Articles | Volume 21, issue 4
https://doi.org/10.5194/os-21-1677-2025
https://doi.org/10.5194/os-21-1677-2025
Technical note
 | 
05 Aug 2025
Technical note |  | 05 Aug 2025

Combining BioGeoChemical-Argo (BGC-Argo) floats and satellite observations for water column estimations of the particulate backscattering coefficient

Jorge García-Jiménez, Ana B. Ruescas, Julia Amorós-López, and Raphaëlle Sauzède

Related authors

Optimizing a large number of parameters in a Biogeochemical Model: A Multi-Variable BGC-Argo Data Assimilation Approach
Quentin Hyvernat, Alexandre Mignot, Elodie Gutknecht, Giovanni Ruggiero, Coralie Perruche, Guillaume Samson, Raphaëlle Sauzède, Olivier Aumont, Hervé Claustre, and Fabrizio D'Ortenzio
EGUsphere, https://doi.org/10.5194/egusphere-2025-4369,https://doi.org/10.5194/egusphere-2025-4369, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Using machine learning and Biogeochemical-Argo (BGC-Argo) floats to assess biogeochemical models and optimize observing system design
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023,https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
EXPLORING DESIS FOR INLAND WATER QUALITY IN SPANISH RESERVOIRS
A. B. Ruescas, M. Pereira-Sandoval, and A. Perez-Suay
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-1-W1-2021, 65–68, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-65-2022,https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-65-2022, 2022

Cited articles

Ahmed, S., Gilerson, A., Hlaing, S., Weidemann II, A., Arnone, R., and Wang, M.: Evaluation of ocean color data processing schemes for VIIRS sensor using in-situ data of coastal AERONET-OC sites, in: Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2013, International Society for Optics and Photonics, SPIE, 8888, 88880H, https://doi.org/10.1117/12.2028821, 2013. a
Argo: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC), SEANOE [data set], https://doi.org/10.17882/42182, 2025. a
Bailey, S. W. and Werdell, P. J.: A multi-sensor approach for the on-orbit validation of ocean color satellite data products, Remote Sens. Environ., 102, 12–23, https://doi.org/10.1016/j.rse.2006.01.015, 2006. a
Barnes, B. B., Cannizzaro, J. P., English, D. C., and Hu, C.: Validation of VIIRS and MODIS reflectance data in coastal and oceanic waters: An assessment of methods, Remote Sens. Environ., 220, 110–123, https://doi.org/10.1016/j.rse.2018.10.034, 2019.  a
Behrenfeld, M. J. and Boss, E.: Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass, J. Marine Res., 64, https://elischolar.library.yale.edu/journal_of_marine_research/134 (last access: 28 July 2025), 2006. a
Download
Short summary
Estimation of particulate organic carbon (POC) relies on proxies like the particulate backscattering coefficient (bbp) derived from BioGeoChemical-Argo (BGC-Argo) floats and satellite data. BGC-Argo floats provide global insights into vertical bio-optical dynamics. This study integrates Sentinel-3 OLCI (Ocean and Land Colour Instrument) data and machine learning approaches to improve bbp estimates in the top 250 m of the water column. The results differ based on the dynamics of the study areas.
Share