https://doi.org/10.1016/j.jcp.2007.06.016, 2008.
Hanebuth, T. J. J., Lantzsch, H., and Nizou, J.: Mud depocenters on continental shelves – appearance, initiation times, and growth dynamics, Geo-Mar. Lett., 35, 487–503, https://doi.org/10.1007/s00367-015-0422-6, 2015.
Harff, J., Leipe, T., and Zhou, D.: Pearl River Estuary related sediments as response to Holocene climate change and anthropogenic impact (PECAI), J. Marine Syst., 82, S1–S2, https://doi.org/10.1016/j.jmarsys.2010.02.008, 2010.
Harris, C. K., Traykovski, P. A., and Geyer, W. R.: Flood dispersal and deposition by near-bed gravitational sediment flows and oceanographic transport: A numerical modeling study of the Eel River shelf, northern California, J. Geophys. Res.-Oceans, 110, https://doi.org/10.1029/2004jc002727, 2005.
Harris, C. K., Sherwood, C. R., Signell, R. P., Bever, A. J., and Warner, J. C.: Sediment dispersal in the northwestern Adriatic Sea, J. Geophys. Res., 113, https://doi.org/10.1029/2006jc003868, 2008.
Hong, B., Liu, Z., Shen, J., Wu, H., Gong, W., Xu, H., and Wang, D.: Potential physical impacts of sea-level rise on the Pearl River Estuary, China, J. Marine Syst., 201, 103245, https://doi.org/10.1016/j.jmarsys.2019.103245, 2020.
Hu, J., Li, S., and Geng, B.: Modeling the mass flux budgets of water and suspended sediments for the river network and estuary in the Pearl River Delta, China, J. Marine Syst., 88, 252–266, https://doi.org/10.1016/j.jmarsys.2011.05.002, 2011.
Hu, S., Li, Y., Hu, P., Zhang, H., Zhang, G., and Gong, W.: The Impacts of Far-Field Typhoon-Generated Coastal Trapped Waves on the Hydrodynamics in the Northern South China Sea: A Case Study of Typhoon In-Fa, J. Geophys. Res.-Oceans, 129, https://doi.org/10.1029/2024jc021359, 2024.
Huang, D., Du, J., Deng, B., and Zhang, J.: Distribution patterns of particle-reactive radionuclides in sediments off eastern Hainan Island, China: Implications for source and transport pathways, Cont. Shelf Res., 57, 10–17, https://doi.org/10.1016/j.csr.2012.04.019, 2013.
Jacob, R., Larson, J., and Ong, E.: M × N Communication and Parallel Interpolation in Community Climate System Model Version 3 Using the Model Coupling Toolkit, IJHPCA, 19, 293–307, https://doi.org/10.1177/1094342005056116, 2005.
Kirby, M. F., Devoy, B., Law, R. J., Ward, A., and Aldridge, J.: The use of a bioassay based approach to the hazard/risk assessment of cargo derived toxicity during shipping accidents: a case study–the MSC Napoli, Mar. Pollut. Bull., 56, 781–786, https://doi.org/10.1016/j.marpolbul.2008.01.006, 2008.
Krige, D. G.: A statistical approach to some mine valuation and allied problems on the Witwatersrand. University of the Witwatersrand, Johannesburg [thesis], https://hdl.handle.net/10520/AJA0038223X_4792 (last access: 11 September 2025), 1951.
Kuehl, S. A., Alexander, C. R., Blair, N. E., Harris, C. K., Marsaglia, K. M., Ogston, A. S., Orpin, A. R., Roering, J. J., Bever, A. J., Bilderback, E. L., Carter, L., Cerovski-Darriau, C., Childress, L. B., Reide Corbett, D., Hale, R. P., Leithold, E. L., Litchfield, N., Moriarty, J. M., Page, M. J., Pierce, L. E. R., Upton, P., and Walsh, J. P.: A source-to-sink perspective of the Waipaoa River margin, Earth-Sci. Rev., 153, 301–334, https://doi.org/10.1016/j.earscirev.2015.10.001, 2016.
Kumar, N., Voulgaris, G., Warner, J. C., and Olabarrieta, M.: Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications, Ocean Model., 47, 65–95, https://doi.org/10.1016/j.ocemod.2012.01.003, 2012.
LaRowe, D. E., Arndt, S., Bradley, J. A., Estes, E. R., Hoarfrost, A., Lang, S. Q., Lloyd, K. G., Mahmoudi, N., Orsi, W. D., Shah Walter, S. R., Steen, A. D., and Zhao, R.: The fate of organic carbon in marine sediments – New insights from recent data and analysis, Earth-Sci. Rev., 204, 103146, https://doi.org/10.1016/j.earscirev.2020.103146, 2020.
Larson, J., Jacob, R., and Ong, E.: The Model Coupling Toolkit: A New Fortran90 Toolkit for Building Multiphysics Parallel Coupled Models, IJHPCA, 19, 277–292, 2005.
Li, J., Li, M., and Xie, L.: Observations of near-inertial oscillations trapped at inclined front on continental shelf of the northwestern South China Sea, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-3909, 2024a.
Li, X., Chrysagi, E., Klingbeil, K., and Burchard, H.: Impact of Islands on Tidally Dominated River Plumes: A High-Resolution Modeling Study, J. Geophys. Res.-Oceans, 129, e2023JC020272, https://doi.org/10.1029/2023JC020272, 2024b.
Lin, S., Niu, J., Liu, G., Wei, X., and Cai, S.: Variations of suspended sediment transport caused by changes in shoreline and bathymetry in the Zhujiang (Pearl) River Estuary in the wet season, Acta Oceanol. Sin., 41, 54–73, https://doi.org/10.1007/s13131-022-2017-1, 2022.
Lin, W., Feng, Y., Yu, K., Lan, W., Wang, Y., Mo, Z., Ning, Q., Feng, L., He, X., and Huang, Y.: Long-lived radionuclides in marine sediments from the Beibu Gulf, South China Sea: Spatial distribution, controlling factors, and proxy for transport pathway, Mar. Geol., 424, 106157, https://doi.org/10.1016/j.margeo.2020.106157, 2020.
Liu, G. and Cai, S.: Modeling of suspended sediment by coupled wave-current model in the Zhujiang (Pearl) River Estuary, Acta Oceanol. Sin., 38, 22–35, https://doi.org/10.1007/s13131-019-1455-3, 2019.
Liu, H., Ye, L., Zhou, W., and Wu, J.: Salt-wedge intrusion-retreat cycle induced sediment floc dynamics in bottom boundary layer (BBL) of a micro-tidal estuary, Mar. Geol., 466, 107175, https://doi.org/10.1016/j.margeo.2023.107175, 2023.
Liu, J. P., Xue, Z., Ross, K., Yang, Z., and Gao, S.: Fate of Sediments Delivered to the Sea by Asian Large Rivers: Long-Distance Transport and Formation of Remote Alongshore Clinothems, Sediment. Rec., 7, https://doi.org/10.2110/sedred.2009.4.4, 2009.
Liu, N., Geng, B., Xue, H., Xiu, P., Wang, Q., and Wang, D.: Interannual Variability of Shelf and Slope Circulations in the Northern South China Sea, J. Ocean U. China, 19, 1005–1016, https://doi.org/10.1007/s11802-020-4446-9, 2020.
Liu, Y., Gao, S., Wang, Y. P., Yang, Y., Long, J., Zhang, Y., and Wu, X.: Distal mud deposits associated with the Pearl River over the northwestern continental shelf of the South China Sea, Mar. Geol., 347, 43–57, https://doi.org/10.1016/j.margeo.2013.10.012, 2014.
Liu, Z., Zhao, Y., Colin, C., Stattegger, K., Wiesner, M. G., Huh, C.-A., Zhang, Y., Li, X., Sompongchaiyakul, P., You, C.-F., Huang, C.-Y., Liu, J. T., Siringan, F. P., Le, K. P., Sathiamurthy, E., Hantoro, W. S., Liu, J., Tuo, S., Zhao, S., Zhou, S., He, Z., Wang, Y., Bunsomboonsakul, S., and Li, Y.: Source-to-sink transport processes of fluvial sediments in the South China Sea, Earth-Sci. Rev., 153, 238–273, https://doi.org/10.1016/j.earscirev.2015.08.005, 2016.
Lu, X., Wang, Z., Guo, X., Gu, Y., Liang, W., and Liu, L.: Impacts of metal contamination and eutrophication on dinoflagellate cyst assemblages along the Guangdong coast of southern China, Mar. Pollut. Bull., 120, 239–249, https://doi.org/10.1016/j.marpolbul.2017.05.032, 2017.
Ma, C., Zhao, J., Ai, B., Sun, S., and Yang, Z.: Machine Learning Based Long-Term Water Quality in the Turbid Pearl River Estuary, China, J. Geophys. Res.-Oceans, 127, https://doi.org/10.1029/2021jc018017, 2022.
Ma, M., Zhang, W., Chen, W., Deng, J., and Schrum, C.: Impacts of morphological change and sea-level rise on stratification in the Pearl River Estuary, Frontiers in Marine Science, 10, 1072080, https://doi.org/10.3389/fmars.2023.1072080, 2023.
Ma, M., Porz, L., Schrum, C., and Zhang, W.: Physical mechanisms, dynamics and interconnections of multiple estuarine turbidity maximum in the Pearl River estuary, Frontiers in Marine Science, 11, 1385382, https://doi.org/10.3389/fmars.2024.1385382, 2024.
Ma, Y., Friedrichs, C. T., Harris, C. K., and Wright, L. D.: Deposition by seasonal wave- and current-supported sediment gravity flows interacting with spatially varying bathymetry: Waiapu shelf, New Zealand, Mar. Geol., 275, 199–211, https://doi.org/10.1016/j.margeo.2010.06.001, 2010.
Madsen, O. S.: Spectral Wave-Current Bottom Boundary Layer Flows, Coast. Eng., 1, 384–398, 1994.
Mao, Q., Shi, P., Yin, K., Gan, J., and Qi, Y.: Tides and tidal currents in the Pearl River Estuary, Cont. Shelf Res., 24, 1797–1808, https://doi.org/10.1016/j.csr.2004.06.008, 2004.
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res.-Oceans, 102, 5753–5766, https://doi.org/10.1029/96JC02775, 1997a.
Marshall, J., Hill, C., Perelman, L., and Adcroft, A.: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling, J. Geophys. Res.-Oceans, 102, 5733–5752, https://doi.org/10.1029/96JC02776, 1997b.
McKee, B. A., Aller, R. C., Allison, M. A., Bianchi, T. S., and Kineke, G. C.: Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: benthic boundary layer and seabed processes, Cont. Shelf Res., 24, 899–926, https://doi.org/10.1016/j.csr.2004.02.009, 2004.
McWilliams, J. C., Restrepo, J. M., and Lane, E. M.: An asymptotic theory for the interaction of waves and currents in coastal waters, J. Fluid Mech., 511, 135–178, https://doi.org/10.1017/s0022112004009358, 2004.
Meade, R. H.: Landward Transport of Bottom Sediments in Estuaries of the Atlantic Coastal Plain, J. Sediment. Petrol., 39, 222–234, 1969.
Milliman, J. and Farnsworth, K. L.: River discharge to the coastal ocean: A global synthesis, Cambridge University Press, UK, ISBN 978-0-521-87987-3, 2011.
Ministry of Water Resources of the PRC: Bulletin of River Sediment in China, http://www.mwr.gov.cn/sj/#tjgb (last access: 10 September 2024), 2022.
Moriarty, J. M., Harris, C. K., Friedrichs, M. A. M., Fennel, K., and Xu, K.: Impact of Seabed Resuspension on Oxygen and Nitrogen Dynamics in the Northern Gulf of Mexico: A Numerical Modeling Study, J. Geophys. Res.-Oceans, 123, 7237–7263, https://doi.org/10.1029/2018JC013950, 2018.
Nan, F., Xue, H., and Yu, F.: Kuroshio intrusion into the South China Sea: A review, Prog. Oceanogr., 137, 314–333, https://doi.org/10.1016/j.pocean.2014.05.012, 2015.
Ning, L. and Qian, Y.: Interdecadal change in extreme precipitation over South China and its mechanism, Adv. Atmos. Sci., 26, 109–118, https://doi.org/10.1007/s00376-009-0109-x, 2009.
Nittrouer, C. A. and Wright, L. D.: Transport of particles across continental shelves, Rev. Geophys., 32, 85–113, https://doi.org/10.1029/93RG02603, 1994.
Orlanski, I.: A simple boundary condition for unbounded hyperbolic flows, J. Comput. Phys., 21, 251–269, https://doi.org/10.1016/0021-9991(76)90023-1, 1976.
Ou, S., Zhang, H., and Wang, D.: Dynamics of the buoyant plume off the Pearl River Estuary in summer, Environ. Fluid Mech., 9, 471–492, https://doi.org/10.1007/s10652-009-9146-3, 2009.
Ralston, D. K. and Geyer, W. R.: Sediment Transport Time Scales and Trapping Efficiency in a Tidal River, J. Geophys. Res.-Earth, 122, 2042–2063, https://doi.org/10.1002/2017jf004337, 2017.
Ralston, D. K., Geyer, W. R., and Warner, J. C.: Bathymetric controls on sediment transport in the Hudson River estuary: Lateral asymmetry and frontal trapping, J. Geophys. Res.-Oceans, 117, https://doi.org/10.1029/2012jc008124, 2012.
Raymond, W. H. and Kuo, H. L.: A radiation boundary condition for multi-dimensional flows, Q. J. Roy. Meteor. Soc., 110, 535–551, 1984.
Repasch, M., Scheingross, J. S., Hovius, N., Lupker, M., Wittmann, H., Haghipour, N., Gröcke, D. R., Orfeo, O., Eglinton, T. I., and Sachse, D.: Fluvial organic carbon cycling regulated by sediment transit time and mineral protection, Nat. Geosci., 14, 842–848, https://doi.org/10.1038/s41561-021-00845-7, 2021.
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H.-y., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: The NCEP Climate Forecast System Version 2, J. Climate, 27, 2185–2208, https://doi.org/10.1175/JCLI-D-12-00823.1, 2014.
Sanford, L. P.: Wave-forced resuspension of upper Chesapeake Bay muds, Estuaries, 17, 148–165, 1994.
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Model., 9, 347–404, https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
Shepard, F. P.: Nomenclature Based on Sand-silt-clay Ratios, J. Sediment. Res., 24, 151–158, 1954.
Sherwood, C. R., Aretxabaleta, A. L., Harris, C. K., Rinehimer, J. P., Verney, R., and Ferré, B.: Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST r1234), Geosci. Model Dev., 11, 1849–1871, https://doi.org/10.5194/gmd-11-1849-2018, 2018.
Shi, M., Chen, C., Xu, Q., Lin, H., Liu, G., Wang, H., Wang, F., and Yan, J.: The Role of Qiongzhou Strait in the Seasonal Variation of the South China Sea Circulation, J. Phys. Oceanogr., 32, 103–121, 2002.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G.: A Description of the Advanced Research WRF Version 2, NCAR Technical Note: NCAR/TN-468+STR, https://homepages.see.leeds.ac.uk/~lecrrb/wrf/arw_v2.pdf (last access: 10 September 2024), 2005.
Smagorinsky, J.: General circulation experiments with the primitive equations, Mon. Weather Rev., 91, 99–164, https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2, 1963.
Song, Y. and Haidvogel, D.: A Semi-implicit Ocean Circulation Model Using a Generalized Topography-Following Coordinate System, J. Comput. Phys., 115, 228–244, https://doi.org/10.1006/jcph.1994.1189, 1994.
Ståhlberg, C., Bastviken, D., Svensson, B. H., and Rahm, L.: Mineralisation of organic matter in coastal sediments at different frequency and duration of resuspension, Estuar. Coast. Shelf S., 70, 317–325, https://doi.org/10.1016/j.ecss.2006.06.022, 2006.
Su, J.: Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary, Cont. Shelf Res., 24, 1745–1760, https://doi.org/10.1016/j.csr.2004.06.005, 2004.
Sun, Z., Zhang, Z., Qiu, B., Zhang, X., Zhou, C., Huang, X., Zhao, W., and Tian, J.: Three-Dimensional Structure and Interannual Variability of the Kuroshio Loop Current in the Northeastern South China Sea, J. Phys. Oceanogr., 50, 2437–2455, https://doi.org/10.1175/JPO-D-20-0058.1, 2020.
Tolman, H., Accensi, M., Alves, J.-H., Ardhuin, F., Barbariol, F., Benetazzo, A., Bennis, A.-C., Bidlot, J., Booij, N., Boutin, G., Campbell, T., Chalikov, D., Chawla, A., Cheng, S., Collins Iii, C., Filipot, J.-F., Foreman, M., Janssen, P., Leckler, F., and Westhuysen, A.: User manual and system documentation of WAVEWATCH III (R) version 5.16, https://polar.ncep.noaa.gov/waves/wavewatch/manual.v5.16.pdf (last access: 10 September 2024), 2016.
Turner, A. and Millward, G. E.: Suspended Particles: Their Role in Estuarine Biogeochemical Cycles, Estuar. Coast. Shelf S., 55, 857–883, https://doi.org/10.1006/ecss.2002.1033, 2002.
van der Wegen, M., Dastgheib, A., Jaffe, B. E., and Roelvink, D.: Bed composition generation for morphodynamic modeling: case study of San Pablo Bay in California, USA, Ocean Dynam., 61, 173–186, https://doi.org/10.1007/s10236-010-0314-2, 2010.
Walsh, J. P. and Nittrouer, C. A.: Understanding fine-grained river-sediment dispersal on continental margins, Mar. Geol., 263, 34–45, https://doi.org/10.1016/j.margeo.2009.03.016, 2009.
Wang, C., Li, W., Chen, S., Li, D., Wang, D., and Liu, J.: The spatial and temporal variation of total suspended solid concentration in Pearl River Estuary during 1987–2015 based on remote sensing, Sci. Total Environ., 618, 1125–1138, https://doi.org/10.1016/j.scitotenv.2017.09.196, 2018.
Wang, C., Liu, Z., Harris, C. K., Wu, X., Wang, H., Bian, C., Bi, N., Duan, H., and Xu, J.: The Impact of Winter Storms on Sediment Transport Through a Narrow Strait, Bohai, China, J. Geophys. Res.-Oceans, 125, e2020JC016069, https://doi.org/10.1029/2020JC016069, 2020.
Wang, S., Zhang, N., Chen, H., Li, L., and Yan, W.: The surface sediment types and their rare earth element characteristics from the continental shelf of the northern south China sea, Cont. Shelf Res., 88, 185–202, https://doi.org/10.1016/j.csr.2014.08.005, 2014.
Wang, S., Wu, S., Yan, W., Huang, W., Miao, L., Lu, J., Chen, Z., and Liu, F.: Rare metal elements in surface sediment from five bays on the northeastern coast of the South China Sea, Environ. Earth Sci., 74, 4961–4971, https://doi.org/10.1007/s12665-015-4504-6, 2015.
Wang, S., Li, J., Wu, S., Yan, W., Huang, W., Miao, L., and Chen, Z.: The distribution characteristics of rare metal elements in surface sediments from four coastal bays on the northwestern South China Sea, Estuar. Coast. Shelf S., 169, 106–118, https://doi.org/10.1016/j.ecss.2015.12.001, 2016.
Wang, Y., Wang, Y., Wan, X., Huang, C., Wang, R., Liu, X., Yi, J., and Zhang, Y.: Influence of the Hanjiang River's Inlet Sediment Decrease on Modern Sedimentation in the Underwater Delta, Appl. Sci., 13, 8039, https://doi.org/10.3390/app13148039, 2023.
Warner, J. C., Sherwood, C. R., Arango, H. G., and Signell, R. P.: Performance of four turbulence closure models implemented using a generic length scale method, Ocean Model., 8, 81–113, https://doi.org/10.1016/j.ocemod.2003.12.003, 2005.
Warner, J. C., Sherwood, C. R., Signell, R. P., Harris, C. K., and Arango, H. G.: Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model, Comput. Geosci., 34, 1284–1306, https://doi.org/10.1016/j.cageo.2008.02.012, 2008.
Warner, J. C., Armstrong, B., He, R., and Zambon, J. B.: Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling System, Ocean Model., 35, 230–244, https://doi.org/10.1016/j.ocemod.2010.07.010, 2010.
Warner, J. C., Schwab, W. C., List, J. H., Safak, I., Liste, M., and Baldwin, W.: Inner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy, Cont. Shelf Res., 138, 1–18, https://doi.org/10.1016/j.csr.2017.02.003, 2017.
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., and Wigley, R.: A new digital bathymetric model of the world's oceans, Earth Space Sci., 2, 331–345, https://doi.org/10.1002/2015EA000107, 2015.
Wright, L. D. and Coleman, J. M.: Variations in Morphology of Major River Deltas as Functions of Ocean Wave and River Discharge Regimes, AAPG Bull., 57, 370–398, 1973.
Wright, L. D. and Nittrouer, C. A.: Dispersal of river sediments in coastal seas: Six contrasting cases, Estuaries, 18, 494–508, https://doi.org/10.2307/1352367, 1995.
Wu, C., Xing, W., Jie, R., Yun, B., Zhigang, H., Yiaping, L., Heyin, S., and Wenyan, Z.: Morphodynamics of the rock-bound outlets of the Pearl River estuary, South China – A preliminary study, J. Marine Syst., 82, S17–S27, https://doi.org/10.1016/j.jmarsys.2010.02.002, 2010.
Wu, Z., Milliman, J. D., Zhao, D., Zhou, J., and Yao, C.: Recent geomorphic change in LingDing Bay, China, in response to economic and urban growth on the Pearl River Delta, Southern China, Global Planet. Change, 123, 1–12, https://doi.org/10.1016/j.gloplacha.2014.10.009, 2014.
Wu, Z., Milliman, J. D., Zhao, D., Cao, Z., Zhou, J., and Zhou, C.: Geomorphologic changes in the lower Pearl River Delta, 1850–2015, largely due to human activity, Geomorphology, 314, 42–54, https://doi.org/10.1016/j.geomorph.2018.05.001, 2018.
Wu, Z. Y., Saito, Y., Zhao, D. N., Zhou, J. Q., Cao, Z. Y., Li, S. J., Shang, J. H., and Liang, Y. Y.: Impact of human activities on subaqueous topographic change in Lingding Bay of the Pearl River estuary, China, during 1955–2013, Sci. Rep., 6, 37742, https://doi.org/10.1038/srep37742, 2016.
Xia, X. M., Li, Y., Yang, H., Wu, C. Y., Sing, T. H., and Pong, H. K.: Observations on the size and settling velocity distributions of suspended sediment in the Pearl River Estuary, China, Cont. Shelf Res., 24, 1809–1826, https://doi.org/10.1016/j.csr.2004.06.009, 2004.
Xu, K., Corbett, D. R., Walsh, J. P., Young, D., Briggs, K. B., Cartwright, G. M., Friedrichs, C. T., Harris, C. K., Mickey, R. C., and Mitra, S.: Seabed erodibility variations on the Louisiana continental shelf before and after the 2011 Mississippi River flood, Estuar. Coast. Shelf S., 149, 283–293, https://doi.org/10.1016/j.ecss.2014.09.002, 2014.
Xu, K., Mickey, R. C., Chen, Q., Harris, C. K., Hetland, R. D., Hu, K., and Wang, J.: Shelf sediment transport during hurricanes Katrina and Rita, Comput. Geosci., 90, 24–39, https://doi.org/10.1016/j.cageo.2015.10.009, 2016.
Xue, Z., He, R., Liu, J. P., and Warner, J. C.: Modeling transport and deposition of the Mekong River sediment, Cont. Shelf Res., 37, 66–78, https://doi.org/10.1016/j.csr.2012.02.010, 2012.
Yang, B., Liu, S.-M., and Zhang, G.-L.: Geochemical characteristics of phosphorus in surface sediments from the continental shelf region of the northern South China Sea, Mar. Chem., 198, 44–55, https://doi.org/10.1016/j.marchem.2017.11.001, 2018.
Yang, J., Wu, D., and Lin, X.: On the dynamics of the South China Sea Warm Current, J. Geophys. Res.-Oceans, 113, https://doi.org/10.1029/2007JC004427, 2008.
Young, I. R., Zieger, S., and Babanin, A. V.: Global trends in wind speed and wave height, Science, 332, 451–455, https://doi.org/10.1126/science.1197219, 2011.
Zang, Z., Xue, Z. G., Xu, K., Bentley, S. J., Chen, Q., D'Sa, E. J., and Ge, Q.: A Two Decadal (1993–2012) Numerical Assessment of Sediment Dynamics in the Northern Gulf of Mexico, Water, 11, 938, https://doi.org/10.3390/w11050938, 2019.
Zeng, X., He, R., Xue, Z., Wang, H., Wang, Y., Yao, Z., Guan, W., and Warrillow, J.: River-derived sediment suspension and transport in the Bohai, Yellow, and East China Seas: A preliminary modeling study, Cont. Shelf Res., 111, 112–125, https://doi.org/10.1016/j.csr.2015.08.015, 2015.
Zhan, W., Wu, J., Wei, X., Tang, S., and Zhan, H.: Spatio-temporal variation of the suspended sediment concentration in the Pearl River Estuary observed by MODIS during 2003–2015, Cont. Shelf Res., 172, 22–32, https://doi.org/10.1016/j.csr.2018.11.007, 2019.
Zhang, G., Cheng, W., Chen, L., Zhang, H., and Gong, W.: Transport of riverine sediment from different outlets in the Pearl River Estuary during the wet season, Mar. Geol., 415, 105957, https://doi.org/10.1016/j.margeo.2019.06.002, 2019.
Zhang, G., Chen, Y., Cheng, W., Zhang, H., and Gong, W.: Wave Effects on Sediment Transport and Entrapment in a Channel-Shoal Estuary: The Pearl River Estuary in the Dry Winter Season, J. Geophys. Res.-Oceans, 126, https://doi.org/10.1029/2020jc016905, 2021.
Zhang, G., Hu, P., Hu, S., Zhang, H., and Gong, W.: Tidal effects on the dispersal and water age of the plumes from eight outlets of the Pearl river during the wet summer, Ocean Coast. Manage., 266, 107704, https://doi.org/10.1016/j.ocecoaman.2025.107704, 2025a.
Zhang, G., Hu, S., Yu, X., Zhang, H., and Gong, W.: Data for submitted paper “Modeling dispersal of the Pearl River-derived sediment over the Shelf”, Zenodo [data set], https://doi.org/10.5281/zenodo.15013448, 2025b.
Zhang, J., Jiang, Q., Jeng, D., Zhang, C., Chen, X., and Wang, L.: Experimental Study on Mechanism of Wave-Induced Liquefaction of Sand-Clay Seabed, J. Mar. Sci. Eng., 8, 66, https://doi.org/10.3390/jmse8020066, 2020.
Zhang, W., Wei, X., Zheng, J., Zhu, Y., and Zhang, Y.: Estimating suspended sediment loads in the Pearl River Delta region using sediment rating curves, Cont. Shelf Res., 38, 35–46, https://doi.org/10.1016/j.csr.2012.02.017, 2012.
Zhang, W., Zheng, J., Ji, X., Hoitink, A. J. F., van der Vegt, M., and Zhu, Y.: Surficial sediment distribution and the associated net sediment transport pattern retain–> in the Pearl River Estuary, South China, Cont. Shelf Res., 61–62, 41–51, https://doi.org/10.1016/j.csr.2013.04.011, 2013.
Zhang, Y. J., Ye, F., Stanev, E. V., and Grashorn, S.: Seamless cross-scale modeling with SCHISM, Ocean Model., 102, 64-81, https://doi.org/10.1016/j.ocemod.2016.05.002, 2016.
Zhong, Y., Chen, Z., Li, L., Liu, J., Li, G., Zheng, X., Wang, S., and Mo, A.: Bottom water hydrodynamic provinces and transport patterns of the northern South China Sea: Evidence from grain size of the terrigenous sediments, Cont. Shelf Res., 140, 11–26, https://doi.org/10.1016/j.csr.2017.01.023, 2017.
Zong, X., Cheng, X., Zhang, S., Lian, Q., Deng, F., and Chen, Z.: Tidal effects on dynamics and freshwater transport of a medium-scale river plume with multiple outlets, Ocean Model., 188, 102338, https://doi.org/10.1016/j.ocemod.2024.102338, 2024.
Zong, Y., Huang, K., Switzer, A., yu, F., and Yim, W.: An evolutionary model for the Holocene formation of the Pearl River delta, China, Holocene, 19, 129–142, https://doi.org/10.1177/0959683608098957, 2009.
Short summary
The study reveals strong seasonal patterns in Pearl River-derived sediment transport: calm summers favor deposition via buoyant plumes, while winter winds and waves enhance resuspension and southwestward transport into the Beibu Gulf. Tides drive estuarine export, waves dominate coastal resuspension, and shelf circulation promotes summer eastward spread. Settling velocity, spin-up duration, and seasonal changes in critical shear stress also affect sediment retention and transport pathways.
The study reveals strong seasonal patterns in Pearl River-derived sediment transport: calm...