Articles | Volume 20, issue 4
https://doi.org/10.5194/os-20-895-2024
https://doi.org/10.5194/os-20-895-2024
Research article
 | 
11 Jul 2024
Research article |  | 11 Jul 2024

The Polar Front in the northwestern Barents Sea: structure, variability and mixing

Eivind H. Kolås, Ilker Fer, and Till M. Baumann

Related authors

Technical note: Turbulence measurements from a light autonomous underwater vehicle
Eivind H. Kolås, Tore Mo-Bjørkelund, and Ilker Fer
Ocean Sci., 18, 389–400, https://doi.org/10.5194/os-18-389-2022,https://doi.org/10.5194/os-18-389-2022, 2022
Short summary
Structure and drivers of ocean mixing north of Svalbard in summer and fall 2018
Zoe Koenig, Eivind H. Kolås, and Ilker Fer
Ocean Sci., 17, 365–381, https://doi.org/10.5194/os-17-365-2021,https://doi.org/10.5194/os-17-365-2021, 2021
Short summary
Hydrography, transport and mixing of the West Spitsbergen Current: the Svalbard Branch in summer 2015
Eivind Kolås and Ilker Fer
Ocean Sci., 14, 1603–1618, https://doi.org/10.5194/os-14-1603-2018,https://doi.org/10.5194/os-14-1603-2018, 2018
Short summary

Related subject area

Approach: In situ Observations | Properties and processes: Mesoscale to submesoscale dynamics
Tipping of the double-diffusive regime in the southern Adriatic Pit in 2017 in connection with record high-salinity values
Felipe L. L. Amorim, Julien Le Meur, Achim Wirth, and Vanessa Cardin
Ocean Sci., 20, 463–474, https://doi.org/10.5194/os-20-463-2024,https://doi.org/10.5194/os-20-463-2024, 2024
Short summary
Characterization of physical properties of a coastal upwelling filament with evidence of enhanced submesoscale activity and transition from balanced to unbalanced motions in the Benguela upwelling region
Ryan P. North, Julia Dräger-Dietel, and Alexa Griesel
Ocean Sci., 20, 103–121, https://doi.org/10.5194/os-20-103-2024,https://doi.org/10.5194/os-20-103-2024, 2024
Short summary
An emerging pathway of Atlantic Water to the Barents Sea through the Svalbard Archipelago: drivers and variability
Kjersti Kalhagen, Ragnheid Skogseth, Till M. Baumann, Eva Falck, and Ilker Fer
EGUsphere, https://doi.org/10.5194/egusphere-2023-3080,https://doi.org/10.5194/egusphere-2023-3080, 2024
Short summary
Relative dispersion and kinematic properties of the coastal submesoscale circulation in the southeastern Ligurian Sea
Pierre-Marie Poulain, Luca Centurioni, Carlo Brandini, Stefano Taddei, Maristella Berta, and Milena Menna
Ocean Sci., 19, 1617–1631, https://doi.org/10.5194/os-19-1617-2023,https://doi.org/10.5194/os-19-1617-2023, 2023
Short summary
Stirring across the Antarctic Circumpolar Current's southern boundary at the prime meridian, Weddell Sea
Ria Oelerich, Karen J. Heywood, Gillian M. Damerell, Marcel du Plessis, Louise C. Biddle, and Sebastiaan Swart
Ocean Sci., 19, 1465–1482, https://doi.org/10.5194/os-19-1465-2023,https://doi.org/10.5194/os-19-1465-2023, 2023
Short summary

Cited articles

Årthun, M., Ingvaldsen, R., Smedsrud, L., and Schrum, C.: Dense water formation and circulation in the Barents Sea, Deep-Sea Res. Pt. I, 58, 801–817, https://doi.org/10.1016/j.dsr.2011.06.001, 2011. a
Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Ø., and Ingvaldsen, R. B.: Quantifying the Influence of Atlantic Heat on Barents Sea Ice Variability and Retreat, J. Clim., 25, 4736–4743, https://doi.org/10.1175/JCLI-D-11-00466.1, 2012. a
Årthun, M., Eldevik, T., and Smedsrud, L. H.: The Role of Atlantic Heat Transport in Future Arctic Winter Sea Ice Loss, J. Clim., 32, 3327–3341, https://doi.org/10.1175/JCLI-D-18-0750.1, 2019. a, b
Atadzhanova, O., Zimin, A., Svergun, E., and Konik, A.: Submesoscale Eddy Structures and Frontal Dynamics in the Barents Sea, Phys. Oceanogr., 25, 220–228, https://doi.org/10.22449/1573-160X-2018-3-220-228, 2018. a, b, c, d, e
Barton, B. I., Lenn, Y.-D., and Lique, C.: Observed Atlantification of the Barents Sea Causes the Polar Front to Limit the Expansion of Winter Sea Ice, J. Phys. Oceanogr., 48, 1849–1866, https://doi.org/10.1175/JPO-D-18-0003.1, 2018. a, b, c
Download
Short summary
In the northwestern Barents Sea, we study the Barents Sea Polar Front formed by Atlantic Water meeting Polar Water. Analyses of ship and glider data from October 2020 to February 2021 show a density front with warm, salty water intruding under cold, fresh water. Short-term variability is linked to tidal currents and mesoscale eddies, influencing front position, density slopes and water mass transformation. Despite seasonal changes in the upper layers, the front remains stable below 100 m depth.