Articles | Volume 20, issue 5
https://doi.org/10.5194/os-20-1309-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.Special issue:
MAESSTRO: Masked Autoencoders for Sea Surface Temperature Reconstruction under Occlusion
Related authors
Related subject area
Approach: Remote Sensing | Properties and processes: Mesoscale to submesoscale dynamics
Monitoring the coastal–offshore water interactions in the Levantine Sea using ocean color and deep supervised learning
Multiple timescale variations in fronts in the Seto Inland Sea, Japan
Deep learning for the super resolution of Mediterranean sea surface temperature fields
Ocean Sci., 20, 1707–1720,
2024Ocean Sci., 20, 1527–1546,
2024Ocean Sci., 20, 1035–1050,
2024Cited articles
Agabin, A., Prochaska, J. X., Cornillon, P. C., and Buckingham, C. E.: Mitigating masked pixels in a climate-critical ocean dataset, Remote Sens., 16, 2439, https://doi.org/10.3390/rs16132439, 2024. a
Alvera-Azcárate, A., Barth, A., Sirjacobs, D., Lenartz, F., and Beckers, J.-M.: Data Interpolating Empirical Orthogonal Functions (DINEOF): a tool for geophysical data analyses, Mediterr. Mar. Sci., 12, 5–11, https://doi.org/10.12681/mms.64, 2011. a
Barth, A., Alvera-Azcárate, A., Licer, M., and Beckers, J.-M.: DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations, Geosci. Model Dev., 13, 1609–1622, https://doi.org/10.5194/gmd-13-1609-2020, 2020. a, b
Barth, A., Alvera-Azcárate, A., Troupin, C., and Beckers, J.-M.: DINCAE 2.0: multivariate convolutional neural network with error estimates to reconstruct sea surface temperature satellite and altimetry observations, Geosci. Model Dev., 15, 2183–2196, https://doi.org/10.5194/gmd-15-2183-2022, 2022. a
Belkin, I. M.: Remote Sensing of Ocean Fronts in Marine Ecology and Fisheries, Remote Sens., 13, 883, https://doi.org/10.3390/rs13050883, 2021. a