Articles | Volume 20, issue 2
https://doi.org/10.5194/os-20-417-2024
https://doi.org/10.5194/os-20-417-2024
Research article
 | 
22 Mar 2024
Research article |  | 22 Mar 2024

Machine learning methods to predict sea surface temperature and marine heatwave occurrence: a case study of the Mediterranean Sea

Giulia Bonino, Giuliano Galimberti, Simona Masina, Ronan McAdam, and Emanuela Clementi

Related authors

Forecasting the Mediterranean Sea marine heatwave of summer 2022
Ronan McAdam, Giulia Bonino, Emanuela Clementi, and Simona Masina
State Planet, 4-osr8, 13, https://doi.org/10.5194/sp-4-osr8-13-2024,https://doi.org/10.5194/sp-4-osr8-13-2024, 2024
Short summary
The role of air–sea heat flux for marine heatwaves in the Mediterranean Sea
Dimitra Denaxa, Gerasimos Korres, Giulia Bonino, Simona Masina, and Maria Hatzaki
State Planet, 4-osr8, 11, https://doi.org/10.5194/sp-4-osr8-11-2024,https://doi.org/10.5194/sp-4-osr8-11-2024, 2024
Short summary
Southern Europe and western Asian marine heatwaves (SEWA-MHWs): a dataset based on macroevents
Giulia Bonino, Simona Masina, Giuliano Galimberti, and Matteo Moretti
Earth Syst. Sci. Data, 15, 1269–1285, https://doi.org/10.5194/essd-15-1269-2023,https://doi.org/10.5194/essd-15-1269-2023, 2023
Short summary
The bulk parameterizations of turbulent air–sea fluxes in NEMO4: the origin of sea surface temperature differences in a global model study
Giulia Bonino, Doroteaciro Iovino, Laurent Brodeau, and Simona Masina
Geosci. Model Dev., 15, 6873–6889, https://doi.org/10.5194/gmd-15-6873-2022,https://doi.org/10.5194/gmd-15-6873-2022, 2022
Short summary
Drivers and impact of the seasonal variability of the organic carbon offshore transport in the Canary upwelling system
Giulia Bonino, Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, Simona Masina, and Doroteaciro Iovino
Biogeosciences, 18, 2429–2448, https://doi.org/10.5194/bg-18-2429-2021,https://doi.org/10.5194/bg-18-2429-2021, 2021
Short summary

Related subject area

Approach: Operational Oceanography | Properties and processes: Mesoscale to submesoscale dynamics
Assessing the impact of future altimeter constellations in the Met Office global ocean forecasting system
Robert R. King, Matthew J. Martin, Lucile Gaultier, Jennifer Waters, Clément Ubelmann, and Craig Donlon
Ocean Sci., 20, 1657–1676, https://doi.org/10.5194/os-20-1657-2024,https://doi.org/10.5194/os-20-1657-2024, 2024
Short summary
Transient Attracting Profiles in the Great Pacific Garbage Patch
Luca Kunz, Alexa Griesel, Carsten Eden, Rodrigo Duran, and Bruno Sainte-Rose
Ocean Sci., 20, 1611–1630, https://doi.org/10.5194/os-20-1611-2024,https://doi.org/10.5194/os-20-1611-2024, 2024
Short summary

Cited articles

Alvarez Fanjul, E., Ciliberti, S. A., and Bahurel, P.: Implementing Operational Ocean Monitoring and Forecasting Systems, IOC-UNESCO, 376 pp., https://doi.org/10.48670/ETOOFS, 2022. a
Anding, D. and Kauth, R.: Estimation of sea surface temperature from space, Remote Sens. Environ., 1, 217–220, 1970. a
Bonino, G., Galimberti, G., Masina, S., McAdam, R., and Clementi, E.: Machine learning methods to predict Sea Surface Temperature and Marine Heatwave occurrence: a case study of the Mediterranean Sea, Zenodo [code], https://doi.org/10.5281/zenodo.8335345, 2023a. a
Bonino, G., Masina, S., Galimberti, G., and Moretti, M.: Southern Europe and western Asian marine heatwaves (SEWA-MHWs): a dataset based on macroevents, Earth Syst. Sci. Data, 15, 1269–1285, https://doi.org/10.5194/essd-15-1269-2023, 2023b. a
Boukabara, S.-A., Krasnopolsky, V., Stewart, J. Q., Maddy, E. S., Shahroudi, N., and Hoffman, R. N.: Leveraging modern artificial intelligence for remote sensing and NWP: Benefits and challenges, B. Am. Meteorol. Soc., 100, ES473–ES491, 2019. a, b, c
Download
Short summary
This study employs machine learning to predict marine heatwaves (MHWs) in the Mediterranean Sea. MHWs have far-reaching impacts on society and ecosystems. Using data from ESA and ECMWF, the research develops accurate prediction models for sea surface temperature (SST) and MHWs across the region. Notably, machine learning methods outperform existing forecasting systems, showing promise in early MHW predictions. The study also highlights the importance of solar radiation as a predictor of SST.