Articles | Volume 20, issue 2
https://doi.org/10.5194/os-20-601-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-20-601-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Southern Ocean deep mixing band emerges from a competition between winter buoyancy loss and upper stratification strength
Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
Fabien Roquet
Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
Jonas Nycander
Department of Meteorology, Stockholm University, Stockholm, Sweden
Related authors
No articles found.
Trevor J. McDougall, Paul M. Barker, Rainer Feistel, and Fabien Roquet
Ocean Sci., 19, 1719–1741, https://doi.org/10.5194/os-19-1719-2023, https://doi.org/10.5194/os-19-1719-2023, 2023
Short summary
Short summary
A thermodynamic potential is derived, with the temperature argument being Conservative Temperature. All thermodynamic quantities can be derived from this new thermodynamic potential function, and it enables the accurate (to computer machine precision) calculation of the in situ temperature and entropy of seawater. This new thermodynamic potential function adds fundamental thermodynamic justification to the adoption of Conservative Temperature in oceanography in 2010.
Gaspard Geoffroy, Jonas Nycander, Maarten C. Buijsman, Jay F. Shriver, and Brian K. Arbic
Ocean Sci., 19, 811–835, https://doi.org/10.5194/os-19-811-2023, https://doi.org/10.5194/os-19-811-2023, 2023
Short summary
Short summary
The ocean state is sensitive to the mixing originating from internal tides (ITs). To date, our knowledge of the magnitude and spatial distribution of this mixing mostly relies on uncertain modeling. Here, we use novel observations from autonomous floats to validate the spatial variability in the semidiurnal IT in a realistic ocean simulation. The numerical simulation is found to correctly reproduce the main spatial patterns of the observed tidal energy but to be biased low at the global scale.
Etienne Pauthenet, Loïc Bachelot, Kevin Balem, Guillaume Maze, Anne-Marie Tréguier, Fabien Roquet, Ronan Fablet, and Pierre Tandeo
Ocean Sci., 18, 1221–1244, https://doi.org/10.5194/os-18-1221-2022, https://doi.org/10.5194/os-18-1221-2022, 2022
Short summary
Short summary
Temperature and salinity profiles are essential for studying the ocean’s stratification, but there are not enough of these data. Satellites are able to measure daily maps of the surface ocean. We train a machine to learn the link between the satellite data and the profiles in the Gulf Stream region. We can then use this link to predict profiles at the high resolution of the satellite maps. Our prediction is fast to compute and allows us to get profiles at any locations only from surface data.
Malin Ödalen, Jonas Nycander, Andy Ridgwell, Kevin I. C. Oliver, Carlye D. Peterson, and Johan Nilsson
Biogeosciences, 17, 2219–2244, https://doi.org/10.5194/bg-17-2219-2020, https://doi.org/10.5194/bg-17-2219-2020, 2020
Short summary
Short summary
In glacial periods, ocean uptake of carbon is likely a key player for achieving low atmospheric CO2. In climate models, ocean biological uptake of carbon (C) and phosphorus (P) are often assumed to occur in fixed proportions.
In this study, we allow the ratio of C : P to vary and simulate, to first approximation, the complex biological changes that occur in the ocean over long timescales. We show here that, for glacial–interglacial cycles, this complexity contributes to low atmospheric CO2.
Filippa Fransner, Agneta Fransson, Christoph Humborg, Erik Gustafsson, Letizia Tedesco, Robinson Hordoir, and Jonas Nycander
Biogeosciences, 16, 863–879, https://doi.org/10.5194/bg-16-863-2019, https://doi.org/10.5194/bg-16-863-2019, 2019
Short summary
Short summary
Although rivers carry large amounts of organic material to the oceans, little is known about what fate it meets when it reaches the sea. In this study we are investigating the fate of the carbon in this organic matter by the use of a numerical model in combination with ship measurements from the northern Baltic Sea. Our results suggests that there is substantial remineralization taking place, transforming the organic carbon into CO2, which is released to the atmosphere.
Malin Ödalen, Jonas Nycander, Kevin I. C. Oliver, Laurent Brodeau, and Andy Ridgwell
Biogeosciences, 15, 1367–1393, https://doi.org/10.5194/bg-15-1367-2018, https://doi.org/10.5194/bg-15-1367-2018, 2018
Short summary
Short summary
We conclude that different initial states for an ocean model result in different capacities for ocean carbon storage due to differences in the ocean circulation state and the origin of the carbon in the initial ocean carbon reservoir. This could explain why it is difficult to achieve comparable responses of the ocean carbon system in model inter-comparison studies in which the initial states vary between models. We show that this effect of the initial state is quantifiable.
Related subject area
Approach: In situ Observations | Properties and processes: Overturning circulation, gyres and water masses
Continued warming of deep waters in the Fram Strait
Observed change and the extent of coherence in the Gulf Stream system
Anomalous North Pacific subtropical mode water volume and density decrease in a recent stable Kuroshio Extension period from Argo observations
New insights into the eastern subpolar North Atlantic meridional overturning circulation from OVIDE
Comparing observed and modelled components of the Atlantic Meridional Overturning Circulation at 26° N
Water properties and bottom water patterns in hadal trench environments
Long-term eddy modulation affects the meridional asymmetry of the halocline in the Beaufort Gyre
Technical note: Determining Arctic Ocean halocline and cold halostad depths based on vertical stability
The Iceland–Faroe warm-water flow towards the Arctic estimated from satellite altimetry and in situ observations
Salar Karam, Céline Heuzé, Mario Hoppmann, and Laura de Steur
Ocean Sci., 20, 917–930, https://doi.org/10.5194/os-20-917-2024, https://doi.org/10.5194/os-20-917-2024, 2024
Short summary
Short summary
A long-term mooring array in the Fram Strait allows for an evaluation of decadal trends in temperature in this major oceanic gateway into the Arctic. Since the 1980s, the deep waters of the Greenland Sea and the Eurasian Basin of the Arctic have warmed rapidly at a rate of 0.11°C and 0.05°C per decade, respectively, at a depth of 2500 m. We show that the temperatures of the two basins converged around 2017 and that the deep waters of the Greenland Sea are now a heat source for the Arctic Ocean.
Helene Asbjørnsen, Tor Eldevik, Johanne Skrefsrud, Helen L. Johnson, and Alejandra Sanchez-Franks
Ocean Sci., 20, 799–816, https://doi.org/10.5194/os-20-799-2024, https://doi.org/10.5194/os-20-799-2024, 2024
Short summary
Short summary
The Gulf Stream system is essential for northward ocean heat transport. Here, we use observations along the path of the extended Gulf Stream system and an observationally constrained ocean model to investigate variability in the Gulf Stream system since the 1990s. We find regional differences in the variability between the subtropical, subpolar, and Nordic Seas regions, which warrants caution in using observational records at a single latitude to infer large-scale circulation change.
Jing Sheng, Cong Liu, Yanzhen Gu, Peiliang Li, Fangguo Zhai, and Ning Zhou
Ocean Sci., 20, 817–834, https://doi.org/10.5194/os-20-817-2024, https://doi.org/10.5194/os-20-817-2024, 2024
Short summary
Short summary
The homogeneous water column, named mode water, retains atmosphere conditions and biogeochemical elements from the deep winter mixed layer and became weaker and warmer in the North Pacific subtropical ocean in 2018–2021 even though the Kuroshio Extension was stable. Locally anomalous east wind transporting warm water to the north and enhanced near-surface stratification hinder the deepening of the winter mixed layer. This study has broad implications for climate change and biogeochemical cycles.
Herlé Mercier, Damien Desbruyères, Pascale Lherminier, Antón Velo, Lidia Carracedo, Marcos Fontela, and Fiz F. Pérez
Ocean Sci., 20, 779–797, https://doi.org/10.5194/os-20-779-2024, https://doi.org/10.5194/os-20-779-2024, 2024
Short summary
Short summary
We study the Atlantic Meridional Overturning Circulation (AMOC) measured between Greenland and Portugal between 1993–2021. We identify changes in AMOC limb volume and velocity as two major drivers of AMOC variability at subpolar latitudes. Volume variations dominate on the seasonal timescale, while velocity variations are more important on the decadal timescale. This decomposition proves useful for understanding the origin of the differences between AMOC time series from different analyses.
Harry Bryden, Jordi Beunk, Sybren Drijfhout, Wilco Hazeleger, and Jennifer Mecking
Ocean Sci., 20, 589–599, https://doi.org/10.5194/os-20-589-2024, https://doi.org/10.5194/os-20-589-2024, 2024
Short summary
Short summary
There is widespread interest in whether the Gulf Stream will decline under global warming. We analyse 19 coupled climate model projections of the AMOC over the 21st century. The model consensus is that the AMOC will decline by about 40 % due to reductions in northward Gulf Stream transport and southward deep western boundary current transport. Whilst the wind-driven Gulf Stream decreases by 4 Sv, most of the decrease in the Gulf Stream is due to a reduction of 7 Sv in its thermohaline component.
Jessica Kolbusz, Jan Zika, Charitha Pattiaratchi, and Alan Jamieson
Ocean Sci., 20, 123–140, https://doi.org/10.5194/os-20-123-2024, https://doi.org/10.5194/os-20-123-2024, 2024
Short summary
Short summary
We collected observations of the ocean environment at depths over 6000 m in the Southern Ocean, Indian Ocean, and western Pacific using sensor-equipped landers. We found that trench locations impact the water characteristics over these depths. Moving northward, they generally warmed but differed due to their position along bottom water circulation paths. These insights stress the importance of further research in understanding the environment of these deep regions and their importance.
Jinling Lu, Ling Du, and Shuhao Tao
Ocean Sci., 19, 1773–1789, https://doi.org/10.5194/os-19-1773-2023, https://doi.org/10.5194/os-19-1773-2023, 2023
Short summary
Short summary
With the recent developments in observations and reanalysis data in the Beaufort Gyre, we investigate an improved understanding of eddy activity and asymmetrical halocline variability in the upper ocean. The halocline structures on the southern and northern sides of the central gyre have tended to be identical since 2014. The results suggest that enhanced eddy modulation through eddy fluxes influences oceanic stratification, resulting in reduced meridional asymmetry of the halocline.
Enrico P. Metzner and Marc Salzmann
Ocean Sci., 19, 1453–1464, https://doi.org/10.5194/os-19-1453-2023, https://doi.org/10.5194/os-19-1453-2023, 2023
Short summary
Short summary
The Arctic Ocean cold halocline separates the cold surface mixed layer from the underlying warm Atlantic Water, and thus provides a precondition for sea ice formation. Here, we introduce a new method for detecting the halocline base and compare it to two existing methods. We show that the largest differences between the methods are found in the regions that are most prone to a halocline retreat in a warming climate, and we discuss the advantages and disadvantages of the three methods.
Bogi Hansen, Karin M. H. Larsen, Hjálmar Hátún, Steffen M. Olsen, Andrea M. U. Gierisch, Svein Østerhus, and Sólveig R. Ólafsdóttir
Ocean Sci., 19, 1225–1252, https://doi.org/10.5194/os-19-1225-2023, https://doi.org/10.5194/os-19-1225-2023, 2023
Short summary
Short summary
Based on in situ observations combined with sea level anomaly (SLA) data from satellite altimetry, volume as well as heat (relative to 0 °C) transport of the Iceland–Faroe warm-water inflow towards the Arctic (IF inflow) increased from 1993 to 2021. The reprocessed SLA data released in December 2021 represent observed variations accurately. The IF inflow crosses the Iceland–Faroe Ridge in two branches, with retroflection in between. The associated coupling to overflow reduces predictability.
Cited articles
Aagaard, K. and Carmack, E. C.: The role of sea ice and other fresh water in the Arctic circulation, J. Geophys. Res., 94, 14485, https://doi.org/10.1029/JC094iC10p14485, 1989. a
Abernathey, R. P., Busecke, J. J. M., Smith, T. A., Deauna, J. D., Banihirwe, A., Nicholas, T., Fernandes, F., James, B., Dussin, R., Cherian, D. A., Caneill, R., Sinha, A., Uieda, L., Rath, W., Balwada, D., Constantinou, N. C., Ponte, A., Zhou, Y., Uchida, T., and Thielen, J.: xgcm, Zenodo [code], https://doi.org/10.5281/zenodo.7348619, 2022. a
Adler, R., Sapiano, M., Huffman, G., Wang, J.-J., Gu, G., Bolvin, D., Chiu, L., Schneider, U., Becker, A., Nelkin, E., Xie, P., Ferraro, R., and Shin, D.-B.: The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation, Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138, 2018. a, b
Belkin, I. M. and Gordon, A. L.: Southern Ocean fronts from the Greenwich meridian to Tasmania, J. Geophys. Res.-Oceans, 101, 3675–3696, https://doi.org/10.1029/95JC02750, 1996. a
Bryan, F.: High-latitude salinity effects and interhemispheric thermohaline circulations, Nature, 323, 301–304, https://doi.org/10.1038/323301a0, 1986. a
Caneill, R.: rcaneill/caneill-et-al-OS-SO-DMB, Zenodo [code], https://doi.org/10.5281/zenodo.10458818, 2024. a
Caneill, R. and Barna, A.: gsw-xarray, Zenodo [code], https://doi.org/10.5281/zenodo.8297619, 2023. a
Carmack, E. C.: The alpha/beta ocean distinction: A perspective on freshwater fluxes, convection, nutrients and productivity in high-latitude seas, Deep-Sea Res. Pt. II, 54, 2578–2598, https://doi.org/10.1016/j.dsr2.2007.08.018, 2007. a, b
Cerovečki, I. and Mazloff, M. R.: The Spatiotemporal Structure of Diabatic Processes Governing the Evolution of Subantarctic Mode Water in the Southern Ocean, J. Phys. Oceanogr., 46, 683–710, https://doi.org/10.1175/JPO-D-14-0243.1, 2016. a
Cerovečki, I., Talley, L. D., and Mazloff, M. R.: A Comparison of Southern Ocean Air–Sea Buoyancy Flux from an Ocean State Estimate with Five Other Products, J. Climate, 24, 6283–6306, https://doi.org/10.1175/2011JCLI3858.1, 2011. a
Cerovečki, I., Talley, L. D., Mazloff, M. R., and Maze, G.: Subantarctic Mode Water Formation, Destruction, and Export in the Eddy-Permitting Southern Ocean State Estimate, J. Phys. Oceanogr., 43, 1485–1511, https://doi.org/10.1175/JPO-D-12-0121.1, 2013. a
Cerovečki, I., Meijers, A. J. S., Mazloff, M. R., Gille, S. T., Tamsitt, V. M., and Holland, P. R.: The Effects of Enhanced Sea Ice Export from the Ross Sea on Recent Cooling and Freshening of the Southeast Pacific, J. Climate, 32, 2013–2035, https://doi.org/10.1175/JCLI-D-18-0205.1, 2019. a
Cherian, D., Almansi, M., Bourgault, P., Thyng, K., Thielen, J., Magin, J., Aoun, A., Buntemeyer, L., Caneill, R., Davis, L., Fernandes, F., Hauser, M., Heerdegen, A., Kent, J., Mankoff, K., Müller, S., Schupfner, M., Vo, T., and Haëck, C.: cf_xarray, Zenodo [code], https://doi.org/10.5281/zenodo.8152257, 2023. a
Czaja, A. and Marshall, J.: Why is there net surface heating over the Antarctic Circumpolar Current?, Ocean Dynam., 65, 751–760, https://doi.org/10.1007/s10236-015-0830-1, 2015. a
de Boyer Montégut, C.: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology, J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378, 2004. a
de Boyer Montégut, C.: Mixed layer depth climatology computed with a density threshold criterion of 0.03 kg/m3 from 10 m depth value, SEANOE [data set], https://doi.org/10.17882/91774, 2023. a, b
Dong, S., Gille, S. T., and Sprintall, J.: An Assessment of the Southern Ocean Mixed Layer Heat Budget, J. Climate, 20, 4425–4442, https://doi.org/10.1175/JCLI4259.1, 2007. a, b, c
Dong, S., Sprintall, J., Gille, S. T., and Talley, L.: Southern Ocean mixed-layer depth from Argo float profiles, J. Geophys. Res., 113, C06013, https://doi.org/10.1029/2006JC004051, 2008. a, b
ECCO Consortium, Fukumori, I., Wang, O., Fenty, I., Forget, G., Heimbach, P., and Ponte, R. M.: ECCO Central Estimate (Version 4 Release 4), https://ecco.jpl.nasa.gov/drive, last access: 15 March 2022. a
ECCO Consortium, Fukumori, I., Wang, O., Fenty, I., Forget, G., Heimbach, P., and Ponte, R.: Synopsis of the ECCO central production global ocean and sea-ice state estimate (version 4 release 4), Zenodo [code], https://doi.org/10.5281/zenodo.4533349, 2021. a
EU Copernicus Marine Service Information (CMEMS): Global Ocean Hourly Reprocessed Sea Surface Wind and Stress from Scatterometer and Mode, Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00185 2023a. a
EU Copernicus Marine Service Information (CMEMS): Multi Observation Global Ocean 3D Temperature Salinity Height Geostrophic Current and MLD, Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00052, 2023b. a
Faure, V. and Kawai, Y.: Heat and salt budgets of the mixed layer around the Subarctic Front of the North Pacific Ocean, J. Oceanogr., 71, 527–539, https://doi.org/10.1007/s10872-015-0318-0, 2015. a
Fernández Castro, B., Mazloff, M., Williams, R. G., and Naveira Garabato, A. C.: Subtropical Contribution to Sub‐Antarctic Mode Waters, Geophys. Res. Lett., 49, e2021GL097560, https://doi.org/10.1029/2021GL097560, 2022. a, b
Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015. a
Frölicher, T. L., Sarmiento, J. L., Paynter, D. J., Dunne, J. P., Krasting, J. P., and Winton, M.: Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models, J. Climate, 28, 862–886, https://doi.org/10.1175/JCLI-D-14-00117.1, 2015. a
Garrett, C., Outerbridge, R., and Thompson, K.: Interannual Variability in Meterrancan Heat and Buoyancy Fluxes, J. Climate, 6, 900–910, https://doi.org/10.1175/1520-0442(1993)006<0900:IVIMHA>2.0.CO;2, 1993. a
Gill, A. E. and Adrian, E.: Atmosphere-ocean dynamics, vol. 30, Academic press, ISBN 9780122835223, 1982. a
Gruber, N., Clement, D., Carter, B. R., Feely, R. A., Van Heuven, S., Hoppema, M., Ishii, M., Key, R. M., Kozyr, A., Lauvset, S. K., Lo Monaco, C., Mathis, J. T., Murata, A., Olsen, A., Perez, F. F., Sabine, C. L., Tanhua, T., and Wanninkhof, R.: The oceanic sink for anthropogenic CO2 from 1994 to 2007, Science, 363, 1193–1199, https://doi.org/10.1126/science.aau5153, 2019. a
Guinehut, S., Dhomps, A.-L., Larnicol, G., and Le Traon, P.-Y.: High resolution 3-D temperature and salinity fields derived from in situ and satellite observations, Ocean Sci., 8, 845–857, https://doi.org/10.5194/os-8-845-2012, 2012. a
Hanawa, K. and Talley, L. D.: Chapt. 5.4: Mode waters, in: Ocean Circulation and Climate, edited by: Siedler, G., Church, J., and Gould, J., vol. 77 of International Geophysics, Academic Press, 373–386, https://doi.org/10.1016/S0074-6142(01)80129-7, 2001. a
Herrmann, M., Somot, S., Sevault, F., Estournel, C., and Déqué, M.: Modeling the deep convection in the northwestern Mediterranean Sea using an eddy-permitting and an eddy-resolving model: Case study of winter 1986–1987, J. Geophys. Res., 113, C04011, https://doi.org/10.1029/2006JC003991, 2008. a
Hieronymus, M. and Nycander, J.: The Buoyancy Budget with a Nonlinear Equation of State, J. Phys. Oceanogr., 43, 176–186, https://doi.org/10.1175/JPO-D-12-063.1, 2013. a
Holland, P. R. and Kwok, R.: Wind-driven trends in Antarctic sea-ice drift, Nat. Geosci., 5, 872–875, https://doi.org/10.1038/ngeo1627, 2012. a
Holte, J. W., Talley, L. D., Chereskin, T. K., and Sloyan, B. M.: The role of air-sea fluxes in Subantarctic Mode Water formation: SAMW FORMATION, J. Geophys. Res.-Oceans, 117, C03040, https://doi.org/10.1029/2011JC007798, 2012. a, b, c
Hoyer, S. and Hamman, J.: xarray: N-D labeled arrays and datasets in Python, J. Open Res. Softw., 5, 1, https://doi.org/10.5334/jors.148, 2017. a
Hoyer, S., Roos, M., Joseph, H., Magin, J., Cherian, D., Fitzgerald, C., Hauser, M., Fujii, K., Maussion, F., Imperiale, G., Clark, S., Kleeman, A., Nicholas, T., Kluyver, T., Westling, J., Munroe, J., Amici, A., Barghini, A., Banihirwe, A., Bell, R., Hatfield-Dodds, Z., Abernathey, R., Bovy, B., Omotani, J., Mühlbauer, K., Roszko, M. K., and Wolfram, P. J.: xarray, Zenodo [code], https://doi.org/10.5281/zenodo.8153447, 2023. a
IOC, SCOR, and IAPSO: The International thermodynamic equation of seawater – 2010: calculation and use of thermodynamic properties, Intergovernmental Oceanographic Com mission, Manuals and Guides, 56, 220, http://teos-10.org/pubs/TEOS-10_Manual.pdf (last access: 12 October 2023), 2015. a
Josey, S. A., Grist, J. P., Mecking, J. V., Moat, B. I., and Schulz, E.: A clearer view of Southern Ocean air–sea interaction using surface heat flux asymmetry, Philos. T. Roy. Soc. A, 381, 20220067, https://doi.org/10.1098/rsta.2022.0067, 2023. a
Klocker, A., Naveira Garabato, A. C., Roquet, F., De Lavergne, C., and Rintoul, S. R.: Generation of the Internal Pycnocline in the Subpolar Southern Ocean by Wintertime Sea Ice Melting, J. Geophys. Res.-Oceans, 128, e2022JC019113, https://doi.org/10.1029/2022JC019113, 2023. a, b
Kostianoy, A. G., Ginzburg, A. I., Frankignoulle, M., and Delille, B.: Fronts in the Southern Indian Ocean as inferred from satellite sea surface temperature data, J. Marine Syst., 45, 55–73, https://doi.org/10.1016/j.jmarsys.2003.09.004, 2004. a
Lascaratos, A. and Nittis, K.: A high-resolution three-dimensional numerical study of intermediate water formation in the Levantine Sea, J. Geophys. Res.-Oceans, 103, 18497–18511, https://doi.org/10.1029/98JC01196, 1998. a
Lee, M.-M., Nurser, A. J. G., Stevens, I., and Sallée, J.-B.: Subduction over the Southern Indian Ocean in a High-Resolution Atmosphere–Ocean Coupled Model, J. Climate, 24, 3830–3849, https://doi.org/10.1175/2011JCLI3888.1, 2011. a
Lenn, Y.-D. and Chereskin, T. K.: Observations of Ekman Currents in the Southern Ocean, J. Phys. Oceanogr., 39, 768–779, https://doi.org/10.1175/2008JPO3943.1, 2009. a
Li, Q. and England, M. H.: Tropical Indo‐Pacific Teleconnections to Southern Ocean Mixed Layer Variability, Geophys. Res. Lett., 47, e2020GL088466, https://doi.org/10.1029/2020GL088466, 2020. a
Li, Q. and Lee, S.: A Mechanism of Mixed Layer Formation in the Indo–Western Pacific Southern Ocean: Preconditioning by an Eddy-Driven Jet-Scale Overturning Circulation, J. Phys. Oceanogr., 47, 2755–2772, https://doi.org/10.1175/JPO-D-17-0006.1, 2017. a
Li, Z., Groeskamp, S., Cerovečki, I., and England, M. H.: The Origin and Fate of Antarctic Intermediate Water in the Southern Ocean, J. Phys. Oceanogr., 52, 2873–2890, https://doi.org/10.1175/JPO-D-21-0221.1, 2022. a
Li, Z., England, M. H., and Groeskamp, S.: Recent acceleration in global ocean heat accumulation by mode and intermediate waters, Nat. Commun., 14, 6888, https://doi.org/10.1038/s41467-023-42468-z, 2023. a
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, SCOR/IAPSO WG127, ISBN 978-0-646-55621-5, 2011. a
Mölder, F., Jablonski, K., Letcher, B., Hall, M., Tomkins-Tinch, C., Sochat, V., Forster, J., Lee, S., Twardziok, S., Kanitz, A., Wilm, A., Holtgrewe, M., Rahmann, S., Nahnsen, S., and Köster, J.: Sustainable data analysis with Snakemake, F1000Research, 10, 33, https://doi.org/10.12688/f1000research.29032.1, 2021. a
Naveira Garabato, A. C., Jullion, L., Stevens, D. P., Heywood, K. J., and King, B. A.: Variability of Subantarctic Mode Water and Antarctic Intermediate Water in the Drake Passage during the Late-Twentieth and Early-Twenty-First Centuries, J. Climate, 22, 3661–3688, https://doi.org/10.1175/2009JCLI2621.1, 2009. a
Nycander, J., Hieronymus, M., and Roquet, F.: The nonlinear equation of state of sea water and the global water mass distribution: Global Water Mass Distribution, Geophys. Res. Lett., 42, 7714–7721, https://doi.org/10.1002/2015GL065525, 2015. a, b
Orsi, A. H., Whitworth, T., and Nowlin, W. D.: On the meridional extent and fronts of the Antarctic Circumpolar Current, Deep-Sea Res. Pt. I, 42, 641–673, https://doi.org/10.1016/0967-0637(95)00021-W, 1995. a
Park, Y., Park, T., Kim, T., Lee, S., Hong, C., Lee, J., Rio, M., Pujol, M., Ballarotta, M., Durand, I., and Provost, C.: Observations of the Antarctic Circumpolar Current Over the Udintsev Fracture Zone, the Narrowest Choke Point in the Southern Ocean, J. Geophys. Res.-Oceans, 124, 4511–4528, https://doi.org/10.1029/2019JC015024, 2019. a, b, c
Pauthenet, E., Roquet, F., Madec, G., and Nerini, D.: A Linear Decomposition of the Southern Ocean Thermohaline Structure, J. Phys. Oceanogr., 47, 29–47, https://doi.org/10.1175/JPO-D-16-0083.1, 2017. a
Pellichero, V., Sallée, J.-B., Chapman, C. C., and Downes, S. M.: The southern ocean meridional overturning in the sea-ice sector is driven by freshwater fluxes, Nat. Commun., 9, 1789, https://doi.org/10.1038/s41467-018-04101-2, 2018. a
Pollard, R., Lucas, M., and Read, J.: Physical controls on biogeochemical zonation in the Southern Ocean, Deep-Sea Res. Pt. II, 49, 3289–3305, https://doi.org/10.1016/S0967-0645(02)00084-X, 2002. a, b
Qiu, B. and Kelly, K. A.: Upper-Ocean Heat Balance in the Kuroshio Extension Region, J. Phys. Oceanogr., 23, 2027–2041, https://doi.org/10.1175/1520-0485(1993)023<2027:UOHBIT>2.0.CO;2, 1993. a, b
Rintoul, S. R.: The global influence of localized dynamics in the Southern Ocean, Nature, 558, 209–218, https://doi.org/10.1038/s41586-018-0182-3, 2018. a
Rintoul, S. R. and England, M. H.: Ekman Transport Dominates Local Air–Sea Fluxes in Driving Variability of Subantarctic Mode Water, J. Phys. Oceanogr., 32, 1308–1321, https://doi.org/10.1175/1520-0485(2002)032<1308:ETDLAS>2.0.CO;2, 2002. a, b
Roach, C. J., Phillips, H. E., Bindoff, N. L., and Rintoul, S. R.: Detecting and Characterizing Ekman Currents in the Southern Ocean, J. Phys. Oceanogr., 45, 1205–1223, https://doi.org/10.1175/JPO-D-14-0115.1, 2015. a
Roemmich, D., Church, J., Gilson, J., Monselesan, D., Sutton, P., and Wijffels, S.: Unabated planetary warming and its ocean structure since 2006, Nat. Clim. Change, 5, 240–245, https://doi.org/10.1038/nclimate2513, 2015. a
Roquet, F., Madec, G., Brodeau, L., and Nycander, J.: Defining a Simplified Yet “Realistic” Equation of State for Seawater, J. Phys. Oceanogr., 45, 2564–2579, https://doi.org/10.1175/JPO-D-15-0080.1, 2015. a, b
Roquet, F., Ferreira, D., Caneill, R., Schlesinger, D., and Madec, G.: Unique thermal expansion properties of water key to the formation of sea ice on Earth, Sci. Adv., 8, eabq0793, https://doi.org/10.1126/sciadv.abq0793, 2022. a, b, c
Rossow, W. B. and Schiffer, R. A.: Advances in Understanding Clouds from ISCCP, B. Am. Meteorol. Soc., 80, 2261–2287, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2, 1999. a, b
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F.: The Oceanic Sink for Anthropogenic CO2, Science, 305, 367–371, https://doi.org/10.1126/science.1097403, 2004. a
Sallée, J.-B., Wienders, N., Speer, K., and Morrow, R.: Formation of subantarctic mode water in the southeastern Indian Ocean, Ocean Dynam., 56, 525–542, https://doi.org/10.1007/s10236-005-0054-x, 2006. a, b
Sallée, J.-B., Morrow, R., and Speer, K.: Eddy heat diffusion and Subantarctic Mode Water formation, Geophys. Res. Lett., 35, L05607, https://doi.org/10.1029/2007GL032827, 2008. a
Sallée, J.-B., Speer, K., Rintoul, S., and Wijffels, S.: Southern Ocean Thermocline Ventilation, J. Phys. Oceanogr., 40, 509–529, https://doi.org/10.1175/2009JPO4291.1, 2010. a
Schanze, J. J. and Schmitt, R. W.: Estimates of Cabbeling in the Global Ocean, J. Phys. Oceanogr., 43, 698–705, https://doi.org/10.1175/JPO-D-12-0119.1, 2013. a, b, c
Schmidtko, S., Johnson, G. C., and Lyman, J. M.: MIMOC: A global monthly isopycnal upper-ocean climatology with mixed layers: MIMOC, J. Geophys. Res.-Oceans, 118, 1658–1672, https://doi.org/10.1002/jgrc.20122, 2013. a, b, c
Sloyan, B. M. and Rintoul, S. R.: Circulation, Renewal, and Modification of Antarctic Mode and Intermediate Water, J. Phys. Oceanogr., 31, 1005–1030, https://doi.org/10.1175/1520-0485(2001)031<1005:CRAMOA>2.0.CO;2, 2001. a
Sloyan, B. M., Talley, L. D., Chereskin, T. K., Fine, R., and Holte, J.: Antarctic Intermediate Water and Subantarctic Mode Water Formation in the Southeast Pacific: The Role of Turbulent Mixing, J. Phys. Oceanogr., 40, 1558–1574, https://doi.org/10.1175/2010JPO4114.1, 2010. a, b
Small, R. J., DuVivier, A. K., Whitt, D. B., Long, M. C., Grooms, I., and Large, W. G.: On the control of subantarctic stratification by the ocean circulation, Clim. Dynam., 56, 299–327, https://doi.org/10.1007/s00382-020-05473-2, 2021. a, b
Song, X.: Explaining the Zonal Asymmetry in the Air-Sea Net Heat Flux Climatology Over the Antarctic Circumpolar Current, J. Geophys. Res.-Oceans, 125, e2020JC016215, https://doi.org/10.1029/2020JC016215, 2020. a
Speer, K., Rintoul, S. R., and Sloyan, B.: The Diabatic Deacon Cell, J. Phys. Oceanogr., 30, 3212–3222, https://doi.org/10.1175/1520-0485(2000)030<3212:TDDC>2.0.CO;2, 2000. a
Sterl, M. F. and De Jong, M. F.: Restratification Structure and Processes in the Irminger Sea, J. Geophys. Res.-Oceans, 127, e2022JC019126, https://doi.org/10.1029/2022JC019126, 2022. a
Swart, S., Gille, S. T., Delille, B., Josey, S., Mazloff, M., Newman, L., Thompson, A. F., Thomson, J., Ward, B., Du Plessis, M. D., Kent, E. C., Girton, J., Gregor, L., Heil, P., Hyder, P., Pezzi, L. P., De Souza, R. B., Tamsitt, V., Weller, R. A., and Zappa, C. J.: Constraining Southern Ocean Air-Sea-Ice Fluxes Through Enhanced Observations, Front. Mar. Sci., 6, 421, https://doi.org/10.3389/fmars.2019.00421, 2019. a
Tamsitt, V., Talley, L. D., Mazloff, M. R., and Cerovečki, I.: Zonal Variations in the Southern Ocean Heat Budget, J. Climate, 29, 6563–6579, https://doi.org/10.1175/JCLI-D-15-0630.1, 2016. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Meth., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Wang, J., Mazloff, M. R., and Gille, S. T.: Pathways of the Agulhas waters poleward of 29°S, J. Geophys. Res.-Oceans, 119, 4234–4250, https://doi.org/10.1002/2014JC010049, 2014. a
Yang, J.: The Seasonal Variability of the Arctic Ocean Ekman Transport and Its Role in the Mixed Layer Heat and Salt Fluxes, J. Climate, 19, 5366–5387, https://doi.org/10.1175/JCLI3892.1, 2006. a
Yeager, S. G. and Large, W. G.: Observational Evidence of Winter Spice Injection, J. Phys. Oceanogr., 37, 2895–2919, https://doi.org/10.1175/2007JPO3629.1, 2007. a
Yu, L. and Weller, R. A.: Objectively Analyzed Air–Sea Heat Fluxes for the Global Ice-Free Oceans (1981–2005), B. Am. Meteorol. Soc., 88, 527–540, https://doi.org/10.1175/BAMS-88-4-527, 2007. a, b
Zahariev, K. and Garrett, C.: An Apparent Surface Buoyancy Flux Associated with the Nonlinearity of the Equation of State, J. Phys. Oceanogr., 27, 362–368, https://doi.org/10.1175/1520-0485(1997)027<0362:AASBFA>2.0.CO;2, 1997. a
Short summary
In winter, heat loss increases density at the surface of the Southern Ocean. This increase in density creates a mixed layer deeper than 250 m only in a narrow deep mixing band (DMB) located around 50° S. North of the DMB, the stratification is too strong to be eroded, so mixed layers are shallower. The density of cold water is almost not impacted by temperature changes. Thus, heat loss does not significantly increase the density south of the DMB, so no deep mixed layers are produced.
In winter, heat loss increases density at the surface of the Southern Ocean. This increase in...