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Abstract. As the second-largest carbon reservoir on Earth,
the ocean regulates the carbon balance through dissolved
and particulate organic carbon (POC) forms. Monitoring car-
bon cycle processes is key to understanding the climate
system. Although most organic carbon in the ocean exists
in dissolved form, POC, despite its smaller share, plays a
vital role by connecting surface biomass production with
the deep ocean and sedimentation processes. POC estima-
tion is achieved by measuring proxies like the particulate
backscattering coefficient (bbp) estimated from satellite ob-
servations and in situ sensors, such as the BioGeoChemical-
Argo (BGC-Argo) floats. Previous studies have integrated
data from BGC-Argo floats and satellite sensors, demon-
strating the potential of machine learning models to esti-
mate vertical bio-optical properties within the water column.
The approach presented here enhances the estimation within
the top 250 m of the water column compared with previ-
ous works. The estimations are performed in two distinct
regions, the North Atlantic and the Subtropical Gyres, and
across several layers within two maximum depth limits of 50
and 250 m. Data from BGC-Argo profiles and the Ocean and
Land Colour Instrument (OLCI) sensor are used together to
build a training dataset for a random forest model, which is
applied with different sets of variables. Additional consider-
ations regarding our datasets include short time criteria for
matchups (±24 h) and high spatial resolution. The random
forest model shows promising results, especially within the
first 50 m in the Subtropical Gyres.

1 Introduction

The ocean covers approximately 70 % of Earth’s surface and
plays a fundamental role in regulating climate dynamics. It
redistributes energy and carbon through a variety of physical
and biogeochemical processes. Among these processes, the
biological carbon pump facilitates the transfer of CO2 from
the atmosphere to the ocean floor by enabling the production
and sinking of particulate organic carbon (POC), which is
sequestered in deep-ocean sediments. POC originates from
living organic carbon primarily produced by photosynthetic
organisms such as phytoplankton, which thrive in the sun-
lit upper-ocean layers. These organisms require carbon com-
pounds, along with light and nutrients, to survive and re-
produce (Falkowski et al., 1998; Siegel et al., 2014). Their
presence and abundance reflect the interplay of resources
and losses in the environment (Behrenfeld et al., 2006), with
populations maintaining daily division cycles even in regions
where nutrients appear to be depleted beyond detection lim-
its (Ribalet et al., 2015; Vaulot and Marie, 1999). Quanti-
fying phytoplankton biomass and carbon content is crucial
to understanding these ecosystem dynamics and their role in
carbon cycling. Chlorophyll-a (chl-a) concentration has tra-
ditionally served as a proxy for phytoplankton biomass, but
its interpretation is often challenged by physiological photo-
acclimation, which alters intracellular pigment levels without
necessarily reflecting actual changes in biomass. The partic-
ulate backscattering coefficient (bbp) has been recognized as
a stable optical proxy for phytoplankton biomass and car-
bon content as it is sensitive to the abundance, size distri-
bution, and composition of suspended particles rather than
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pigment concentration alone (Behrenfeld and Boss, 2006;
Graff et al., 2015; Martinez-Vicente et al., 2013). Unlike chl
a, which can underestimate biomass in stratified and olig-
otrophic waters, bbp remains relatively unaffected by photo-
acclimation effects, making it particularly useful for study-
ing carbon fluxes across different oceanic regions and depth
layers. The complex interaction between key variables (usu-
ally nonlinear) and the limited sampling resolution in dy-
namic environments, combined with the technical challenges
of depth-resolved measurements, contribute to gaps in our
understanding of specific marine processes, such as carbon
sequestration, nutrient cycling, sedimentation, and ocean–
atmosphere CO2 exchange.

Bio-optical sensors installed on autonomous platforms,
such as the Biogeochemical-Argo (BGC-Argo) profiling
floats (Claustre et al., 2020), have become a valuable tech-
nology for acquiring in situ data on water mass ecological
and physical statuses. These sensors can measure the scatter-
ing of light in water, which provides information about radia-
tive transfer conditions and the nature and dynamics of sus-
pended particulate matter. The bbp parameter is an inherent
optical property (IOP) of water, and it has been widely rec-
ognized as a robust bio-optical proxy for POC (Cetinić et al.,
2012; Sullivan et al., 2013). However, bbp measured by floats
can have an uncertainty on the order of 10 %–15 % (Bisson
et al., 2019). These uncertainties stem from the instrumen-
tal drift, the sensor calibration limitations, and the reliance
on manufacturer calibration files rather than sensor-specific
calibrations using dark counts. While autonomous platforms
provide extensive spatial and temporal coverage, these fac-
tors must be considered when interpreting bio-optical data to
ensure accuracy and reliability.

IOPs are intrinsic characteristics of water, determined
solely by its composition, and are independent of the ex-
ternal light field or the geometrical angle conditions during
observations. These properties include absorption, elastic
scattering, inelastic processes (such as fluorescence and Ra-
man scattering), and attenuation, which describe how light
behaves and propagates through water. IOPs are essential in
studying light interactions in aquatic environments, as they
reflect the presence of dissolved organic matter, phytoplank-
ton, and suspended particles. The bbp can be measured by
autonomous platforms spread out across the ocean or derived
from scatter measurements by onboard satellite sensors,
such as the Sentinel-3 Ocean and Land Colour Instrument
(OLCI) (https://user.eumetsat.int/resources/user-guides/
sentinel-3-ocean-colour-level-2-data-guide, last access:
28 July 2025) (EUMETSAT, 2019; Jorge et al., 2021; Koest-
ner et al., 2024). Designing observational strategies based
on combining the two approaches constitutes a fundamental
tool for improving knowledge of ocean processes (BGC,
2016).

Several approaches have been developed to estimate POC
from optical measurements of water-leaving radiance (Lw)
or to link POC to remote-sensing-derived IOPs (Bisson et al.,

2019; Evers-King et al., 2017; Loisel et al., 2002; Stramski
et al., 2008). However, these methods are designed to esti-
mate parameters at the sea surface, which does not fully cap-
ture the complexities of carbon export in the ocean, as numer-
ous vertical processes within the water column significantly
influence the carbon cycle. Fusing satellite data with vertical
profiles from BGC-Argo floats to extend the measurements
of surface bio-optical properties (i.e., bbp) to several depth
layers is performed using the SOCA method in Sauzède
et al. (2016, 2020). The initial SOCA2016 method consists
of a neural network combining satellite surface estimates
of bbp and chl-a concentrations, matched up in space and
time with depth-resolved physical properties derived from
temperature–salinity profiles measured by BGC-Argo profil-
ing floats. This method predicts bbp for 10 different depths
in the productive layer. In 2020, the availability of a larger
database with new profiles and the opportunity to increase the
vertical resolution of model outputs led to the development
of the SOCA2020 method. This approach includes additional
sea level anomaly (SLA) inputs with information about sub-
mesoscale processes; it replaces satellite-derived products
(bbp and chl a) with simple reflectances at several wave-
lengths and explores machine-learning-based techniques that
are efficient at estimating retrievals, in addition to quantify-
ing the uncertainty associated with the outputs. A significant
improvement in the bbp predictions was revealed, especially
near the surface layers.

Building on these results, this research proposes an analy-
sis of the bbp estimation in the upper layers of the ocean sur-
face using the Sentinel-3 Ocean and Land Colour Instrument
(S3OLCI). We change the spatial resolution from the 4 km
resolution of GlobColour Level-3 merged products (1/24° at
the Equator) used in previous studies to the 300 m full res-
olution (FR) of the Sentinel-3 OLCI. Additionally, we eval-
uate the model performance after incorporating OLCI spec-
tral wavelengths as features for bbp estimation and compare
these results with those obtained using GlobColour. Another
key aspect of this study is determining whether adding IOPs
derived from satellite data (absorption and scattering) im-
proves the accuracy of the bbp estimation compared with us-
ing reflectances alone. Furthermore, bbp at different depths
of the water column is estimated using multi-output mod-
els. These multi-output random forest models account for the
high correlation between measurements at nearby depths. Fi-
nally, there is a comparison of the accuracy of the bbp esti-
mations at two depth limits, i.e., from the surface to either 50
or 250 m.

2 Data and methods

Data from in situ measurements collected by BGC-Argo
floats, along with satellite data from various projects and mis-
sions (GlobColour and Sentinel-3 OLCI), are utilized as in-
puts for machine learning models. We employ three datasets
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for two different maximum depths – 50 and 250 m. The
three datasets are (1) Level-3 multi-sensor products from
GlobColour, (2) Level-2 single-sensor reflectances from the
Sentinel-3 OLCI processed with the Case 2 Regional Coast
Colour (C2RCC) algorithm (Brockmann et al., 2016), and
(3) the second dataset plus IOPs derived from the OLCI us-
ing the C2RCC processor again.

2.1 Study area

Two regions of the ocean are analyzed, the North Atlantic
(NA) within latitudes 35–80° N and the Subtropical Gyres
(STG) with the latitude band 15–40° N/S (Fig. 1). These
two areas exhibit distinct seasonal patterns throughout the
year, experiencing significant differences in terms of nu-
trients, light availability, minimum and maximum tempera-
ture regimes, mixed layer depth (MLD) variations, thermo-
cline levels, and mesoscale dynamics. One of the main dif-
ferences between these two regions is the variability in the
stratification of the upper-ocean layers. This phenomenon
determines the resistance of the water to overturning, thus
conditioning the supply of nutrients from deeper waters
(Lozier et al., 2011). NA waters are seasonally high in chl
a (mg m−3). During winter, a weakly stratified upper-ocean
water column overturns or mixes, facilitating the upwelling
of nutrients needed to sustain surface productivity. In the
STG region, spanning thousands of kilometers across the
oceans, nutrients are in short supply and waters range from
ultra-oligotrophic (chl a≤ 0.04 mg m−3) to oligotrophic (chl
a≤ 0.07 mg m−3) (Letelier et al., 2004). During the sum-
mer and winter cycles, there is expansion and contraction of
their spatial coverage (Leonelli et al., 2022). Despite these
extreme nutrient limitations, molecular clock studies have
shown that phytoplankton in these regions continue to divide
daily, suggesting that microbial communities have adapted
through efficient nutrient recycling, regenerated production,
and physiological acclimation strategies (Vaulot, 1995; Rib-
alet et al., 2015). Feucher et al. (2019) showed that the two
Northern Hemisphere subtropical gyres have qualitatively
very similar stratification structures, with permanent pycn-
oclines in the North Atlantic and North Pacific.

These regional differences in physical and biological char-
acteristics are also reflected in the vertical distribution of the
bbp, with the NA exhibiting higher surface variability and
deeper gradients compared to the more stable stratification of
the STG (see Fig. 1). The NA, with its seasonal mixing and
higher productivity, generally exhibits higher bbp values due
to increased particulate matter and phytoplankton-derived or-
ganic material in the water column. In contrast, the STG,
characterized by strong stratification and lower phytoplank-
ton biomass, show significantly lower bbp values indicative
of reduced particle concentrations. Despite the global cover-
age of the sampled STG regions, there is much more hetero-
geneity in the NA observations, making it a more complex

and challenging environment for modeling purposes, as ob-
served in the results.

The temporal distribution of the matchups shows a clear
seasonal bias, with most data concentrated between May and
September, particularly during 2017. This uneven distribu-
tion is primarily due to the limited availability of the cloud-
free satellite observations required to match BGC-Argo pro-
files, especially during the winter months, when cloud cover
and low solar angles reduce the quality of remote sensing
products.

2.2 BGC-Argo data

The international One-Argo program provides continuous
ocean observations through an array of profiling floats, each
equipped with sensors tailored to specific objectives: Core-
Argo (for temperature and salinity measurements), BGC-
Argo (for biogeochemical measurements), Deep-Argo (for
measurements deeper than 2000 m), and Polar-Argo (for
measurements in polar environments). Key bio-optical vari-
ables, such as chlorophyll a, optical particulate backscat-
tering, and irradiance, can be measured using BGC-Argo
profiling floats. These variables are essential for generating
products that support biogeochemical and ecosystem stud-
ies (Claustre et al., 2009, 2020). The BGC-Argo floats can
collect measurements from 1000 m to the surface with a
depth resolution of ∼ 1 m every 10 d, even though in many
cases the vertical resolution is poorer.

The lower boundary of the euphotic zone is defined as the
depth where 1 % of the photosynthetically available radiation
(PAR) penetrates the water column (Kirk, 1976). While it is
true that phytoplankton growth is ultimately driven by abso-
lute photon flux rather than a relative threshold (Sverdrup,
1953; Behrenfeld and Boss, 2017), the 1 % PAR definition
remains a widely used metric for characterizing the phys-
ical light environment across diverse oceanographic condi-
tions. This definition focuses on describing the light field as
a physical property rather than directly linking it to biolog-
ical responses, providing a consistent measurable boundary
for analyzing water column dynamics. While recent stud-
ies have demonstrated that phytoplankton can grow at light
levels significantly below this threshold or even under polar
night conditions (Randelhoff et al., 2020), our physical optics
approach allows for standardized comparisons of light atten-
uation patterns across our datasets. This depth varies in the
global ocean from∼ 20 m to more than 120 m, depending on
the region and season. The flux of sinking carbon that exits
the euphotic zone due to gravity is a key component of the
overall carbon sequestration budget (Siegel et al., 2014). In
the present experiments, a depth limit extending beyond the
lower boundary of the euphotic zone (250 m depth) was se-
lected. From 250 m to the surface, measurements of temper-
ature, salinity, density, and spiciness were taken every 2 m,
along with information on the MLD – calculated as the depth
at which the density exceeds 0.03 kg m−3 relative to the den-
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Figure 1. Global map showing the geographic locations of the BGC-Argo floats and satellite data matchups (a, b). Temporal coverage of
matchups by year (c) and month (d) for the North Atlantic (NA, green) and Subtropical Gyres (STG, blue). Vertical profiles (e, f) of bbp
from floats, where the solid lines show the mean values, the shaded areas show the 1 standard deviation, and the dashed red line shows the
average mixed layer depth (MLD).

sity at 10 m (de Boyer Montégut et al., 2004). Vertical mea-
surements of bbp at the same vertical resolution are also avail-
able in the datasets. Spiciness reflects density-compensated
variations in temperature and salinity, providing a tracer for
water mass origins and mixing processes (Smith and Ferrari,
2009). Since particle concentrations and optical properties
often differ between water masses, spiciness anomalies can
be associated with variations in bbp. Warmer and saltier wa-
ters (higher spiciness) can boost stratification, reducing verti-
cal nutrient fluxes and potentially limiting biological produc-
tion, leading to lower concentrations of organic particulate
matter and thus lower bbp. Table 1 shows the different types
of variables used to train and validate the proposed models
for the designed experiments.

The bbp value (Mignot et al., 2014) used here is calculated
following the work of Sullivan and Twardowski (2009). The
angular distribution of scattering relative to the direction of
light propagation θ at the optical wavelength λ is known as
the volume-scattering function (VSF – β(θ,λ) (m−1, sr−1).
It is composed of the sum of pure seawater βsw and particles
βp, where βsw depends on temperature and salinity and is
calculated using a depolarization ratio of 0.039 (Zhang et al.,
2009). The contribution of βp to the VSF is calculated by

subtracting the contribution of βsw from β(124°,λ):

βp(124°,λ)= β(124°,λ)−βsw(124°,λ). (1)

Then, a conversion factor χ with a value of 1.076 for an
angle of 124° relates bbp to βp, making it possible to extrap-
olate the measurement from a single angle (124°) to the total
coefficient as follows (Boss and Pegau, 2001; Sullivan and
Twardowski, 2009):

bbp(λ)= 2πχ(β(θ,λ)−βsw(θ,λ)). (2)

The backscattering sensor of the BGC-Argo floats mea-
sures β(124°, λ) with λ= 700 nm. The quality control pro-
cedure carried out is the one followed in the SOCA2016
method.

2.3 BGC-Argo and satellite matchup databases

The matchup database created for the SOCA2020 experi-
ments, which links the BGC-Argo floats to the GlobColour
and GlobalOcean data, was utilized in this study. The Glob-
Colour data consist of normalized water-leaving reflectances
(rho_wn) at five wavelengths (412, 443, 490, 555, and
670 nm) as well as the PAR product. These rho_wn val-
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Table 1. Overview of the datasets and variables used in the study. BGC-Argo data include geophysical and bio-optical profiles: temperature,
salinity, density, spiciness, mixed layer depth (MLD), particulate backscattering coefficient (bbp), and geolocation and day of year (DOY).
The satellite products comprise remote sensing reflectance (rho_wn), photosynthetically active radiation (PAR), sea level anomaly (SLA),
and inherent optical properties (IOPs). Sentinel-3 OLCI data include Level-2 outputs from the Case 2 Regional Coast Colour (C2RCC)
processor, including both the rho_wn and water quality (WQ) products. The preprocessing steps included principal component analysis
(PCA), standardization, and log10 transformation.

Data Description Variable Quantity Variables
processed

Type of
preprocessing

BGC-Argo In situ
sensors

Temperature
Salinity
Density
Spiciness
MLD
Lat/long
DOY
bbp

26 (51 m)/126 (250 m)
26 (51 m)/126 (250 m)
26 (51 m)/126 (250 m)
26 (51 m)/126 (250 m)
1
2
1
26 (51 m)/126 (250 m)

5
5
5
5
1
2
1
26/126

PCA
PCA
PCA
PCA
Standardization
–
–
Stand.+ log10

GlobColour Level-3
product

rho_wn
PAR

5
1

5
1

Standardization
Standardization

GlobalOcean SLA 1 1 Standardization

Sentinel-3
OLCI

C2RCC L2
reflectance

rho_wn 12 12 Standardization

C2RCC L2
WQ products

IOPs 8 8 Standardization

ues are derived from a combination of sensors that consti-
tute the GlobColour product: SeaWiFS, MERIS, MODIS
Aqua, VIIRS NPP, and the OLCI (Garnesson et al., 2019).
The GlobalOcean set provides SLA data, calculated rel-
ative to a 20-year mean of sea surface height and gen-
erated with altimeter data from various missions (HY-2A,
Saral/Altika, CryoSat-2, Jason-2, Jason-1 T/P, ENVISAT,
GFO, and ERS1/2) (CMEMS, 2022). In the cited work, the
matchup with BGC-Argo floats was performed using the val-
ues from the closest available pixels within a ±5 d window
and on a 5×5-pixel grid. Further details of the procedure can
be found in Sauzède et al. (2020).

The BGC-Argo measurements used here were matched
with Sentinel-3 OLCI data using the Calvalus tool developed
by Brockmann Consult GmbH (Fomferra, 2011). The spa-
tiotemporal approach applied consists of a time window be-
tween the BGC-Argo profiles and the satellite measurements
of± 24 h, and the spatial satellite coverage around the profile
is 3× 3 macro-pixels at full-resolution imagery (300 m pix-
els). Once the matchup between the satellites and floats is es-
tablished, a baseline quality control is applied to ensure that
the satellite-measured reflectances maintain radiometric con-
sistency. First, a flag-based filter is applied, discarding pixels
near or under probable cloudy conditions. This is followed
by an outlier removal based on a z score (z= (x−µ)/σ )
applied at the macro-pixel level band by band. Then, a coef-
ficient of variation in the 560 nm band (cv= σ/µ) is applied
(Bailey and Werdell, 2006). Coefficient values under 0.2 en-

sure good spatial homogeneity (Ahmed et al., 2013; Hlaing
et al., 2013; Zibordi et al., 2009). Finally, the median of the
pixels left by macro-pixels is used (Hu et al., 2001), which
is a standard procedure in studies focused on oceanic waters
(Barnes et al., 2019). These criteria reduced the dataset from
the original 4115 matchups to 763 matchups. Specifically,
411 and 352 data points are available for the NA and STG
regions, respectively. We excluded data from two floats to be
used exclusively for validation purposes: in the NA, the float
with unique WMO (World Meteorological Organization) no.
6902545 – with 22 measurements – and in the STG region
float WMO no. 3902125 – with 28 measurements – consti-
tute the independent dataset in the validation process.

The selected Sentinel-3 OLCI bands extend from 400
to 753 nm (bands 1 to 12) of normalized water-leaving
reflectances (rho_wn). The extraction is done on Level-2
data atmospherically corrected with the C2RCC processor
(Brockmann et al., 2016). C2RCC relies on an extensive
database of simulated water-leaving reflectances and related
top-of-atmosphere radiances, with neural networks trained to
perform inversions for both the atmospheric correction and
the in-water quality parameter estimation. C2RCC provides
parameters like the absorption and scattering of the differ-
ent constituents (IOPs) at 443 nm, i.e., absorption of chloro-
phyll pigments (apig), yellow substances (agelb), and detri-
tus (adet) and scattering of particulate matter (bpart), white
scatterers (bwit), and additive atot and btot. It also provides
total suspended matter concentration, chlorophyll-a concen-
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tration, and apparent optical properties (AOPs) like Kd (the
diffuse attenuation coefficient). Each parameter has its asso-
ciated error estimation. From the 25 parameters calculated
by C2RCC, we selected the eight mentioned IOPs, plus the
reflectance for bands 400 to 753 nm.

2.4 Data preprocessing

The set and number of parameters (measured or derived)
available for the experiments are presented in Table 1. The
dataset names in the table correspond to the specific fea-
tures: GCGO refers to the GlobColour–GlobOcean L3 satel-
lite reflectance combined with the PAR and SLA products
(7 features), BGC denotes the Argo-BGC data after prepro-
cessing (27 features across 26 or 126 layers, depending on
the depth of 50 or 250 m, respectively), S3OLCI includes
12 reflectance bands, and S3IOPS includes the reflectance
bands plus the eight C2RCC-derived IOPs. After exclud-
ing the measurements for validation, the two areas have a
total of 713 inputs. The maximum number of input vari-
ables is 37. The sizes of the matrices can be seen in Ta-
ble 2. Due to the heterogenous nature of the input vari-
ables (X) used to train the models and the high dimension-
ality and covariance of the variables measured along the
water column by BGC-Argo floats, the data were prepro-
cessed to reduce redundancy and multicollinearity. The high-
dimensional non-independent variables (temperature, salin-
ity, density, and spiciness) were the ones with the most sig-
nificant numbers of features. Each variable had one measure-
ment every 2 m, which means 126 measurements in the first
250 m or 26 measurements in the 50 m depth profiles.

To reduce the high dimensionality and simplify the regres-
sion models, principal component analysis (PCA) is applied
to some of the input features. After this feature reduction of
the high-dimensional variables, the 250 and 50 m measure-
ments with 126 and 26 inputs are reduced to five compo-
nents for each variable, resulting in a total of 20 features.
This method still retains 99 % of the information. In addition,
satellite-derived variables and the MLD were normalized us-
ing z-score standardization, i.e., removing the mean (µx) and
dividing by the standard deviation (σx) of each feature.

A second preprocessing step consisted of a logarithmic
transformation to the bbp values measured by the floats. This
compresses the dynamic range of the data, which is typically
higher near the surface and decreases exponentially by sev-
eral orders of magnitude with depth. The transformation re-
duces the influence of extreme values, particularly near the
surface, and helps to stabilize the variance across the pro-
files. As a result, the distribution becomes closer to the Gaus-
sian, which facilitates the training and improves the robust-
ness of the regression models. Finally, variables that consider
the spatiotemporal domain, like latitude, longitude, and date
(day of year), are also included.

2.5 Multi-output machine learning models

There are two main approaches to dealing with multi-output
regression problems. One way is to use univariate mod-
els, also known as problem transformation methods (Schmid
et al., 2022; Borchani et al., 2015). These methods de-
compose the multi-output regression problem into multiple
single-target problems, creating an independent model for
each output. The predictions from these separate models are
then combined. This approach ignores the relationships be-
tween the targets, which can adversely affect the predic-
tion’s overall accuracy. Alternatively, multivariate models are
designed to capture dependencies and interactions between
the outputs, potentially leading to more accurate predictions
(Borchani et al., 2015). When and how to apply these two
approaches depends on the nature of the data and the corre-
lation between the targets. In our preprocessing results, PCA
decomposition indicates a high covariance among measure-
ments at different depths in the water column. Since our re-
gression models estimate bbp at different depths, it is logical
to consider that nearby values in the water column are related
to each other.

A random forest regressor (RFR) (Breiman, 2001) has
been widely applied in the geosciences and marine environ-
mental studies for classification and regression tasks (Cut-
ler et al., 2007; Ruescas et al., 2018). Regression trees are
at the model’s core, which effectively handles complex data
when there are nonlinear dependencies between a numeri-
cal response variable and a diverse set of predictors, whether
qualitative or quantitative (D’Ambrosio et al., 2017). RFR is
an ensemble method that combines many weak decision tree
learners, which are grown in parallel to reduce the bias and
variance of the model simultaneously, enhancing the model’s
predictive performance. Furthermore, RFR provides insights
into the importance of the training features, which reveals the
variables that have the most significant impact on the pre-
dictions. This capability makes the model’s mechanisms and
results easier to interpret and explain.

Different algorithms have been tested in previous works
(Sauzède et al., 2016, 2020) to estimate bbp at various depths.
Both works are based on a multivariate model applied to
all possible outputs. In SOCA16, a multi-layer perceptron
is developed, while in SOCA2020 a comparison between a
linear model (ridge) and an ensemble model (random for-
est) is made. The latter showed higher performance. The
multivariate RFR used in this study offers higher accuracy
than the univariate RFR, especially when the outputs are
highly correlated (Schmid et al., 2022) and when complex
interactions demand structured inference be effectively man-
aged (Xu et al., 2019). All of the previously mentioned algo-
rithms, including linear regressor (LR), ridge linear regressor
(RLR), RFR, and multi-layer perceptron (MLP), were tested
at depths of both 50 and 250 m during the dataset prepara-
tion phase. The results for 250 m are shown in Fig. 2. Based
on these results, the multi-output RFR was selected as the
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Table 2. Dimensions of the input matrices used in the analysis of each dataset, region, and depth. The matrix dimensions are specified as
samples× features×outputs. The datasets include GlobColour and GlobalOcean paired with BGC-Argo (GCGOBGC), the Sentinel-3 OLCI
paired with BGC-Argo (S3OLCIBGC), the Sentinel-3 OLCI with IOP products (S3IOPs), and Sentinel-3 OLCI reflectance (S3OLCI).

Depth Region GCGOBGC S3OLCIBGC S3IOPs S3OLCI

50 m North Atlantic 389× 32× 26 389× 37× 26 389× 26× 26 389× 15× 26
Subtropical Gyres 324× 32× 26 324× 37× 26 324× 26× 26 324× 15× 26

250 m North Atlantic 389× 32× 126 389× 37× 126 389× 26× 126 389× 15× 126
Subtropical Gyres 324× 32× 126 324× 37× 126 324× 26× 126 324× 15× 126

most suitable algorithm for this multi-input or multi-output
problem. Results are also analyzed using the built-in feature
importance, which is based on the reduction in variance.

3 Performance of the random forest regressor

Several dataset combinations were used as inputs for the RFR
(described in Sect. 2.3). For all of the combinations, the RFR
was trained on 80 % of the data, with the remaining 20 % set
aside for testing. Experiments were conducted in the NA and
STG regions for 26 layers in the range 0–50 m and for 126
layers in the range 0–250 m. The test dataset was exclusively
used to evaluate model performance and was never exposed
to the regressor during training. For each regression model,
we analyzed the key features that contributed to improving
the estimation of bbp in the different combinations. The mod-
els were finally validated using two independent floats in the
NA and STG regions.

3.1 S3OLCIBGC: results with BGC-Argo and OLCI
data

The equivalent set of data from the SOCA2020 experiment
(GCGOBGC) is included in the statistical analysis to facili-
tate a comparison between our findings and previous studies.
Tables 1 and 2 present the input features and matrix sizes for
the different experiments. In the following sections, we ana-
lyze the results of the RFR model applied to these datasets,
starting with the GCGOBGC and S3OLCIBGC datasets to
establish a baseline. In the NA region, 311 data points are
used for training and 78 for testing, while in the STG region
259 data points are used for training and 65 for testing. The
results represent 20 % of the dataset used for model testing.

3.1.1 Shallow waters: from 0 to 50 m depth

The performance of the models trained to estimate bbp in the
upper 50 m of the water column is summarized in Fig. 3 and
Table 3. Figure 3a includes the depth-resolved R2, mean ab-
solute error (MAE), and model bias, while panels (b) and (c)
show measured and predicted bbp profiles, along with relative
error distributions for the NA and STG, respectively. Fea-

ture importance for both regions and models (GCGOBGC
and S3OLCIBGC) is presented in Fig. 4.

In the NA region (green lines), the S3OLCIBGC model
achieves a higher average R2 (0.78) compared to the GC-
GOBGC model (0.72). The MAE is also lower (2.86×10−4

vs. 3.11×10−4 m−1). In the depth-resolved metrics, the
S3OLCIBGC model performs better at both the superficial
and deeper layers, maintaining a relatively stable perfor-
mance down to approximately 20 m. Below this depth, ac-
curacy decreases, particularly across and beneath the av-
erage MLD (36 m), where vertical gradients in tempera-
ture, salinity, and density intensify and bbp variability in-
creases (Fig. 1). While the MLD is inherently dynamic and
varies throughout the year, this depth represents a critical
boundary in our observations, marking a clear threshold
where the behavior of the model diverges. The GCGOBGC
model shifts from overestimating bbp in the upper 15–20 m
to underestimating values at greater depths. In contrast, the
S3OLCIBGC model exhibits a relatively constant negative
bias near the surface (1×10−4 m−1), which increases gradu-
ally with depth, indicating a degradation in the performance
of the model. The more balanced contribution of surface and
subsurface features in S3OLCIBGC enables the model to
better resolve the vertical variability in bbp below the optical
depth. In contrast, the GCGOBGC model presents lower R2,
higher MAE, and lower MAPD values, all of which indicate a
reduced capacity to capture the vertical bbp variability. These
differences likely reflect the superior spatiotemporal fidelity
of the S3OLCI matchups (±1 d, 300 m pixels), which enable
tighter temporal and spatial coupling between satellite and
float observations compared to the broader ±5 d and 4 km of
the GlobColour dataset.

In the STG region (blue lines), both models achieve higher
performance than in the NA, reflecting the lower variabil-
ity and more stable vertical structure of bbp in these olig-
otrophic waters. The S3OLCIBGC and GCGOBGC models
obtain similar results, with mean R2 values of 0.86 and 0.87
and MAE values of 4.50×10−5 and 4.16×10−5 (m−1), re-
spectively. The depth-resolved metrics (Fig. 3) show that the
models perform consistently throughout the upper 50 m, with
no marked degradation in R2 or MAE values near the aver-
age MLD (∼ 50 m). In both cases, the bias remains low in
the upper 30 m. However, starting around 35 m, there is an
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Figure 2. Comparison of different multi-output regression models for estimating vertical profiles of bbp up to 250 m depth. (a) Depth-
resolved R2 values for four regression models: random forest, multi-layer perceptron, ridge regressor, and linear regressor. (b) Violin plots
of the mean squared error (MSE, log10-transformed) distributions for each model.

Figure 3. Model performance for estimating shallow-water bbp profiles (0–50 m). (a) Depth-resolved metrics comparing model predictions
using the S3OLCIBGC and GCGOBGC sets as inputs: coefficient of determination (R2), mean absolute error (MAE), and bias. The shaded
horizontal lines indicate the average MLD per region. (b–c) Measured and predicted bbp profiles in NA (b) and STG (c) using S3OLCIBGC.
The rightmost bars show the mean relative error by depth.

Ocean Sci., 21, 1677–1694, 2025 https://doi.org/10.5194/os-21-1677-2025



J. García-Jiménez et al.: Combining BGC-Argo floats and satellites for bbp estimation 1685

Table 3. Model performance statistics by region at depths of 50 and 250 m using satellite-based and BGC-Argo data. The metrics reported
are the coefficient of determination (R2), median absolute percentage deviation (MAPD; %), and MAE (m−1). The models are based on
different input datasets: GCGOBGC, S3OLCIBGC, S3IOPs, and S3OLCI.

Depth Region GCGOBGC S3OLCIBGC S3IOPs S3OLCI

50 m North Atlantic R2 0.72 0.78 0.74 0.77
MAPD 8.19 10.77 13.46 12.96
MAE (×10−4) 3.11 2.86 3.04 2.89

Subtropical Gyres R2 0.87 0.86 0.88 0.84
MAPD 5.60 5.54 5.61 5.56
MAE (×10−5) 4.16 4.50 4.39 4.81

250 m North Atlantic R2 0.84 0.81 0.80 0.80
MAPD 3.37 5.24 6.38 6.18
MAE (×10−4) 0.85 1.02 1.12 1.09

Subtropical Gyres R2 0.90 0.89 0.88 0.88
MAPD 4.97 5.36 5.98 5.47
MAE (×10−5) 3.19 3.46 3.74 3.74

increase in the bias, reaching its maximum near the bottom
of the profile.

The feature importance analysis (Fig. 4) shows that lati-
tude is the most relevant feature in this case. This reflects
the fact that bio-optical conditions in the STG are very sim-
ilar throughout the year; the day of year (DOY) is less crit-
ical because of the low seasonality in these areas (Mignot
et al., 2014; Cornec et al., 2021). The importance of the den-
sity and salinity features (Dens_pc1 and Sal_pc1) reflects the
barotropic dynamics of these oceanic regions, where isobars
and isopycnals are stratified parallel to the ocean surface and
vary together as depth is gained (Leonelli et al., 2022).

3.1.2 Deep waters: from 0 to 250 m depth

The performance of the models to estimate bbp down to
250 m is summarized in Fig. 5 and Table 3. The S3OLCIBGC
and GCGOBGC models obtain R2 values of 0.81 and 0.84,
respectively, with MAPDs of 5.24 % and 3.37 % and MAEs
of 1.02×10−4 and 0.85×10−4 (m−1). Shallower layers have
larger errors in both models and correlate with the observed
variability of bbp with depth in each region. The GCGOBGC
does not experience overestimation in the most superficial
layers, as was the case for the 50 m models.

Feature importance analyses for both models (Fig. 6) are
similar to the 50 m models and also highlight the dominant
role of the first principal components (pc1) derived from the
BGC-Argo physical variables (density, temperature, salin-
ity, and spiciness). They align with the correlation heatmap
(Fig. 6 right), which illustrates how these first PCs corre-
late with bbp across depth, showing a strong positive corre-
lation (> 0.6) in the 180–250 m range. In these deeper lay-
ers, where biogeochemical processes such as particle sink-
ing, remineralization, and carbon export are more active, the

relationship between physical stratification and bbp becomes
stronger and more linear.

In the STG region, the model performance exceeds that
of the North Atlantic, likely due to the more optically ho-
mogeneous conditions despite the strongly stratified nature
of these oligotrophic waters (Fig. 5c). Similar patterns have
been observed in stratified waters, where optical proper-
ties like beam attenuation remain relatively homogeneous
(Kitchen and Zaneveld, 1990). While the average MLD is
around 50 m, no significant increase in error is observed until
approximately 120 m. This deeper threshold aligns with the
region typically associated with the deep biomass maxima
(DBM), which form at the interface between the nutrient-
depleted surface layer and the light-limited mesopelagic zone
(Cornec et al., 2021). In the STG, this transition zone, often
located between 150 and 200 m (Mignot et al., 2014), appears
as a boundary where the predictive skill begins to slightly de-
cline – reflected in the gradual increase in the relative error
and a subtle shift in the bias profiles. Feature importance for
the STG 250 m models is not shown, as it is similar to that
obtained in the 50 m models. In both cases, latitude emerges
as the most relevant predictor.

3.2 S3OLCI: results of the Sentinel-3 OLCI without
BGC-ARGO data

As demonstrated in the previous experiments, satellite-
derived features play a significant role in the models when
profile depths reach 50 m, thus answering the initial hypoth-
esis of this study. It is clear that sea surface signals help
to estimate bbp at subsurface levels. However, the extent of
this contribution across the different depth layers only be-
came evident when comparing models trained with different
depth limits. The feature importance of the 50 m depth mod-
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Figure 4. The feature importance (Gini importance) of the models trained with S3OLCIBGC and GCGOBGC to estimate bbp in shallow
waters (0–50 m) in the NA and STG. Features are grouped by category according to color: (1) blue represents the spatial and temporal
descriptors, including the day of year (DOY), latitude, and longitude. (2) Dark blue represents the sea level anomaly (SLA). (3) Purple
indicates the MLD. (4) Green corresponds to the satellite reflectance bands from either the Sentinel-3 OLCI or GlobColour with its central
wavelengths. (5) Pink, red, orange, and light purple correspond to the first five principal components (PCs) derived from the BGC-Argo
profiles of density, temperature, salinity, and spiciness, respectively.

els shows that, at least in the NA region, the parameters mea-
sured by satellite sensors are just as relevant as the inputs
from the floats. For this reason, we carried out a last exper-
iment with satellite data (S3OLCI) only to check how the
models perform in-depth with the normalized water-leaving
reflectance bands. Additionally, we investigated the contri-
bution of satellite-derived IOPs from the C2RCC processor,
i.e., adding the absorption and scattering variables as input
features (Sentinel-3 OLCI with IOP products – S3IOPs).

In the NA region, the model using only reflectance data
(S3OLCI) outperforms the model that includes both re-
flectance and the absorption and scattering (S3IOPs) (Table 3
and Fig. 8a). While the MLD is still a barrier, the accuracy
improves beyond this depth for another approximately 10 m.
In the bbp profiles (Fig. 8b), despite the errors noted in deeper
estimations, the model is capable of predicting significant
contrast events using only surface data from 36 m onward,
except in a specific case characterized by high bbp values
(profile 59). In the feature importance ranking (Fig. 7), the
620 nm band is the most relevant of the spectrum. However,
the spatiotemporal features (day of year, longitude, and lat-
itude) seem to have greater weight than the results obtained

with the datasets that include BGC-Argo data at the same
depth (see Sect. 3.2.1).

In the STG region, the S3IOPs model achieves better re-
sults (Table 3). However, it is possible to see how the model
is not able to predict some spikes along the water column
(Fig. 8c). In the feature importance ranking, latitude remains
the most relevant feature. The improved performance of the
S3IOPs model, compared to the S3OLCI (reflectance-only)
model, could be attributed to the contribution of the ma-
rine particle scattering at 443 nm (iop_bpart) provided by the
C2RCC processor.

3.3 Validation with independent floats

The previously trained RFR models are applied to predict
bbp values using independent float data that are not included
in the training or testing sets. Statistical metrics and the cor-
responding scatterplots are provided in Table 4 and Fig. 9.

In the NA region, the float identified as WMO 6902545
(see the location in Fig. 1) yields better estimates with the
S3OLCI models (R2 ranging from 0.41 to 0.44) compared to
the reference GCGOBGC model, where the R2 value drops
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Figure 5. Model performance for estimating deep-water bbp profiles (0–250 m). (a) Depth-resolved metrics comparing model predictions
using S3OLCIBGC and GCGOBGC as inputs: R2, MAE, and bias. The shaded horizontal lines indicate the average MLD per region. (b–
c) Measured and predicted bbp profiles in NA (b) and STG (c) using S3OLCIBGC. The rightmost bars show the mean relative error by
depth.

to 0.26. This improvement is also visible in the absolute and
relative error estimations (MAE and RMSE). Figure 9a re-
veals the higher bbp variability in the water depth in the NA
region, as indicated by the color scale. There is an overesti-
mation in the surface measurements (less than 30 m) and a
slight underestimation at deeper depths. This validation set
includes data from several dates in 2017 and 2018, spanning
the period from April to August. These temporal variations
explain some of the observed drifts in the plots, where differ-
ent float cycles (water depth profiles) are also evident.

The STG statistics and plots for the float with identifier
3902125 show better correlation coefficients and lower errors
compared with the NA. The datasets incorporating S3OLCI
data yielded the best results. In Fig. 9b, two clusters of data
are visible: one associated with low bbp values and the other
clustering around slightly higher values. The models tend to
underestimate the lower bbp values, while the higher values
show a closer fit to the 1 : 1 line. However, in the model
that only uses reflectance data (S3OLCI), a clear overesti-
mation of higher values occurs. Unlike in the North Atlantic
region, depth separation is not evident here, but the lower

values correspond to measurements taken during the winter
months in the South Atlantic Gyre, while the higher values
were recorded during the summer months in the Southern
Hemisphere, where the float was located. These results rein-
force the observations made in the previous sections: models
provide more accurate bbp estimations in the STG region than
in the NA, confirming the effectiveness of using the S3OLCI
bands and derived C2RCC IOPs at shallow water depths.

4 Discussion and conclusion

Previous studies estimating bbp from satellite-derived remote
sensing reflectance (Rrs) have typically employed traditional
statistical approaches mostly focused on surface layers. In
Bisson et al. (2019), bbp profiles from floats were processed
by averaging bbp values within the surface mixed layer, fol-
lowed by a comparison between different sensors and bbp re-
trieval inversion products from NASA. In that case study,
the OLCI – with data from the reduced-resolution mode
at 1.2 km pixel resolution – under-performed compared to
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Figure 6. (a, b) Feature importance of the S3OLCIBGC and GCGOBGC models for bbp estimation down to 250 m in the North Atlantic.
(c) Correlation matrix between bbp and the first five PCs of each BGC-Argo physical variable as a function of depth.

Figure 7. Feature importance of the S3OLCI model for bbp estimation down to 50 m in the NA area.

MODIS (Moderate Resolution Imaging Spectroradiometer),
with 1 km at nadir (r = 0.32 to 0.47 and r = 0.60 to 0.79,
respectively). This difference was attributed to higher coeffi-
cients of variation (30 % for the OLCI and 5 % for MODIS)
across bands between 412 and 555 nm and an aerosol op-
tical thickness at 865 nm. In the present work, OLCI full-
resolution data, with a spatial resolution of 300 m, are used.
Additionally, the most relevant wavelength in some of our
models (620 nm) was not considered in Bisson et al. (2019).

In the present study, vertical estimates of bbp are calculated
along the water column. We have applied a multi-output ran-
dom forest model, which shows promising results, especially
within the first 50 m in the Subtropical Gyres. However, in
dynamic regions such as the North Atlantic, the results are
less consistent, suggesting that further research is needed to
understand how the complexity of the physical state of the
water column modifies the bbp vertical fluxes. Nevertheless,
the focus of our work is on the analysis of the contribution of
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Figure 8. Model performance for estimating shallow water bbp profiles (0–50 m) with satellite data only. (a) Depth-resolved metrics com-
paring model predictions using S3OLCI and S3IOPS as inputs: R2, MAE, and bias. The shaded horizontal lines indicate the average MLD
per region. (b–c) Measured and predicted bbp profiles in NA (b) and STG (c) using S3OLCI. The rightmost bars show the mean relative error
by depth.

satellite-derived water-leaving reflectance to bbp estimation
within the first 250 m.

In the deeper layers, where biogeochemical processes
like particle sinking, remineralization, and carbon export are
more pronounced, the relationship between physical stratifi-
cation and bbp seems to become stronger and more linear. In
contrast, the correlation between these variables is weaker –
though still positive – in the upper layers (0–30 m) and below
the mixed layer depth (61–91 m). Density and temperature
can offer additional insights into the upper water column,
helping to pinpoint processes associated with the depth and
intensity of the pycnocline or the MLD. Collectively, these
physical features could allow the model to infer the transfer
of bbp from the sunlit surface to the twilight zone by learning
from stratification patterns.

Satellite features have indeed proven to be relevant for
bbp estimations, especially in the Subtropical Gyres region,
as mentioned. These waters, characterized by high stratifica-
tion, rely heavily on nutrient injection from deeper zones, as
the upper euphotic zone is typically nutrient-limited. In fact,
Letelier et al. (2004) and Mignot et al. (2014) describe these

gyres as a two-layer system: upper-layer nutrient-limited but
not light-limited, with a deeper layer that is light-limited but
that has greater nutrient access. These authors also highlight
a seasonal distinction, with winter bringing greater water
mixing than summer. During winter, the average light inten-
sity for PAR in the mixed layer decreases, while turbulence
increases. This seasonal variation may explain the two dis-
tinct clusters observed in the validation exercise for the STG
region, since two clusters of data are observed, one belong-
ing to the winter of 2017 with slightly higher values and the
second coincident with the spring and summer of 2018.

The inclusion of satellite surface data, along with derived
parameters such as inherent optical properties (IOPs), in
combination with in situ profile data, should be considered
for estimating bbp and, by extension, approximating partic-
ulate organic carbon (POC), at least for layers up to 250 m
depth. It is important to note that organic carbon fixation pri-
marily occurs in the upper-ocean layers. This organic mat-
ter is subsequently transformed through respiration, particle
aggregation, zooplankton grazing, feces production, and mi-
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Figure 9. (a) Scatterplots with marginal histograms with the validation of the 50 m model performance on an independent float in the NA
region (ID 6902545) and (b) the STG region (ID 3902125). The color scales show the depth of the measurements, and the bbp values are in
log10.

crobial decomposition (Siegel et al., 2014) before a fraction
of it sinks to deeper layers.

The models that relied exclusively on satellite data
(S3OLCI and S3IOPs) produced reasonable estimations for
the upper layers in both the North Atlantic and Subtrop-
ical Gyres regions. This is encouraging, as satellite data,
with their synoptic spatial coverage, can efficiently com-
plement Argo float measurements. Satellite observations
provide valuable insights into mesoscale ocean processes
over various temporal ranges, extending at least the past 3
decades. Since remote sensing products can only reach about
20 % of the euphotic zone, the importance of extending sur-
face observations to deeper layers using autonomous floats
or other devices is critical (Claustre et al., 2010).

Future work should be focused on enlarging the database
with new BGC-Argo profiles and satellite data, extending the
study to new areas of the global ocean. Another detail that
could enrich the analysis is the role of the MLD in the dif-
ferent regions in order to further understand the effect that
it has on biochemical parameter estimations. Sensors with
extended capabilities, like the hyperspectral NASA PACE,

might also be a research path to follow, since we have seen
that adding new wavelengths had a positive effect on the re-
sults of our models compared with sensors with less capa-
bilities. Possible improvements in the detection of CDOM
with the UV bands can be an important contribution to bet-
ter estimating particulate organic material (POM) and, con-
sequently, POC. It has been determined that there is an in-
crease in photoproduction of CO2 from CDOM (Bélanger
et al., 2006) due to the increase in UV radiation and the de-
crease in sea ice because of the rise in global temperatures.
Organic carbon is separated into particulate and dissolved or-
ganic carbon (DOC). There is a potential use of CDOM to
improve DOC estimations (especially in coastal waters), to-
gether with physical variables like sea surface temperature or
salinity. If CDOM can really improve DOC estimations and
we can do this globally with satellites, a better understand-
ing of the relationship between DOC and POC could also be
analyzed temporally and spatially.
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Table 4. Validation results using independent BGC-Argo floats by region at depths of 50 and 250 m. The performance metrics include
R2, MAPD (%), MAE (m−1), and root mean square error (RMSE; m−1). The models are based on different input datasets: GCGOBGC,
S3OLCIBGC, S3IOPs, and Sentinel-3 OLCI reflectance (S3OLCI).

Depth Region GCGOBGC S3OLCIBGC S3IOPs S3OLCI

50 m North Atlantic R2 0.26 0.44 0.44 0.41
MAPD 38.48 33.74 27.96 32.5
MAE (×10−4) 7.00 5.91 5.61 5.67
RMSE (×10−4) 9.05 7.38 7.05 7.13

Subtropical Gyres R2 0.65 0.63 0.64 0.63
MAPD 5.06 4.90 5.69 5.99
MAE (×10−5) 2.93 3.08 3.09 3.12
RMSE (×10−5) 3.60 3.73 3.67 3.73

250 m North Atlantic R2 0.32 0.31 0.29 0.29
MAPD 6.56 6.38 6.41 6.37
MAE (×10−4) 7.50 7.68 7.44 7.47
RMSE (×10−4) 10.4 10.5 10.6 10.7

Subtropical Gyres R2 0.58 0.53 0.54 0.56
MAPD 7.38 8.34 8.28 8.06
MAE (×10−5) 3.88 4.19 4.18 4.02
RMSE (×10−5) 4.92 5.32 5.34 5.13

Data availability. Both BGC-Argo measurements and OLCI data
are open and freely available to the scientific and public com-
munities (https://doi.org/10.17882/42182, Argo, 2025). The Python
scripts with the model will be available from GitHub on the ISP site
in accordance with our group policy of publishing developed mod-
els open access: https://github.com/IPL-UV/SatArgoBbp (IPL-UV,
2025).
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