Articles | Volume 20, issue 5
https://doi.org/10.5194/os-20-1149-2024
https://doi.org/10.5194/os-20-1149-2024
Research article
 | 
19 Sep 2024
Research article |  | 19 Sep 2024

Predicting particle catchment areas of deep-ocean sediment traps using machine learning

Théo Picard, Jonathan Gula, Ronan Fablet, Jeremy Collin, and Laurent Mémery

Related authors

Estimating the variability of deep ocean particle flux collected by sediment traps using satellite data and machine learning
Théo Picard, Chelsey A. Baker, Jonathan Gula, Ronan Fablet, Laurent Mémery, and Richard Lampitt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3292,https://doi.org/10.5194/egusphere-2024-3292, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary

Related subject area

Approach: Numerical Models | Properties and processes: Biogeochemistry and nutrient cycles
Detection and Tracking of Carbon Biomes via Integrated Machine Learning
Sweety Mohanty, Lavinia Patara, Daniyal Kazempour, and Peer Kröger
EGUsphere, https://doi.org/10.5194/egusphere-2024-1369,https://doi.org/10.5194/egusphere-2024-1369, 2024
Short summary

Cited articles

Alldredge, A. L. and Gotschalk, C.: In situ settling behavior of marine snow, Limnol. Oceanogr., 33, 339–351, https://doi.org/10.4319/lo.1988.33.3.0339, 1988. a
Alonso-González, I. J., Arístegui, J., Lee, C., and Calafat, A.: Regional and temporal variability of sinking organic matter in the subtropical northeast Atlantic Ocean: a biomarker diagnosis, Biogeosciences, 7, 2101–2115, https://doi.org/10.5194/bg-7-2101-2010, 2010. a
Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., and Wakeham, S. G.: A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals, Deep-Sea Res. Pt. II, 49, 219–236, https://doi.org/10.1016/S0967-0645(01)00101-1, 2001. a, b
Asper, V. L., Deuser, W. G., Knauer, G. A., and Lohrenz, S. E.: Rapid coupling of sinking particle fluxes between surface and deep ocean waters, Nature, 357, 670–672, https://doi.org/10.1038/357670a0, 1992. a
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: An ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. a
Download
Short summary
The biological carbon pump plays a key role in the climate system. Plankton absorb and transform CO2 into organic carbon, forming particles that sink to the ocean floor. Sediment traps catch these particles and measure the carbon stored in the abyss. However, the particles' surface origin is unknown as ocean currents alter their paths. Here, we train an AI model to predict the origin of these particles. This new tool enables a better link between deep-ocean observations and satellite images.