Articles | Volume 20, issue 5
https://doi.org/10.5194/os-20-1309-2024
https://doi.org/10.5194/os-20-1309-2024
Research article
 | 
24 Oct 2024
Research article |  | 24 Oct 2024

MAESSTRO: Masked Autoencoders for Sea Surface Temperature Reconstruction under Occlusion

Edwin Goh, Alice Yepremyan, Jinbo Wang, and Brian Wilson

Related authors

Producing SWOT measurements with a multiscale data assimilation system during the prelaunch field campaign
Zhijin Li, Matthew R. Archer, Jinbo Wang, and Lee-Lueng Fu
EGUsphere, https://doi.org/10.5194/egusphere-2022-1399,https://doi.org/10.5194/egusphere-2022-1399, 2022
Preprint archived
Short summary
Wind work at the air-sea interface: a modeling study in anticipation of future space missions
Hector S. Torres, Patrice Klein, Jinbo Wang, Alexander Wineteer, Bo Qiu, Andrew F. Thompson, Lionel Renault, Ernesto Rodriguez, Dimitris Menemenlis, Andrea Molod, Christopher N. Hill, Ehud Strobach, Hong Zhang, Mar Flexas, and Dragana Perkovic-Martin
Geosci. Model Dev., 15, 8041–8058, https://doi.org/10.5194/gmd-15-8041-2022,https://doi.org/10.5194/gmd-15-8041-2022, 2022
Short summary
Formulation and demonstration of an extended-3DVAR multi-scale data assimilation system for the SWOT altimetry era
Zhijin Li, Matthew Archer, Jinbo Wang, and Lee-Lueng Fu
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-89,https://doi.org/10.5194/os-2021-89, 2021
Preprint withdrawn
Short summary
Footprint-scale cloud type mixtures and their impacts on Atmospheric Infrared Sounder cloud property retrievals
Alexandre Guillaume, Brian H. Kahn, Eric J. Fetzer, Qing Yue, Gerald J. Manipon, Brian D. Wilson, and Hook Hua
Atmos. Meas. Tech., 12, 4361–4377, https://doi.org/10.5194/amt-12-4361-2019,https://doi.org/10.5194/amt-12-4361-2019, 2019
Short summary

Related subject area

Approach: Remote Sensing | Properties and processes: Mesoscale to submesoscale dynamics
Deep learning for the super resolution of Mediterranean sea surface temperature fields
Claudia Fanelli, Daniele Ciani, Andrea Pisano, and Bruno Buongiorno Nardelli
Ocean Sci., 20, 1035–1050, https://doi.org/10.5194/os-20-1035-2024,https://doi.org/10.5194/os-20-1035-2024, 2024
Short summary
Multiple time-scale variations of fronts in the Seto Inland Sea, Japan
Menghong Dong and Xinyu Guo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1667,https://doi.org/10.5194/egusphere-2024-1667, 2024
Short summary
Monitoring the coastal-offshore water interactions in the Levantine Sea using ocean color and deep supervised learning
Georges Baaklini, Julien Brajard, Leila Issa, Gina Fifani, Laurent Mortier, and Roy El Hourany
EGUsphere, https://doi.org/10.5194/egusphere-2024-1168,https://doi.org/10.5194/egusphere-2024-1168, 2024
Short summary
Impact of surface and subsurface-intensified eddies on sea surface temperature and chlorophyll a in the northern Indian Ocean utilizing deep learning
Yingjie Liu and Xiaofeng Li
Ocean Sci., 19, 1579–1593, https://doi.org/10.5194/os-19-1579-2023,https://doi.org/10.5194/os-19-1579-2023, 2023
Short summary
Regional mapping of energetic short mesoscale ocean dynamics from altimetry: performances from real observations
Florian Le Guillou, Lucile Gaultier, Maxime Ballarotta, Sammy Metref, Clément Ubelmann, Emmanuel Cosme, and Marie-Helène Rio
Ocean Sci., 19, 1517–1527, https://doi.org/10.5194/os-19-1517-2023,https://doi.org/10.5194/os-19-1517-2023, 2023
Short summary

Cited articles

Agabin, A., Prochaska, J. X., Cornillon, P. C., and Buckingham, C. E.: Mitigating masked pixels in a climate-critical ocean dataset, Remote Sens., 16, 2439, https://doi.org/10.3390/rs16132439, 2024. a
Alvera-Azcárate, A., Barth, A., Sirjacobs, D., Lenartz, F., and Beckers, J.-M.: Data Interpolating Empirical Orthogonal Functions (DINEOF): a tool for geophysical data analyses, Mediterr. Mar. Sci., 12, 5–11, https://doi.org/10.12681/mms.64, 2011. a
Barth, A., Alvera-Azcárate, A., Licer, M., and Beckers, J.-M.: DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations, Geosci. Model Dev., 13, 1609–1622, https://doi.org/10.5194/gmd-13-1609-2020, 2020. a, b
Barth, A., Alvera-Azcárate, A., Troupin, C., and Beckers, J.-M.: DINCAE 2.0: multivariate convolutional neural network with error estimates to reconstruct sea surface temperature satellite and altimetry observations, Geosci. Model Dev., 15, 2183–2196, https://doi.org/10.5194/gmd-15-2183-2022, 2022. a
Belkin, I. M.: Remote Sensing of Ocean Fronts in Marine Ecology and Fisheries, Remote Sens., 13, 883, https://doi.org/10.3390/rs13050883, 2021. a
Download
Short summary
An AI model was used to fill in missing parts of sea temperature (SST) maps caused by cloud cover. We found masked autoencoders can recreate missing SSTs with less than 0.2 °C error, even when 80 % are missing. This is 5000 times faster than conventional methods tested on a single central processing unit. This can enhance our ability in monitoring global small-scale ocean fronts that affect heat, carbon, and nutrient exchange in the ocean. The method is promising for future research.