Articles | Volume 20, issue 5
https://doi.org/10.5194/os-20-1291-2024
https://doi.org/10.5194/os-20-1291-2024
Research article
 | 
23 Oct 2024
Research article |  | 23 Oct 2024

Intensified upwelling: normalized sea surface temperature trends expose climate change in coastal areas

Miguel Ángel Gutiérrez-Guerra, María Dolores Pérez-Hernández, and Pedro Vélez-Belchí

Related authors

Consistent picture of the horizontal circulation of the Atlantic Ocean over 3 decades
Verónica Caínzos, M. Dolores Pérez-Hernández, Daniel Santana-Toscano, Cristina Arumí-Planas, and Alonso Hernández-Guerra
Ocean Sci., 19, 1009–1045, https://doi.org/10.5194/os-19-1009-2023,https://doi.org/10.5194/os-19-1009-2023, 2023
Short summary
Differences between 1999 and 2010 across the Falkland Plateau: fronts and water masses
M. Dolores Pérez-Hernández, Alonso Hernández-Guerra, Isis Comas-Rodríguez, Verónica M. Benítez-Barrios, Eugenio Fraile-Nuez, Josep L. Pelegrí, and Alberto C. Naveira Garabato
Ocean Sci., 13, 577–587, https://doi.org/10.5194/os-13-577-2017,https://doi.org/10.5194/os-13-577-2017, 2017
Short summary

Related subject area

Approach: In situ Observations | Properties and processes: Coastal and near-shore processes
Importance of tides and winds in influencing the nonstationary behaviour of coastal currents in offshore Singapore
Jun Yu Puah, Ivan D. Haigh, David Lallemant, Kyle Morgan, Dongju Peng, Masashi Watanabe, and Adam D. Switzer
Ocean Sci., 20, 1229–1246, https://doi.org/10.5194/os-20-1229-2024,https://doi.org/10.5194/os-20-1229-2024, 2024
Short summary
Coastal and regional marine heatwaves and cold spells in the northeastern Atlantic
Amélie Simon, Coline Poppeschi, Sandra Plecha, Guillaume Charria, and Ana Russo
Ocean Sci., 19, 1339–1355, https://doi.org/10.5194/os-19-1339-2023,https://doi.org/10.5194/os-19-1339-2023, 2023
Short summary

Cited articles

Abbott, M. R. and Zion, P. M.: Spatial and temporal variability of phytoplankton pigment off northern California during Coastal Ocean Dynamics Experiment 1, J. Geophys. Res.-Oceans, 92, 1745–1755, https://doi.org/10.1029/JC092IC02P01745, 1987. 
Abrahams, A., Schlegel, R. W., and Smit, A. J.: Variation and Change of Upwelling Dynamics Detected in the World's Eastern Boundary Upwelling Systems, Front. Mar. Sci., 8, 626411, https://doi.org/10.3389/FMARS.2021.626411, 2021. 
Andrews, W. R. H. and Cram, D. L.: Combined Aerial and Shipboard Upwelling Study in the Benguela Current, Nature, 224, 902–904, https://doi.org/10.1038/224902a0, 1969. 
Andrews, W. R. H. and Hutchings, L.: Upwelling in the Southern Benguela Current, Prog. Oceanogr., 9, 1–81, https://doi.org/10.1016/0079-6611(80)90015-4, 1980. 
Arellano, B. and Rivas, D.: Coastal upwelling will intensify along the Baja California coast under climate change by mid-21st century: Insights from a GCM-nested physical-NPZD coupled numerical ocean model, J. Mar. Syst., 199, 103207, https://doi.org/10.1016/J.JMARSYS.2019.103207, 2019. 
Download
Short summary
Eastern boundary upwelling systems (EBUSs) are crucial for resources, but climate change poses uncertainties for their future. To assess global warming's impact, we examine Andrew Bakun's 1990 hypothesis of intensified upwelling using deseasonalized sea surface temperature data. A new index, αUI, normalizes upwelling trends against non-upwelling processes, confirming intensification in all EBUSs and supporting Bakun's hypothesis.