Ćatipović, L., Matić, F., and Kalinić, H.: Reconstruction Methods in Oceanographic Satellite Data Observation – A Survey, Journal of Marine Science and Engineering, 11, 340,
https://doi.org/10.3390/jmse11020340, 2023.
a
Dong, J., Fox-Kemper, B., Zhang, H., and Dong, C.: The Scale and Activity of Symmetric Instability Estimated from a Global Submesoscale-Permitting Ocean Model, J. Phys. Oceanogr., 51, 1655–1670, 2021. a
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.: An Image is Worth 16
× 16 Words: Transformers for Image Recognition at Scale, arXiv [preprint],
arXiv:2010.11929, 2020.
a,
b
Goh, E., Chen, J., and Wilson, B.: Mars Terrain Segmentation with Less Labels, in: 2022 IEEE Aerospace Conference (AERO), 5–12 March 2022, Yellowstone Conference Center, Big Sky, Montana, USA, IEEE, 1–10, 2022. a
Han, Z., He, Y., Liu, G., and Perrie, W.: Application of DINCAE to Reconstruct the Gaps in Chlorophyll-
a Satellite Observations in the South China Sea and West Philippine Sea, Remote Sens., 12, 480,
https://doi.org/10.3390/rs12030480, 2020.
a
He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R.: Masked Autoencoders Are Scalable Vision Learners, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18–24 June 2022, New Orleans, LA, USA, 16000–16009, 2022.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j
JPL/OBPG/RSMAS: GHRSST Level 2P Global Sea Surface Skin Temperature from the Visible and Infrared Imager/Radiometer Suite (VIIRS) on the Suomi-NPP satellite (GDS2), Ver. 2016.2., PO.DAAC, CA, USA [data set], last access: 1 May 2022,
https://doi.org/10.5067/GHVRS-2PJ62, 2020.
a,
b
Jung, S., Yoo, C., and Im, J.: High-Resolution Seamless Daily Sea Surface Temperature Based on Satellite Data Fusion and Machine Learning over Kuroshio Extension, Remote Sens., 14, 575,
https://doi.org/10.3390/rs14030575, 2022.
a,
b,
c
Krasnopolsky, V., Nadiga, S., Mehra, A., Bayler, E., and Behringer, D.: Neural networks technique for filling gaps in satellite measurements: Application to ocean color observations, Comput. Intel. Neurosc., 2016, 6156513,
https://doi.org/10.1155/2016/6156513, 2016.
a
Lévy, M., Franks, P. J., and Smith, K. S.: The role of submesoscale currents in structuring marine ecosystems, Nat. Commun., 9, 4758,
https://doi.org/10.1038/s41467-018-07059-3, 2018.
a
Mahadevan, A.: The Impact of Submesoscale Physics on Primary Productivity of Plankton, Annu. Rev. Mar. Sci., 8, 161–184, 2016. a
Mahadevan, A. and Tandon, A.: An analysis of mechanisms for submesoscale vertical motion at ocean fronts, Ocean Modell., 14, 241–256, 2006. a
NASA: Global MITgcm simulation – llc4320, Ecco Data Portal [data set],
https://data.nas.nasa.gov/ecco/eccodata/llc_4320/, last access: 1 March 2023a. a
NASA: Global MITgcm simulation – llc2160, Ecco Data Portal [data set],
https://data.nas.nasa.gov/ecco/eccodata/llc_2160/, last access: 1 March 2023b. a
Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L.: Deep Contextualized Word Representations, in: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 2227–2237, Association for Computational Linguistics, New Orleans, Louisiana,
https://doi.org/10.18653/v1/N18-1202, 2018.
a
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and Schlax, M. G.: Daily High-Resolution-Blended Analyses for Sea Surface Temperature, J. Climate, 20, 5473–5496,
https://doi.org/10.1175/2007JCLI1824.1, 2007.
a
Seo, H., O'Neill, L. W., Bourassa, M. A., Czaja, A., Drushka, K., Edson, J. B., Fox-Kemper, B., Frenger, I., Gille, S. T., Kirtman, B. P., Minobe, S., Pendergrass, A. G., Renault, L., Roberts, M. J., Schneider, N., Small, R. J., Stoffelen, A., and Wang, Q.: Ocean Mesoscale and Frontal-Scale Ocean–Atmosphere Interactions and Influence on Large-Scale Climate: A Review, J. Climate, 36, 1981–2013,
https://doi.org/10.1175/JCLI-D-21-0982.1, 2023.
a
Su, Z., Wang, J., Klein, P., Thompson, A. F., and Menemenlis, D.: Ocean submesoscales as a key component of the global heat budget, Nat. Commun., 9, 775,
https://doi.org/10.1038/s41467-018-02983-w, 2018.
a,
b
Thomas, L. N.: Formation of intrathermocline eddies at ocean fronts by wind-driven destruction of potential vorticity, Dynam. Atmos. Oceans, 45, 252–273, 2008. a
Wang, J., Fu, L.-L., Torres, H. S., Chen, S., Qiu, B., and Menemenlis, D.: On the Spatial Scales to be Resolved by the Surface Water and Ocean Topography Ka-Band Radar Interferometer, J. Atmos. Ocean. Tech., 36, 87–99, 2019. a