Articles | Volume 20, issue 2
https://doi.org/10.5194/os-20-417-2024
https://doi.org/10.5194/os-20-417-2024
Research article
 | 
22 Mar 2024
Research article |  | 22 Mar 2024

Machine learning methods to predict sea surface temperature and marine heatwave occurrence: a case study of the Mediterranean Sea

Giulia Bonino, Giuliano Galimberti, Simona Masina, Ronan McAdam, and Emanuela Clementi

Related authors

Marine Heat waves – Multiple Analysis / Definitions (MHW-MAD): A Multi-Definition Global Marine Heatwave Dataset from Satellite Sea Surface Temperature data
Alexander Hayward, Nishka Dasgupta, Ronan McAdam, Mark R. Payne, Roshin P. Raj, Giulia Bonino, Sourav Chatterjee, Vincent Combes, Dimitra Denaxa, Francesco De Rovere, Pia Englyst, Veera Haapaniemi, Paul Hargous, Jacob Høyer, K. Ajith Joseph, Beatriz Lopes, Ana Oliveira, João Paixão, Fabiola Silva, Saradhy Surendran, Artemis Zegna-Rata, and Steffen Olsen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-590,https://doi.org/10.5194/essd-2025-590, 2025
Preprint under review for ESSD
Short summary
Forecasting the Mediterranean Sea marine heatwave of summer 2022
Ronan McAdam, Giulia Bonino, Emanuela Clementi, and Simona Masina
State Planet, 4-osr8, 13, https://doi.org/10.5194/sp-4-osr8-13-2024,https://doi.org/10.5194/sp-4-osr8-13-2024, 2024
Short summary
The role of air–sea heat flux for marine heatwaves in the Mediterranean Sea
Dimitra Denaxa, Gerasimos Korres, Giulia Bonino, Simona Masina, and Maria Hatzaki
State Planet, 4-osr8, 11, https://doi.org/10.5194/sp-4-osr8-11-2024,https://doi.org/10.5194/sp-4-osr8-11-2024, 2024
Short summary
Southern Europe and western Asian marine heatwaves (SEWA-MHWs): a dataset based on macroevents
Giulia Bonino, Simona Masina, Giuliano Galimberti, and Matteo Moretti
Earth Syst. Sci. Data, 15, 1269–1285, https://doi.org/10.5194/essd-15-1269-2023,https://doi.org/10.5194/essd-15-1269-2023, 2023
Short summary
The bulk parameterizations of turbulent air–sea fluxes in NEMO4: the origin of sea surface temperature differences in a global model study
Giulia Bonino, Doroteaciro Iovino, Laurent Brodeau, and Simona Masina
Geosci. Model Dev., 15, 6873–6889, https://doi.org/10.5194/gmd-15-6873-2022,https://doi.org/10.5194/gmd-15-6873-2022, 2022
Short summary

Cited articles

Alvarez Fanjul, E., Ciliberti, S. A., and Bahurel, P.: Implementing Operational Ocean Monitoring and Forecasting Systems, IOC-UNESCO, 376 pp., https://doi.org/10.48670/ETOOFS, 2022. a
Anding, D. and Kauth, R.: Estimation of sea surface temperature from space, Remote Sens. Environ., 1, 217–220, 1970. a
Bonino, G., Galimberti, G., Masina, S., McAdam, R., and Clementi, E.: Machine learning methods to predict Sea Surface Temperature and Marine Heatwave occurrence: a case study of the Mediterranean Sea, Zenodo [code], https://doi.org/10.5281/zenodo.8335345, 2023a. a
Bonino, G., Masina, S., Galimberti, G., and Moretti, M.: Southern Europe and western Asian marine heatwaves (SEWA-MHWs): a dataset based on macroevents, Earth Syst. Sci. Data, 15, 1269–1285, https://doi.org/10.5194/essd-15-1269-2023, 2023b. a
Boukabara, S.-A., Krasnopolsky, V., Stewart, J. Q., Maddy, E. S., Shahroudi, N., and Hoffman, R. N.: Leveraging modern artificial intelligence for remote sensing and NWP: Benefits and challenges, B. Am. Meteorol. Soc., 100, ES473–ES491, 2019. a, b, c
Download
Short summary
This study employs machine learning to predict marine heatwaves (MHWs) in the Mediterranean Sea. MHWs have far-reaching impacts on society and ecosystems. Using data from ESA and ECMWF, the research develops accurate prediction models for sea surface temperature (SST) and MHWs across the region. Notably, machine learning methods outperform existing forecasting systems, showing promise in early MHW predictions. The study also highlights the importance of solar radiation as a predictor of SST.
Share