Articles | Volume 20, issue 5
https://doi.org/10.5194/os-20-1291-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-20-1291-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intensified upwelling: normalized sea surface temperature trends expose climate change in coastal areas
Miguel Ángel Gutiérrez-Guerra
Unidad Océano y Clima, Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Unidad Asociada ULPGC-CSIC, Canary Islands, Spain
Centro Oceanográfico de Canarias, Instituto Español de Oceanografía – Consejo Superior de Investigaciones Científicas (IEO-CSIC), Santa Cruz de Tenerife, Canary Islands, Spain
María Dolores Pérez-Hernández
Unidad Océano y Clima, Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Unidad Asociada ULPGC-CSIC, Canary Islands, Spain
Pedro Vélez-Belchí
CORRESPONDING AUTHOR
Centro Oceanográfico de Canarias, Instituto Español de Oceanografía – Consejo Superior de Investigaciones Científicas (IEO-CSIC), Santa Cruz de Tenerife, Canary Islands, Spain
Related authors
No articles found.
Angel Ruiz-Angulo, Esther Portela, Charly de Marez, Andreas Macrander, Sólveig Rósa Ólafsdóttir, Thomas Meunier, Steingrímur Jónsson, and M. Dolores Pérez-Hernández
EGUsphere, https://doi.org/10.5194/egusphere-2025-2102, https://doi.org/10.5194/egusphere-2025-2102, 2025
Short summary
Short summary
The ocean around Iceland is a key region for water mass transformation that drives global ocean circulation. We use 29 years of hydrographic data to examine the spatial and temporal variability of mixed layer depth and stratification, identifying three distinct regions: South, North, and Northeast. We present a comprehensive view of seasonal to multi-decadal variability in upper ocean structure and its link to a changing North Atlantic under global warming.
Verónica Caínzos, M. Dolores Pérez-Hernández, Daniel Santana-Toscano, Cristina Arumí-Planas, and Alonso Hernández-Guerra
Ocean Sci., 19, 1009–1045, https://doi.org/10.5194/os-19-1009-2023, https://doi.org/10.5194/os-19-1009-2023, 2023
Short summary
Short summary
The pathways of the Atlantic circulation form a complex system of currents that change meridionally due to interactions with nearby water masses. Over the last 30 years, hydrographic data have allowed us to characterize these upper, deep, and abyssal currents for the entire water column using high-resolution data, computing their mass, heat, and freshwater transports. Generally, we have found no changes among decades for each current in terms of the transport of mass or properties.
Cited articles
Abbott, M. R. and Zion, P. M.: Spatial and temporal variability of phytoplankton pigment off northern California during Coastal Ocean Dynamics Experiment 1, J. Geophys. Res.-Oceans, 92, 1745–1755, https://doi.org/10.1029/JC092IC02P01745, 1987.
Abrahams, A., Schlegel, R. W., and Smit, A. J.: Variation and Change of Upwelling Dynamics Detected in the World's Eastern Boundary Upwelling Systems, Front. Mar. Sci., 8, 626411, https://doi.org/10.3389/FMARS.2021.626411, 2021.
Andrews, W. R. H. and Cram, D. L.: Combined Aerial and Shipboard Upwelling Study in the Benguela Current, Nature, 224, 902–904, https://doi.org/10.1038/224902a0, 1969.
Andrews, W. R. H. and Hutchings, L.: Upwelling in the Southern Benguela Current, Prog. Oceanogr., 9, 1–81, https://doi.org/10.1016/0079-6611(80)90015-4, 1980.
Arellano, B. and Rivas, D.: Coastal upwelling will intensify along the Baja California coast under climate change by mid-21st century: Insights from a GCM-nested physical-NPZD coupled numerical ocean model, J. Mar. Syst., 199, 103207, https://doi.org/10.1016/J.JMARSYS.2019.103207, 2019.
Bakun, A.: Global climate change and intensification of coastal ocean upwelling, Science, 247, 198–201, https://doi.org/10.1126/science.247.4939.198, 1990.
Bakun, A. and Nelson, C. S.: The Seasonal Cycle of Wind-Stress Curl in Subtropical Eastern Boundary Current Regions, J. Phys. Oceanogr., 21, 1815–1834, https://doi.org/10.1175/1520-0485(1991)021<1815:TSCOWS>2.0.CO;2, 1991.
Bakun, A., Black, B. A., Bograd, S. J., García-Reyes, M., Miller, A. J., Rykaczewski, R. R., and Sydeman, W. J.: Anticipated Effects of Climate Change on Coastal Upwelling Ecosystems, Curr. Clim. Change Rep., 1, 85–93, https://doi.org/10.1007/s40641-015-0008-4, 2015.
Bang, N. and Andrews, W.: Direct current measurements of a shelf-edge frontal jet in the southern Benguela system, J. Mar. Res., 32, 405–417, 1974.
Barton, E. D., Field, D. B., and Roy, C.: Canary current upwelling: More or less?, Prog. Oceanogr., 116, 167–178, https://doi.org/10.1016/j.pocean.2013.07.007, 2013.
Belkin, I. M.: Rapid warming of Large Marine Ecosystems, Prog. Oceanogr., 81, 207–213, https://doi.org/10.1016/j.pocean.2009.04.011, 2009.
Benazzouz, A., Mordane, S., Orbi, A., Chagdali, M., Hilmi, K., Atillah, A., Lluís Pelegrí, J., and Hervé, D.: An improved coastal upwelling index from sea surface temperature using satellite-based approach – The case of the Canary Current upwelling system, Cont. Shelf Res., 81, 38–54, https://doi.org/10.1016/j.csr.2014.03.012, 2014.
Bonino, G., Di Lorenzo, E., Masina, S., and Iovino, D.: Interannual to decadal variability within and across the major Eastern Boundary Upwelling Systems, Sci. Rep.-UK, 9, 1–14, https://doi.org/10.1038/s41598-019-56514-8, 2019.
California Cooperative Oceanic Fisheries Investigations: CalCOFI Hydrographic Database, California Cooperative Oceanic Fisheries Investigations, https://calcofi.org/data/oceanographic-data/, last access: 7 January 2024.
Cropper, T. E., Hanna, E., and Bigg, G. R.: Spatial and temporal seasonal trends in coastal upwelling off Northwest Africa, 1981–2012, Deep-Sea Res. Pt. I, 86, 94–111, https://doi.org/10.1016/J.DSR.2014.01.007, 2014.
Demarcq, H.: Trends in primary production, sea surface temperature and wind in upwelling systems (1998–2007), Prog. Oceanogr., 83, 376–385, https://doi.org/10.1016/j.pocean.2009.07.022, 2009.
Dong, L. and Zhou, T.: The formation of the recent cooling in the eastern tropical Pacific Ocean and the associated climate impacts: A competition of global warming, IPO, and AMO, J. Geophys. Res., 119, 11272–11287, 2014.
Dugdale, R. C. and Wilkerson, F. P.: New production in the upwelling center at Point Conception, California: temporal and spatial patterns, Deep-Sea Res. Pt. I, 36, 985–1007, https://doi.org/10.1016/0198-0149(89)90074-5, 1989.
Ekman, V. W.: On the Influence of the Earth's Rotation on Ocean-Currents, Almqvist & Wiksells, Uppsala [Sweden], 1–52 pp., http://jhir.library.jhu.edu/handle/1774.2/33989 (last access: 18 October 2024), 1905.
Escribano, R., Daneri, G., Farías, L., Gallardo, V. A., González, H. E., Gutiérrez, D., Lange, C. B., Morales, C. E., Pizarro, O., Ulloa, O., and Braun, M.: Biological and chemical consequences of the 1997–1998 El Niño in the Chilean coastal upwelling system: a synthesis, Deep-Sea Res. Pt. II, 51, 2389–2411, https://doi.org/10.1016/J.DSR2.2004.08.011, 2004.
Figueroa, D. and Moffat, C.: On the influence of topography in the induction of coastal upwelling along the Chilean Coast, Geophys. Res. Lett., 27, 3905–3908, https://doi.org/10.1029/1999GL011302, 2000.
García-Reyes, M., Sydeman, W. J., Schoeman, D. S., Rykaczewski, R. R., Black, B. A., Smit, A. J., and Bograd, S. J.: Under pressure: Climate change, upwelling, and eastern boundary upwelling ecosystems, Front. Mar. Sci., 2, 1–10, https://doi.org/10.3389/fmars.2015.00109, 2015.
Gómez-Gesteira, M., De Castro, M., Álvarez, I., Lorenzo, M. N., Gesteira, J. L. G., and Crespo, A. J. C.: Spatio-temporal upwelling trends along the Canary upwelling system (1967–2006), Ann. NY. Acad. Sci., 1146, 320–337, https://doi.org/10.1196/annals.1446.004, 2008.
Good, S. A., Corlett, G. K., Remedios, J. J., Noyes, E. J., and Llewellyn-Jones, D. T.: The global trend in sea surface temperature from 20 years of advanced very high resolution radiometer data, J. Climate, 20, 1255–1264, https://doi.org/10.1175/JCLI4049.1, 2007.
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates, J. Geophys. Res.-Oceans, 118, 6704–6716, https://doi.org/10.1002/2013JC009067, 2013.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J-N.: ERA5 monthly averaged data on single levels from 1940 to presen, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.f17050d7, 2023.
Hutchings, L., van der Lingen, C. D., Shannon, L. J., Crawford, R. J. M., Verheye, H. M. S., Bartholomae, C. H., van der Plas, A. K., Louw, D., Kreiner, A., Ostrowski, M., Fidel, Q., Barlow, R. G., Lamont, T., Coetzee, J., Shillington, F., Veitch, J., Currie, J. C., and Monteiro, P. M. S.: The Benguela Current: An ecosystem of four components, Prog. Oceanogr., 83, 15–32, https://doi.org/10.1016/j.pocean.2009.07.046, 2009.
Instituto Español de Oceanografia: RAPROCAN: Canary deep hydrographic section, Instituto Español de Oceanografia, https://www.seadatanet.org/, last access: 22 February 2024.
Kämpf, J. and Chapman, P.: Upwelling Systems of the World, Springer, https://doi.org/10.1007/978-3-319-42524-5, 2016.
Kang, S. M., Yu, Y., Deser, C., Zhang, X., Kang, I. S., Lee, S. S., Rodgers, K. B., and Ceppi, P.: Global impacts of recent Southern Ocean cooling, P. Natl. Acad. Sci. USA, 120, e2300881120, https://doi.org/10.1073/PNAS.2300881120, 2023a.
Kang, S. M., Ceppi, P., Yu, Y., and Kang, I. S.: Recent global climate feedback controlled by Southern Ocean cooling, Nat. Geosci., 16, 775–780, https://doi.org/10.1038/s41561-023-01256-6, 2023b.
Kendall, M.: Rank correlation methods (4th edn.) charles griffin, San Francisco, CA, 8, 875, https://doi.org/10.1017/S0020268100013019, 1975.
Lutjeharms, J. R. E. and Meeuwis, J. M.: The extent and variability of South-East Atlantic upwelling, S. Afr. J. Marine Sci., 5, 51–62, https://doi.org/10.2989/025776187784522621, 1987.
Mann, H. B.: Nonparametric Tests Against Trend, Econometrica, 13, 245, https://doi.org/10.2307/1907187, 1945.
Marín, C.: Upwelling shadows at Mejillones Bay (northern Chilean coast): a remote sensing in situ analysis, Investigaciones Marinas, 31, 47–55, 2003.
McGregor, H. V., Dima, M., Fischer, H. W., and Mulitza, S.: Rapid 20th-century increase in coastal upwelling off northwest Africa, Science, 315, 637–639, https://doi.org/10.1126/science.1134839, 2007.
Meehl, G. A., Hu, A., Santer, B. D., and Xie, S. P.: Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends, Nat. Clim. Change, 6, 1005–1008, https://doi.org/10.1038/nclimate3107, 2016.
Mesias, J. M., Matano, R. P., and Strub, P. T.: Dynamical analysis of the upwelling circulation off central Chile, J. Geophys. Res.-Oceans, 108, 3085, https://doi.org/10.1029/2001JC001135, 2003.
Narayan, N., Paul, A., Mulitza, S., and Schulz, M.: Trends in coastal upwelling intensity during the late 20th century, Ocean Sci., 6, 815–823, https://doi.org/10.5194/os-6-815-2010, 2010.
National Oceanic and Atmospheric Administration (NOAA): OI-SST, National Oceanic and Atmospheric Administration, https://www.ncei.noaa.gov/products/optimum-interpolation-sst, last access: 14 October 2024.
NDBC: Moored buoys, National Data Buoy Center, https://www.ndbc.noaa.gov/to_station.shtml, last access: 14 May 2023.
Pauly, D. and Christensen, V.: Primary production required to sustain global fisheries, Nature, 376, 279–279, https://doi.org/10.1038/376279b0, 1995.
Peard, K. R.: Seasonal and interannual variability of wind-driven upwelling at Lüderitz, Namibia, http://hdl.handle.net/11427/6498 (last access: 12 October 2024), 2007.
Puertos del Estado: Wave prediction, sea level; Buoys and tide gauges, Historical data, Puertos del Estado, https://www.puertos.es/es-es/oceanografia/Paginas/portus.aspx, last access: 20 June 2021.
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and Schlax, M. G.: Daily high-resolution-blended analyses for sea surface temperature, J. Climate, 20, 5473–5496, https://doi.org/10.1175/2007JCLI1824.1, 2007.
Rykaczewski, R. R., Dunne, J. P., Sydeman, W. J., García-Reyes, M., Black, B. A., and Bograd, S. J.: Poleward displacement of coastal upwelling-favorable winds in the ocean's eastern boundary currents through the 21st century, Geophys. Res. Lett., 42, 6424–6431, https://doi.org/10.1002/2015GL064694, 2015.
Sambe, B., Tandstad, M., Caramelo, A. M., and Brownd, B. E.: Variations in productivity of the Canary Current Large Marine Ecosystem and their effects on small pelagic fish stocks, Environ. Dev., 17, 105–117, https://doi.org/10.1016/j.envdev.2015.11.012, 2016.
Santos, F., deCastro, M., Gómez-Gesteira, M., and Álvarez, I.: Differences in coastal and oceanic SST warming rates along the Canary upwelling ecosystem from 1982 to 2010, Cont. Shelf Res., 47, 1–6, https://doi.org/10.1016/j.csr.2012.07.023, 2012.
Seabra, R., Varela, R., Santos, A. M., Gómez-Gesteira, M., Meneghesso, C., Wethey, D. S., and Lima, F. P.: Reduced nearshore warming associated with eastern boundary upwelling systems, Front. Mar. Sci., 6, 445128, https://doi.org/10.3389/fmars.2019.00104, 2019.
Sherman, K. and Hempel, G.: The UNEP Large Marine Ecosystem Report: A perspective on changing conditions in LMEs of the world's Regional Seas, UNEP Regional Seas Reports and Studies, ISBN 978-92080702773-9, 2008.
Siemer, J. P., Machín, F., González-Vega, A., Arrieta, J. M., Gutiérrez-Guerra, M. A., Pérez-Hernández, M. D., Vélez-Belchí, P., Hernández-Guerra, A., and Fraile-Nuez, E.: Recent Trends in SST, Chl-a, Productivity and Wind Stress in Upwelling and Open Ocean Areas in the Upper Eastern North Atlantic Subtropical Gyre, J. Geophys. Res.-Oceans, 126, e2021JC017268, https://doi.org/10.1029/2021JC017268, 2021.
Signorini, S. R., Franz, B. A., and McClain, C. R.: Chlorophyll variability in the oligotrophic gyres: Mechanisms, seasonality and trends, Front. Mar. Sci., 2, 1–11, https://doi.org/10.3389/fmars.2015.00001, 2015.
Smale, D. A. and Wernberg, T.: Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology, Mar. Ecol. Prog. Ser., 387, 27–37, https://doi.org/10.3354/MEPS08132, 2009.
Sydeman, W. J., García-Reyes, M., Schoeman, D. S., Rykaczewski, R. R., Thompson, S. A., Black, B. A., and Bograd, S. J.: Climate change and wind intensification in coastal upwelling ecosystems, Science, 345, 77–80, https://doi.org/10.1126/science.1251635, 2014.
Tel, E., Balbin, R., Cabanas, J.-M., Garcia, M.-J., Garcia-Martinez, M. C., Gonzalez-Pola, C., Lavin, A., Lopez-Jurado, J.-L., Rodriguez, C., Ruiz-Villarreal, M., Sánchez-Leal, R. F., Vargas-Yáñez, M., and Vélez-Belchí, P.: IEOOS: the Spanish Institute of Oceanography Observing System, Ocean Sci., 12, 345–353, https://doi.org/10.5194/os-12-345-2016, 2016.
Wang, D., Gouhier, T. C., Menge, B. A., and Ganguly, A. R.: Intensification and spatial homogenization of coastal upwelling under climate change, Nature, 518, 390–394, https://doi.org/10.1038/nature14235, 2015.
Short summary
Eastern boundary upwelling systems (EBUSs) are crucial for resources, but climate change poses uncertainties for their future. To assess global warming's impact, we examine Andrew Bakun's 1990 hypothesis of intensified upwelling using deseasonalized sea surface temperature data. A new index, αUI, normalizes upwelling trends against non-upwelling processes, confirming intensification in all EBUSs and supporting Bakun's hypothesis.
Eastern boundary upwelling systems (EBUSs) are crucial for resources, but climate change poses...