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Abstract. The ocean’s biological carbon pump plays a ma-
jor role in climate and biogeochemical cycles. Photosynthe-
sis at the surface produces particles that are exported to the
deep ocean by gravity. Sediment traps, which measure deep-
carbon fluxes, help to quantify the carbon stored by this pro-
cess. However, it is challenging to precisely identify the sur-
face origin of particles trapped thousands of meters deep due
to the influence of ocean circulation on the sinking path of
carbon. In this study, we conducted a series of numerical La-
grangian experiments in the Porcupine Abyssal Plain region
of the North Atlantic and developed a machine learning ap-
proach to predict the surface origin of particles trapped in a
deep-ocean sediment trap. Our numerical experiments sup-
port the predictive performance of the machine learning ap-
proach, and surface conditions appear to provide valuable
information for accurately predicting the source area, sug-
gesting a potential application with satellite data. We also
identify factors that potentially affect prediction efficiency,
and we show that the best predictions are associated with
low kinetic energy and the presence of mesoscale eddies
above the trap. This new tool could provide a better link
between satellite-derived sea surface observations and deep-
ocean sediment trap measurements, ultimately improving our
understanding of the biological-carbon-pump mechanism.

1 Introduction

The biological carbon pump (BCP) plays a major role in cli-
mate and biogeochemical cycles. The BCP reduces unper-
turbed atmospheric CO2 by 35 % to 50 % (Williams and Fol-
lows, 2011) by exporting organic matter to the deep ocean,
thereby supporting abyssal food webs (Billett et al., 1983;
Rembauville et al., 2018). The BCP is driven by photosyn-
thesis that occurs within the euphotic layer, typically be-
tween 0 and 200 m, producing gravitationally sinking par-
ticulate organic carbon (POC). Sinking particles have a wide
range of vertical velocities, from neutral buoyancy to more
than 600 m d−1 (Villa-Alfageme et al., 2016), and are usu-
ally considered the main contributors to the BCP (Armstrong
et al., 2001; Alonso-González et al., 2010; Siegel et al., 2014;
Le Moigne, 2019). While most POC is remineralized in the
euphotic and mesopelagic zones (200–1000 m), a small but
significant fraction of POC reaches the deep ocean below
1000 m, where it is sequestered for hundreds or thousands
of years (Lampitt et al., 2008; Burd et al., 2016). Despite
its critical importance, the annual estimate of global carbon
export remains poorly constrained, ranging from 5 to over
12 Pg C yr−1 (Turner, 2015). Therefore, quantifying the bio-
logical carbon pump is key to understanding the global car-
bon cycle and how the BCP will respond to climate change
(Passow and Carlson, 2012; Henson et al., 2022).
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Export production has historically been observed using
sediment traps (STs) from the upper thermocline down to
several thousand meters (Le Moigne et al., 2013). However,
linking local primary production to observed exported car-
bon fluxes is a challenging task. To effectively interpret ST
time series, the catchment area, defined as the surface do-
main containing all likely positions from which particles en-
tering the trap could originate (Deuser et al., 1988), must be
clearly identified. Traditionally, the catchment area is con-
sidered to be the zone directly above the traps (Deuser and
Ross, 1980; Alldredge and Gotschalk, 1988; Asper et al.,
1992; Armstrong et al., 2001; Lampitt et al., 2023). While
this approach demonstrates a first-order coupling, it is based
on a strong hypothesis: POC export via gravitational sink-
ing is considered from a quasi-one-dimensional perspective.
However, ocean circulation significantly affects the sinking
paths of particles. Thus, the origins of particles reaching a
deep ST can be distributed over a large domain that mainly
depends on ocean dynamics at all scales (Siegel et al., 1990;
Deuser et al., 1990; Burd et al., 2010; Liu et al., 2018; Dever
et al., 2021)

Recent studies have focused on the influence of ocean cir-
culation and have evaluated funnel statistics for specific sed-
iment trap locations using particle backtracking and numeri-
cal simulations (Siegel et al., 2008; Liu et al., 2018; Wekerle
et al., 2018; Wang et al., 2022). These studies have shown
that the catchment area is highly dependent on several fac-
tors, such as sinking velocities, trap depth, and regional and
seasonal advective processes. The application of Lagrangian
backtracking approaches with assimilated ocean currents has
been proposed to relate ocean circulation to real ST observa-
tions (Frigstad et al., 2015; Ma et al., 2021). However, a full
3D reconstruction of ocean states from available satellite-
derived and in situ observations is highly challenging and
prone to significant biases in the retrieval of mesoscale and
submesoscale dynamics (Cutolo et al., 2022). This leads to
uncertainties in the prediction of catchment areas and in the
assessment of the BCP.

Machine learning tools are increasingly being used to
tackle these complex problems, and they generally offer an
end-to-end formulation that is both easier to develop and
computationally cheaper. Oceanography studies have already
demonstrated the benefits of machine learning, particularly
in predicting the properties of the ocean interior from ob-
servations of the ocean surface (Chapman and Charanto-
nis, 2017; Bolton and Zanna, 2019; George et al., 2021;
Manucharyan et al., 2021; Pauthenet et al., 2022). These
tools can achieve state-of-the-art performance capabilities or
even outperform standard operational interpolation data as-
similation schemes when focused on specific ocean variables
(Manucharyan et al., 2021; Beauchamp et al., 2022; Cutolo
et al., 2022). They can also significantly reduce the computa-
tional complexity of numerical simulations, including those
for Lagrangian particle trajectories (Jenkins et al., 2022). In
addition, while it can be complex to investigate how the sur-

face constrains particle motion at depth using 3D reanaly-
sis, machine learning offers new ways of assessing the main
drivers of particle displacement. This can lead to a better un-
derstanding of the variables and processes involved in parti-
cle sinking and a clearer identification of the temporal/spa-
tial resolution required for effective particle trajectory recon-
struction.

In this study, we use deep learning schemes to study the
catchment areas of deep-ocean particles. Our main contribu-
tions are as follows: (i) we formulate the prediction of the
catchment area of particles trapped in STs as the supervised
learning of a regression model from ocean circulation vari-
ables, (ii) we investigate whether ocean surface conditions
constrain the paths of sinking particles, and (iii) we analyze
the main factors affecting prediction performance. We report
on numerical experiments conducted in a case study area in
the North Atlantic using realistic high-resolution simulation
data.

The paper is organized as follows. Section 2 introduces
the methodology used to design the databases for training
and performance evaluation. Section 3 presents the neural-
network structure. In Sect. 4, we evaluate the accuracy of
the predictions, compare different configurations, and ana-
lyze the relationship between input conditions and prediction
performance. In Sect. 5, we discuss potential improvements
and future work. Our conclusions are presented in Sect. 6.

2 Data and case study area

In a case study, we focus on the origin of particles captured
by moored STs at the Porcupine Abyssal Plain (PAP) sta-
tion, located in the UK (49° N, 16.5° W), which provides
fluxes with a temporal coverage of more than 30 years (Hart-
man et al., 2021). This strategy is based on Wang et al.
(2022), who characterized the origins of particles collected at
the PAP station using a simulation-based experimental setup
consisting of realistic Coastal and Regional Ocean COmmu-
nity (CROCO) model simulations and particle-backtracking
experiments. In this study, we simulate, in the same way,
particles falling into a fictive PAP ST located at 1000 m of
depth. We focus on particles with a vertical sinking velocity
of 50 m d−1, which represents the slow range of sinking par-
ticles observed at depth in the region (Villa-Alfageme et al.,
2014). Slow particles are more susceptible to being influ-
enced by ocean circulation (Wang et al., 2022), which, in
turn, makes the prediction of catchment areas under these
conditions more challenging.

2.1 Numerical simulation around the PAP station

We use the realistic North Atlantic subpolar gyre simula-
tion (called POLGYR) designed and validated by Le Corre
et al. (2020). This simulation is run using the CROCO model,
based on the Regional Ocean Modeling System (ROMS)
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Figure 1. Snapshot of the North Atlantic subpolar gyre simulation
(POLGYR) taken on 2 June 2008, showing relative vorticity. The
dashed square indicates the domain of the simulation. The solid
square indicates the subdomain we are focusing on. The location
of the PAP station is indicated by the black star. The black contour
indicates the bathymetry at 1000 m of depth.

(Shchepetkin and McWilliams, 2005), which solves hydro-
static primitive equations for momentum and state variables.
The domain has 2000×1600 grid points and a horizontal grid
resolution of 2 km, resolving the mesoscale level and part of
the submesoscale level. The model has 80 vertical sigma lev-
els, with a vertical spacing of ∼ 5 m at the surface and up to
100 m in the intermediate layer. After a 2-year spin-up pe-
riod, two simulations, called POLGYR1 and POLGYR2, are
run. POLGYR1 runs between 1 January 2002 and 4 Decem-
ber 2009 (8 years) and is used to create a training and evalu-
ation database, while POLGYR2 runs between 24 July 2003
and 12 January 2009 (about 6.5 years) and is used for the
test database. The two simulation setups are identical in all
aspects except for the initial and boundary conditions, which
are perturbed in POLGYR2. After the spin-up, the chaotic
evolution results in uncorrelated dynamics between the two
simulations (Fig. A1). We save snapshots for both simula-
tions every 12 h. We focus on a 1040× 1040 km subdomain
centered on the PAP station (Fig. 1). This region is charac-
terized by moderate kinetic energy compared to the western
and northern parts of the subpolar gyre, with a mean flow of
about 0.05 m s−1 (Le Cann, 2005).

2.2 Lagrangian backtracking of catchment areas

A series of Lagrangian experiments are performed offline us-
ing “Pyticles” (Gula and Collin, 2021), employing 3D veloc-
ities from the POLGYR1 and POLGYR2 simulations. Pyti-
cles is a parallel Fortran–Python Lagrangian tool for offline

3D advection and has the ability to include particle behavior.
Transport is performed along the native Arakawa C-grid and
terrain-following vertical coordinates of the ocean model.
The 3D velocity fields are linearly interpolated at particle
positions, which are advected using a “Runge–Kutta 4” nu-
merical scheme. In addition to passive advection, a negative
vertical velocity is applied to simulate the sinking of dense
particles. The numerical schemes have been shown to be ro-
bust to trajectory reversibility (Wang et al., 2022), employing
12-hourly input fields and a time step of 120 s.

For each experiment, we apply the following procedure.
At 1000 m of depth, we release 36 particles in backtracking
every 12 h over a period of 10 d (particle collection period)
for a total of 720 particles. The particles are released uni-
formly over a patch measuring 10 km× 10 km and ascend
until they reach the base of the euphotic layer at 200 m. Par-
ticles have a constant sinking velocity of 50 m d−1, and their
journey takes on average 15 d, but this can vary from 10 to
20 d (Wang et al., 2022). We save the particles’ positions at
every 100 m step and compute the resulting probability den-
sity function (PDF). Figure 2a illustrates a typical experi-
ment in which most of the particles are attracted to an anticy-
clone structure visible between 200 and 1000 m. Biological
particles are mostly created between the surface and 200 m,
but we initially consider that the PDF at 200 m represents
the depth from which the particles are exported. The PDFs
saved at vertical levels lower than 200 m provide information
on the three spatial dimensions and the temporal-dimension
(3D+ T ) path of the particles to better constrain the training
phase of the network. To improve the training efficiency, we
also apply a Gaussian filter to each PDF (Fig. 2b and c). We
performed sensitivity tests to ensure that increasing the num-
ber of particles and the size of the patch does not significantly
affect the PDF.

For each Lagrangian experiment, we create an output ten-
sor, expressed as Yi = (noutput× nx × ny), where nx and ny
represent the number of points on the horizontal axis and
noutput represents the number of vertical levels at which the
PDFs are computed. In our case, we consider that noutput =
8, corresponding to one layer every 100 m of depth from 900
to 200 m. Based on Wang et al. (2022), who computed the
source region at 200 m for particles collected by the moored
sediment traps over 7 years (2002–2008), a horizontal do-
main of 800 km× 800 km, centered on the ST, was chosen to
encompass all the source particle positions. Due to compu-
tational constraints and the effective resolution of the model,
which is expected to be around 8 km (Soufflet et al., 2016),
the horizontal resolution of all data is downscaled to 8 km,
resulting in ny = nx = 100 points.

For each output (Yi), we store a corresponding input ten-
sor, expressed as Xi = (ninput× nx × ny), which contains the
hydrodynamic conditions of the experiment (i). These data
include data on temperature, vorticity, the horizontal veloci-
ties (u and v), and sea surface height (SSH). All the variables
are extracted on the same horizontal domain as Yi and are
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Figure 2. (a) 3D view of the Lagrangian experiment. The different colors of the particles represent the number of days since their release
from the ST (5 % of the particles are plotted). Snapshots of relative vorticity during the particle crossing are displayed for three vertical layers
(−800, −500, and −200 m). The black points in the visualization indicate all saved positions of particles at these specific vertical levels. (b)
The computed raw PDF of particles at 200 m. (c) The PDF at 200 m after applying the Gaussian filter.

downscaled to a resolution of 8 km. To capture the temporal
variability, we consider a 10 d sampling period over a 30 d
time window (four time steps). To evaluate the importance of
surface data in comparison to subsurface data (Sect. 4), we
distinguish two datasets, D4 layers and Dsurf:

– D4 layers contains variables at four vertical levels: the
surface level, 200 m, 500 m, and 1000 m. Each input
tensor has the dimensions 68× 100× 100, where
ninput = 68 represents the number of input fields ex-

tracted for each experiment.

– Dsurf contains only sea surface conditions. This results
in input sensors with the dimensions 20× 100× 100.
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Figure 3. Snapshots of relative vorticity taken on 22 October 2003 (POLGYR1), i.e., 20 d after the particle release. (a) Vorticity field at
1000 m of depth, showing the 36 initial positions of the particles (black and colored squares). (b) Vorticity field at 200 m of depth, with the
origins of the backtracked particles for the four colored patches from panel (a) superimposed.

3 Proposed deep learning scheme

This section introduces the proposed deep learning scheme,
specifically the proposed neural architecture and the training
scheme.

3.1 Training, validation, and test data

Following the training and evaluation frameworks used in
deep learning studies (Lecun et al., 2015), we consider in-
dependent training, validation, and test datasets as follows.
Using the Lagrangian experiments presented above, we cre-
ate a training and validation dataset using the first simula-
tion setup, POLGYR1 (2002 to 2008). During this period,
Lagrangian experiments are realized every 10 d at 36 fictive
ST positions around the PAP region, resulting in a total of
10 260 samples (Fig. 3a). The STs are close enough to the
PAP site to involve the same hydrodynamic conditions. We
place the patch centers 36 km apart, allowing particles from
two different patches to be separated by at least 26 km, which
is slightly above the Rossby radius value in the region (Chel-
ton et al., 1998). This distance is sufficient for observing sig-
nificant differences in the catchment areas for two consec-
utive patches (Fig. 3b). We divide the samples into a train-
ing database (8604 samples from January 2002 to Septem-
ber 2008) and an evaluation database (1224 samples from the
year 2009). Note that data from September 2008 to January
2009 are not used. The two datasets are separated by a 100 d
period to ensure statistical independence. For the test dataset,
6800 samples are created with POLGYR2. These samples
are independent of the training and evaluation experiments.

3.2 Architecture

As shown in Fig. 4, we use a U-Net type of architecture (Ron-
neberger et al., 2015). U-Net is a state-of-the-art neural ar-

chitecture used for a wide range of image-to-image mapping
tasks, including applications in ocean studies (Barth et al.,
2020; Beauchamp et al., 2022). The input for the network
includes hydrodynamic conditions and a tensor with the di-
mensions 8×100×100 that represents the initial PDF of the
particles. All initial PDFs have a probability of 0.25 over the
four points in the center of the map, representing the release
patch (not shown). The network consists of a series of convo-
lutional layers (with a kernel size of 5), ReLU activation, and
batch normalization layers. A three-step pooling process is
used to downsample the channel dimension, i.e., the dimen-
sion representing the number of dynamical images for one
experiment. At each step, the number of features is doubled.
This successive resolution downscaling from 8 to 32 km,
combined with skip connections and concatenation (as ad-
ditions over the channel dimension), may facilitate the de-
tection of structures at different spatial scales (Ronneberger
et al., 2015). The final layer of the U-Net architecture is a
“softmax” layer that provides normalized PDF predictions.
The output of the network is a tensor with the dimensions
8× 100× 100 and is composed of the predicted PDFs from
900 to 200 m (every 100 m). The last PDF at 200 m represents
the predicted origin of the particles.

3.3 Training scheme

We consider the Bhattacharyya coefficient (Bhattacharyya,
1943) as a training criterion to assess how well the predicted
PDFs match the real ones. It is expressed as

BCz =6i∈D
√
Pi,zQi,z, (1)

where D represents the PAP domain, Pi is the predicted
probability, andQi is the true probability at point i and depth
z. The Bhattacharyya coefficient provides a similarity score
between two PDFs and is used to derive the Bhattacharyya
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Figure 4. General U-Net architecture. The inputs include temperature, vorticity, u, v, and SSH images at multiple time steps and depths,
concatenated with the initial PDFs (not shown). The outputs include the PDFs at eight depths, representing the distribution of the particles
for each depth. At the top of each layer, the resolution of the images is shown, and at the bottom of each layer, the number of channels is
shown.

training loss (BL),

BLz = 1−BCz. (2)

The value of BLz ranges from 1 to 0, with 0 representing
a perfect prediction. During the training phase, we aim to
minimize the loss function (L), expressed as

L=
BL200 m+BL300 m+ . . .+BL800 m+BL900m

nlayer
, (3)

where L is the mean of the BL computed at each of the eight
vertical layers. The aim is to force the model to consider the
evolution of particles along the water column. Empirically,
this method improves the performance of the trained model
in comparison to experiments where training loss is based
only on BL200 m.

We implement our deep learning scheme using PyTorch
(Paszke et al., 2019). For the training phase, the Adam op-
timization algorithm (Kingma and Ba, 2015) is used with
the following hyperparameters: β = (0.5, 0.999), zero weight
decay, and a learning rate of 0.001. The training process is
performed using mini-batches with a size of 32. After 50
training epochs, the best model is selected based on its per-
formance using the evaluation data. We further improve the
performance and robustness of the model using a bootstrap-
ping method with 10 replicates (Breiman, 1996). The final
prediction consists of a set of PDFs computed as the me-
dian of the predictions from the 10 models, followed by a
re-normalization step. We also compute the standard devia-
tion of the 10 predictions as a confidence index (see Sect. 5).

4 Results

We present the results of the numerical experiments con-
ducted in the PAP case study. First, we detail a benchmarking
experiment to evaluate the performance of the proposed deep
learning schemes. Second, we further analyze how hydrody-
namic conditions affect prediction performance.

4.1 Prediction performance and comparison

We evaluate the performance of several models using the
test database by employing the BL200 m metric (i.e., the
Bhattacharyya distance between the predicted PDF and the
true PDF for the catchment area at 200 m of depth). We
observe an empirical polynomial relationship between the
BL score and the percentage of PDFs predicted, defined as
6i∈Dmin(Pi,200 mQi,200 m) (Fig. B1). We set up the follow-
ing arbitrary evaluation criterion: a prediction is considered
valid if the BL score is less than 0.2 and invalid if the BL
score is greater than 0.3. These two thresholds correspond to
percentages of predicted PDFs greater than or equal to 55 %
and 45 %, respectively. For predictions with a BL score be-
tween 0.2 and 0.3, the global area is often still well predicted,
but the values of the PDF are usually rough. In these cases,
we create a third class called “quasi-valid”. Predictions in
this class are not considered valid, but they still provide valu-
able information in the search for particle origins, and this
information needs to be highlighted in the final score statis-
tics.
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Table 1. Scores and performance capabilities for different model architectures. For each model, we indicate the number of parameters, the
average prediction score (BL200 m), and the percentages of valid, quasi-valid, and non-valid test cases.

Models No. of parameters BL200 m Valid prediction (%) Quasi-valid prediction (%) Non-valid prediction (%)

U-Net4 layers 1.9 M (×10) 0.13 81 13 6
U-Netsurf 1.8 M (×10) 0.18 66 19 15
U-Netsurf-nb 1.8 M 0.21 58 23 20
CNNsurf-basic 205 K 0.61 0 1 99
Baseline 0 0.45 0 8 92

We benchmark different models in Table 1. The U-
Net4 layers model is the U-Net architecture presented in
Sect. 3, trained and tested with the D4 layers database,
which contains both surface and subsurface information.
The U-Netsurf model only uses surface information from the
Dsurf database. The U-Netsurf-nb model is similar to the U-
Netsurf model but does not use the bootstrap method. The
CNNsurf-basic model includes a simple convolutional-neural-
network (CNN) architecture consisting of a series of con-
volutional layers with a ReLU activation function, which
we tested with Dsurf. We also include a baseline prediction,
which corresponds to the average of all the true PDFs used
in the training database. This mean PDF roughly corresponds
to a 2D Gaussian distribution centered on the PAP station, as
presented in Wang et al. (2022).

The baseline and CNNsurf-basic models have poor perfor-
mance, with zero valid cases. This highlights the complexity
of the prediction task and the need for non-trivial models. It
is noteworthy that the U-Net architecture seems to be well
suited for this problem. The U-Netsurf-nb model achieves a
very good performance, with 58 % of cases being valid, in-
creasing to 66 % with the use of bootstrapping. Taking the
quasi-valid predictions into account, ∼ 85 % of the predic-
tions provide valuable information with only surface data.
However, a comparison between the U-Net4 layers and U-
Netsurf models demonstrates the importance of subsurface
information for obtaining more accurate and robust predic-
tions. With 81 % of cases being valid and 13 % of cases be-
ing quasi-valid, the U-Net4 layers model clearly outperforms
the U-Netsurf model. This means that in about 10 %–15 %
of cases, subsurface data are required to make valid predic-
tions. Figure 5 shows examples of predictions from the test
database using the U-Net4 layers and U-Netsurface models. The
PDFs are represented by two types of contour: one contain-
ing 99 % of the particles (dotted contours) and the other con-
taining 50 % of the particles (solid contours). Both models
are effective in predicting the overall catchment area. How-
ever, valid predictions are mainly characterized by a well-
predicted center of the PDF, which is usually more accurate
for the U-Net4 layers model. In the following, we only focus
on predictions from the U-Net4 layers and U-Netsurface models.

4.2 Statistical analysis of the performance

We quantitatively analyze the potential causes of valid or in-
valid predictions. The examples show that the shape of parti-
cle distributions has a significant impact on score prediction.
We find that PDFs located far from the STs, with mass cen-
ters > 150 km (i.e., the average distance between particles
and their source), are generally not well predicted (Fig. 5;
indices 16, 21, and 25 in Table 2). Similarly, complex PDF
shapes characterized by multiple patches spread across the
domain (see indices 2, 15, and 16 in Fig. 5) appear difficult
to predict. Entropy (−6pi log(pi), where pi is the PDF value
at point i) characterizes the complexity of the PDF beyond its
variance. Entropy increases with the spread of particles and
in multimodal distributions, and high entropy values (> 6.6)
could explain the prediction bias in some cases (indices 2,
15, and 16 in Table 1). This trend is confirmed by a statisti-
cal analysis over the entire test dataset, shown in Fig. 6. For
PDFs with a mass center greater than 200 km, the probabil-
ity of obtaining a valid prediction with the U-Netsurf model
is less than 30 %. Similarly, we observe a trend of progres-
sive degradation in the scores for PDFs with an entropy value
higher than 6.6 (Fig. 6b).

Several physical factors could be responsible for the final
PDF shape. To characterize the local dynamics, we compute
the mean kinetic energy (MKE) and the eddy kinetic energy
(EKE) around the ST as follows:

1
2
(u2+ v2)︸ ︷︷ ︸

KE

=
1
2
(u2
+ v2)︸ ︷︷ ︸

MKE

+
1
2
(u′2+ v′2)︸ ︷︷ ︸

EKE

, (4)

where u and v are the two components of the horizontal
ocean velocity. Here, u and v are the velocities averaged over
a 30 d window, corresponding to the characteristic time pe-
riod of our Lagrangian experiments. Finally, u′ and v′ are
defined as follows:

u′ = u− u, (5)
v′ = v− v. (6)

MKE and EKE are spatially averaged within a 400 km
box around the ST and vertically averaged between 200 and
1000 m. These averages are computed every 10 d. MKE can
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Table 2. Variables associated with the Lagrangian experiments. BLsurf
200 m and BL4 L

200 m indicate the Bhattacharyya loss at 200 m for the surface
and four-layer models. We computed the mass centers (in kilometers) and entropy of the PDFs. MKE and EKE (cm2 s−2) are computed with
a temporal window of 30 d (the period of the Lagrangian experiment) and averaged between 200 and 1000 m in a 400 km box centered on the
ST. Moreover, ζ/f and OW/f are computed from a surface snapshot taken 20 d after the first particle release and averaged within a 100 km
box centered on the ST. The values of the median, 10th percentile, and 90th percentile are given at the top. Index numbers correspond to the
examples given in Fig. 5.

Index BLsurf
200 m BL4 L

200 m Mass center Entropy MKE EKE ζ/f10−2 OW /f10−3

10th percentile 0.06 0.04 36 5.7 69 32 −4.1 −1.4
50th percentile 0.15 0.11 99 6.3 95 49 −0.4 2.2
90th percentile 0.35 0.26 193 6.7 126 71 3.6 12.1

1 0.07 0.05 136 6.5 90 81 −4.6 7.4
2 0.27 0.24 136 6.9 94 65 −2.4 2.0
3 0.06 0.09 110 6.4 101 82 4.2 −1.1
4 0.02 0.01 63 5.7 124 31 −4.9 −2.6
5 0.19 0.13 183 6.1 127 46 0.9 4.0
6 0.12 0.10 216 6.4 107 50 −0.4 −0.7
7 0.19 0.10 109 6.0 96 44 −4.4 −2.0
8 0.17 0.07 164 5.9 98 57 0.8 3.3
9 0.08 0.05 172 6.0 82 39 3.0 7.9
10 0.12 0.07 178 6.3 79 47 3.2 1.3
11 0.03 0.05 62 6.2 89 58 −5.1 4.6
12 0.13 0.13 51 6.7 65 47 −2.4 1.1
13 0.20 0.09 148 6.4 74 39 2.2 0.8
14 0.04 0.16 114 5.6 84 36 1.1 1.7
15 0.18 0.11 68 6.8 114 38 1.8 3.0
16 0.29 0.28 242 6.6 91 53 −3.7 0.9
17 0.01 0.00 24 5.5 131 36 −5.0 −2.2
18 0.17 0.10 110 5.9 60 41 1.7 0.3
19 0.06 0.04 95 6.7 137 45 −2.5 2.6
20 0.11 0.07 133 6.7 85 31 2.2 3.8
21 0.39 0.34 257 6.0 89 51 −1.1 2.0
22 0.13 0.10 114 6.5 89 32 −1.0 4.4
23 0.17 0.07 181 6.4 98 35 0.2 0.3
24 0.16 0.10 140 6.3 132 40 −1.8 20.6
25 0.38 0.22 270 5.7 92 27 0.6 0.3

be associated with large-scale currents and mesoscale ed-
dies that stay stable during the time window. High MKE
implies strong velocities that are likely to transport parti-
cles far from their source, further complicating the predic-
tion process. EKE typically indicates the presence of mov-
ing mesoscale eddies or submesoscale fronts. These smaller-
scale dynamics can promote divergent flows and increase en-
tropy, thereby affecting the prediction score.

The number of invalid predictions increases on average
with both MKE and EKE (Fig. 6c and d), even though the
relationship between the prediction and EKE/MKE is not al-
ways simple when considering all cases listed in Table 2.
Moreover, the influence of MKE seems to explain the sea-
sonal patterns observed during the 5-year period of temporal
coverage (Fig. 7). For both U-Net models, the best perfor-
mance was achieved in winter/early spring, while the highest
probability of non-valid predictions was observed in summer.
We found a strong correlation (r2

= 0.64) between this trend

and the seasonal evolution of MKE. This observation sug-
gests that MKE could be the main driver of the score across
long timescales. The EKE evolution shows a weaker correla-
tion (r2

= 0.13). In particular, the EKE peak visible in April,
associated with the deepest mixed layer and intensified sub-
mesoscale activity down to 500 m (Buckingham et al., 2016),
is not clearly reflected in the performance score.

However, Table 2 suggests that MKE and EKE alone can-
not explain the prediction score in all cases. The presence of
coherent vorticity structures above the trap appears to facil-
itate prediction (indices 4, 11, and 17 in Fig. 5). To demon-
strate this, we analyze dynamical features using three indi-
cators: surface relative vorticity (ζ = vx − uy), the Okubo–
Weiss parameter (OW = σ 2

−ζ 2, where σ = (ux−vy)+(vx+
uy)), and the sea-level anomaly (SLA= SSH−< SSH>,
where < SSH> is the average SSH within the subdomain).
In order to avoid any smoothing effect, these variables are
taken from a surface snapshot taken 20 d before the first par-
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Figure 5. Examples of predictions. PDFs are predicted with the U-Net4 layers model (red) and the U-Netsurf model (green). Black contours
represent the true origins of the particles. Dotted contours encompass 99 % of the particles, while solid contours encompass 50 %. The
BL200 m scores for both predictions are provided in the top-right corner of each plot. The background of each plot shows a snapshot of SSH
taken 20 d after the first particle release, with surface velocities represented by the arrows. All the images are centered on the trap where
particles are released.

ticle release (rather than from an average over the experi-
ment period). The particles reach a depth of approximately
200 m between days −15 and −25 following the initial re-
lease. Consequently, the 20th day represents the oceanic con-
ditions present when the majority of particles are near the
surface and under the influence of surface currents. The vari-
ables are averaged within a 100 km× 100 km area centered
on the ST (Fig. 6e, f, and g; Table 2). The best performances
(> 80 % of valid predictions) are associated with low nega-

tive OW values, high absolute ζ values, and significant SLA
values. This situation generally corresponds to the presence
of a vortex structure above the trap (Wang et al., 2022). On
the other hand, chaotic situations characterized by OW val-
ues greater than 0, ζ values of ∼ 0, and SLA values of ∼ 0
are generally associated with the worst performance.

The presence of large-scale currents and eddies appears to
be sufficient for explaining the prediction scores to a first-
order approximation: high kinetic energy (KE) is typically
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Figure 6. Fraction of non-valid predictions (BL200 m > 0.2) with respect to the following local dynamical variables: (a) PDF mass center
shift, (b) PDF Shannon entropy (−6plog(p)), (c) eddy kinetic energy (EKE), (d) mean kinetic energy (MKE), (e) relative surface vorticity
(ζ/f ), (f) the surface relative Okubo–Weiss parameter (OW/f 2), (g) the sea-level anomaly (SLA), and (h) the standard deviation (SD) of
the 10 bootstrap models. In panels (c) and (d), energy is averaged within a 400 km box centered on the ST and between 200 and 1000 m. A
temporal averaging window of 30 d is used for MKE and EKE. In panels (e), (f), and (g), the local dynamical variables come from surface
snapshots taken 20 d after the first particle release and are averaged within a 100 km box around the ST.

associated with lower scores, unless coherent structures are
present above the trap (corresponding to high KE with nega-
tive OW values and large vorticity amplitudes). This is high-
lighted by the bin statistics in Fig. 8. The non-valid prediction
area in Fig. 8a is defined by KE> 160 cm2 s−2 and | ζ/f |
< 0.05 and is characterized by an average Bhattacharyya

score greater than 0.2 (indicated by the red bins). This chaotic
situation represents 27 % of our dataset. Similarly, the same
non-valid prediction zone can be observed in Fig. 8b and is
defined by KE> 160 cm2 s−2 and OW/f >−0.0075.
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Figure 7. Monthly performance statistics over the testing period for the U-Netsurf and U-Net4 layer models. The bar graph indicates the
probability of non-valid predictions (BL200 m > 0.2). The monthly averaged evolution of EKE (dotted) and MKE (dashed) between 200 and
1000 m is shown in black.

Figure 8. Averaged bin statistics of the U-Netsurf prediction score with regard to (a) kinetic energy vs. relative vorticity and (b) kinetic
energy vs. the surface relative Okubo–Weiss parameter. Color represents the mean Bhattacharyya score. Bins with fewer than five samples
are masked. The dashed black lines delineate the non-valid prediction zone, represented by the red bins.

5 Discussion

In this section, we discuss possible interpretations of the re-
sults, present the limitations of the model, and explore poten-
tial improvements that will guide our future work.

5.1 Interpretation of the statistics and confidence index

Our results support the relevance of the proposed machine
learning approach in predicting the catchment area of par-
ticles using only surface data. Although subsurface infor-
mation can improve the quality of the prediction, it is not
essential in most cases. Analysis of the drivers of the pre-
diction scores reveals complex, multifactorial causes. Only
a few indicators were chosen for this analysis, and we do
not exclude the possibility of other links that have not been

investigated. However, the statistics appear coherent to us
as they suggest that the model is more robust under weak
and/or stable dynamics. Given that our model is limited in
time and space by the 8 km input resolution (limited to the
surface or four vertical layers, with snapshots taken every
10 d), it is clear that the predictions are sensitive to finer spa-
tial and temporal variability. This may explain the good per-
formance with low KE or in the presence of coherent eddies
above the trap. Eddy structures can have a clear surface sig-
nature that is easy to identify and that stays coherent at depth
(Fig. 2). Considering a 30 d period, these structures are gen-
erally stable, showing little temporal variability and limiting
the spatial dispersion of particles trapped inside. In contrast,
chaotic situations, typically characterized by randomly dis-
tributed submesoscale fronts with a horizontal size of about
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10 km, are more likely to be less well predicted. Addition-
ally, such structures can be too small to be detected. Tem-
poral evolution can be very fast (on the order of days) and
is unlikely to be adequately captured by our machine learn-
ing models. In the future, such assumptions may directly
aid in developing a confidence index that depends on local
dynamics. For future real-world applications, it will proba-
bly be difficult to predict the catchment area in every situa-
tion. The aim is, therefore, to understand in which situations
the predictions made by the machine learning model can be
trusted. In this respect, the standard deviation (SD) of the 10
model predictions from the bootstrap method (Fig. 6h) can
also provide insight into quantifying the uncertainties in the
predictions. The SD, computed as the mean SD of the 10
models at each prediction point, shows a linear relationship
with the probability of having a valid prediction for the U-
Net models. Previous studies have also explored such boot-
strapping methods for uncertainty quantification (Pauthenet
et al., 2022; Beauchamp et al., 2022; Haynes et al., 2023).
Future work could also explore more advanced deep learn-
ing schemes with built-in uncertainty quantification proper-
ties (Haynes et al., 2023). However, it is worth noting that it
would also be important to evaluate other sources of uncer-
tainty, such as sinking-velocity distributions, simplifications
of numerical simulations, and transport rates.

5.2 Towards real data and a more realistic
representation of particles

The results strongly suggest the potential for using satellite
data (SSH and sea surface temperature (SST)) to more pre-
cisely identify the source areas of particles collected in the
deep ocean. A possible strategy for validating the model pre-
dictions against real observations would involve evaluating
the cross-correlation between satellite chlorophyll in the pre-
diction area and carbon fluxes measured at the PAP station
(Frigstad et al., 2015). The cross-correlation coefficient can
be compared with the obtained cross-correlation by consider-
ing a simplified catchment area, such as a 100 or 200 km box
around the PAP location, which is a classical method still
used today (Lampitt et al., 2023). If a better correlation is
found, this indicates a better connection between deep fluxes
at the PAP station and surface images from satellites and con-
firms the relevance of the model’s application to real obser-
vations. As emphasized by Febvre et al. (2024) with respect
to the learning-based mapping of sea surface dynamics, the
representativeness of numerical simulations in reflecting real
(3D+ T ) hydrodynamic conditions is likely to be a critical
feature when applying a neural model trained on simulation
data to a real-world configuration. The use of ocean reanal-
yses (Frigstad et al., 2015) could also be a relevant solution.
In both cases, an in-depth analysis of 3D ocean circulation
seems particularly important to assess the potential limita-
tions of the proposed scheme.

Regarding biology, we consider STs at 1000 m, whereas
in reality, the STs at the PAP station are moored at a greater
depth (∼ 3000 m). It has been shown that below 1000 m, cur-
rents are weaker and do not significantly affect the horizontal
displacement of particles (Wang et al., 2022). Therefore, al-
though the influence of ST depth on prediction scores needs
to be investigated, it can be assumed that it will not signif-
icantly affect model performance. However, a major bias in
the model probably comes from the representation of car-
bon particles. We represent sinking particles with a settling
velocity of 50 m d−1, whereas, in reality, particles exhibit a
wide range of velocities that can vary significantly with the
seasons (Villa-Alfageme et al., 2016). The origins of parti-
cles can be very different depending on their sinking velocity,
meaning it is important to consider the entire particle velocity
spectrum to represent the catchment areas for particles with
different velocities (Wekerle et al., 2018). Therefore, the next
step of this study will focus on the effect of sinking velocities
on prediction scores. We can assume that predicting catch-
ment areas for particles with higher speeds than 50 m d−1

may be more efficient as the particle trajectories are less im-
pacted by currents and turbulence (Liu et al., 2018; Wekerle
et al., 2018; Ma et al., 2021; Wang et al., 2022). However,
particles with lower sinking velocities are more sensitive to
the flow and can easily be dispersed over a large area far away
from the ST, decreasing the prediction score, as suggested in
Fig. 6a and b.

The use of a coupled biogeochemical model embedded in
POLGYR could provide information on surface chlorophyll
distribution (i.e., sea color) and primary-production (PP) in-
tensity (Kostadinov et al., 2009; Dunne et al., 2005). Al-
though these relationships are not direct (Laurenceau-Cornec
et al., 2020; Iversen and Lampitt, 2020; Cael et al., 2021),
high PP levels are associated with large phytoplankton cells
and particles, which may be associated with higher sinking
rates. It is then possible to weigh the distribution of parti-
cles in terms of size and sinking velocity against the PP es-
timated by the model at their export locations, which should
make the simulations more realistic. In addition, sea color
observations, together with altimetry data, can be used as in-
put for a machine learning system to better constrain carbon
fluxes at depth, employing an approach similar to that pre-
sented here. However, the size and sinking velocity of par-
ticles are affected by numerous biological processes during
their journey, which are generally not taken into account in
simple Lagrangian studies. Although a Lagrangian approach
could be developed (Jokulsdottir and Archer, 2016), an ad
hoc parameterization, e.g., a parameterization derived from
biogeochemical (BGC) models simulating particle dynamics
(Aumont et al., 2015), could also be used and tested.
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6 Conclusions

Identifying the origin of particles captured by sediment traps
is important for interpreting measured fluxes and improv-
ing sampling methods. However, it remains complex to con-
strain particle motion at depth with surface data. In our study,
we use the proposed machine learning scheme to address
this issue. We demonstrate the ability of machine learning
to predict, in real time, the origin of particles trapped in a
PAP sediment trap at 1000 m of depth using realistic 3D
numerical simulations and Lagrangian tracking. The evalu-
ation of the machine learning models supports the use of
a sea-surface-only configuration for the relevant prediction
of particle catchment areas in most cases, suggesting a po-
tential application with satellite data. The statistical analysis
also shows that the prediction performance is sensitive to lo-
cal dynamics. The model performs better under conditions
of low KE and in the presence of coherent surface vortices
above the sediment trap. The next challenges are to improve
the particle modeling by considering the wide range of parti-
cle sinking velocities and to apply our model to real satellite
data. Ultimately, this will improve the link between observa-
tions of surface and deep-carbon transport.
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Appendix A: Comparison between POLGYR1 and
POLGYR2

Figure A1. Snapshots of surface relative vorticity taken on 24 July 2003 (00:00 UTC) for POLGYR1 (a) and POLGYR2 (b). Despite the fact
that similar forcing is applied to the two simulations, the surface dynamics are different due to distinct initial conditions and chaotic effects.

Appendix B: Relationship between the BL score and the
percentage of PDFs predicted

Figure B1. Scatterplot of the average U-Netsurf Bhattacharyya
score (BL200 m) vs. the percentage of particles that are predicted,
defined as 6i∈Dmin(Pi,200 mQi,200 m). The 4D polynomial rela-
tionship is shown with a black line. The vertical dashed lines repre-
sent the limits of the valid, quasi-valid, and non-valid zones.
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