Articles | Volume 20, issue 4
https://doi.org/10.5194/os-20-1035-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/os-20-1035-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deep learning for the super resolution of Mediterranean sea surface temperature fields
Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine (CNR-ISMAR), Calata Porta di Massa, 80133 Naples, Italy
Daniele Ciani
Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine (CNR-ISMAR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
Andrea Pisano
Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine (CNR-ISMAR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
Bruno Buongiorno Nardelli
Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine (CNR-ISMAR), Calata Porta di Massa, 80133 Naples, Italy
Related authors
Daniele Ciani, Claudia Fanelli, and Bruno Buongiorno Nardelli
Ocean Sci., 21, 199–216, https://doi.org/10.5194/os-21-199-2025, https://doi.org/10.5194/os-21-199-2025, 2025
Short summary
Short summary
Ocean surface currents are routinely derived from satellite observations of the sea level, allowing regional- to global-scale synoptic monitoring. In order to overcome the theoretical and instrumental limits of this methodology, we exploit the synergy of multi-sensor satellite observations. We rely on deep learning, physics-informed algorithms to predict ocean currents from sea surface height and sea surface temperature observations. Results are validated by means of in situ measurements.
Anna Teruzzi, Ali Aydogdu, Carolina Amadio, Emanuela Clementi, Simone Colella, Valeria Di Biagio, Massimiliano Drudi, Claudia Fanelli, Laura Feudale, Alessandro Grandi, Pietro Miraglio, Andrea Pisano, Jenny Pistoia, Marco Reale, Stefano Salon, Gianluca Volpe, and Gianpiero Cossarini
State Planet, 4-osr8, 15, https://doi.org/10.5194/sp-4-osr8-15-2024, https://doi.org/10.5194/sp-4-osr8-15-2024, 2024
Short summary
Short summary
A noticeable cold spell occurred in Eastern Europe at the beginning of 2022 and was the main driver of intense deep-water formation and the associated transport of nutrients to the surface. Southeast of Crete, the availability of both light and nutrients in the surface layer stimulated an anomalous phytoplankton bloom. In the area, chlorophyll concentration (a proxy for bloom intensity) and primary production were considerably higher than usual, suggesting possible impacts on fishery catches.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Ana Claudia Parracho, Patricia Zunino, Michela Sammartino, Jacqueline Boutin, Eric Greiner, Bruno Buongiorno Nardelli, and Nicolas Kolodziejczyk
State Planet Discuss., https://doi.org/10.5194/sp-2025-3, https://doi.org/10.5194/sp-2025-3, 2025
Preprint under review for SP
Short summary
Short summary
We compared six global sea surface salinity datasets and found consistent trends between them. Many regions follow the known pattern of fresh areas getting fresher and salty areas saltier, with a growing contrast between the North Atlantic and North Pacific. However, comparison with longer-term data shows that short-term trends are strongly shaped by natural climate variability, especially in the Pacific.
Lorenzo Della Cioppa and Bruno Buongiorno Nardelli
EGUsphere, https://doi.org/10.5194/egusphere-2025-1136, https://doi.org/10.5194/egusphere-2025-1136, 2025
Preprint archived
Short summary
Short summary
Forecasting of particles trajectories transported by ocean currents is of great importance for research and operational tasks. Even with satellite observations data or numerical simulations, the problem challenging. In this paper a neural network approach is proposed which is capable of learning from observed trajectories and corresponding data observed from satellites to generate predictions. The network is trained and validated on synthetic data, but it is easily applicable in the real-world.
Daniele Ciani, Claudia Fanelli, and Bruno Buongiorno Nardelli
Ocean Sci., 21, 199–216, https://doi.org/10.5194/os-21-199-2025, https://doi.org/10.5194/os-21-199-2025, 2025
Short summary
Short summary
Ocean surface currents are routinely derived from satellite observations of the sea level, allowing regional- to global-scale synoptic monitoring. In order to overcome the theoretical and instrumental limits of this methodology, we exploit the synergy of multi-sensor satellite observations. We rely on deep learning, physics-informed algorithms to predict ocean currents from sea surface height and sea surface temperature observations. Results are validated by means of in situ measurements.
Anna Teruzzi, Ali Aydogdu, Carolina Amadio, Emanuela Clementi, Simone Colella, Valeria Di Biagio, Massimiliano Drudi, Claudia Fanelli, Laura Feudale, Alessandro Grandi, Pietro Miraglio, Andrea Pisano, Jenny Pistoia, Marco Reale, Stefano Salon, Gianluca Volpe, and Gianpiero Cossarini
State Planet, 4-osr8, 15, https://doi.org/10.5194/sp-4-osr8-15-2024, https://doi.org/10.5194/sp-4-osr8-15-2024, 2024
Short summary
Short summary
A noticeable cold spell occurred in Eastern Europe at the beginning of 2022 and was the main driver of intense deep-water formation and the associated transport of nutrients to the surface. Southeast of Crete, the availability of both light and nutrients in the surface layer stimulated an anomalous phytoplankton bloom. In the area, chlorophyll concentration (a proxy for bloom intensity) and primary production were considerably higher than usual, suggesting possible impacts on fishery catches.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Vincenzo de Toma, Daniele Ciani, Yassmin Hesham Essa, Chunxue Yang, Vincenzo Artale, Andrea Pisano, Davide Cavaliere, Rosalia Santoleri, and Andrea Storto
Geosci. Model Dev., 17, 5145–5165, https://doi.org/10.5194/gmd-17-5145-2024, https://doi.org/10.5194/gmd-17-5145-2024, 2024
Short summary
Short summary
This study explores methods to reconstruct diurnal variations in skin sea surface temperature in a model of the Mediterranean Sea. Our new approach, considering chlorophyll concentration, enhances spatial and temporal variations in the warm layer. Comparative analysis shows context-dependent improvements. The proposed "chlorophyll-interactive" method brings the surface net total heat flux closer to zero annually, despite a net heat loss from the ocean to the atmosphere.
Sarah Asdar, Daniele Ciani, and Bruno Buongiorno Nardelli
Earth Syst. Sci. Data, 16, 1029–1046, https://doi.org/10.5194/essd-16-1029-2024, https://doi.org/10.5194/essd-16-1029-2024, 2024
Short summary
Short summary
Estimating 3D currents is crucial for the understanding of ocean dynamics, and a precise knowledge of ocean circulation is essential to ensure a sustainable ocean. In this context, a new high-resolution (1 / 10°) data-driven dataset of 3D ocean currents has been developed within the European Space Agency World Ocean Circulation project, providing 10 years (2010–2019) of horizontal and vertical quasi-geostrophic currents at daily resolution over the North Atlantic Ocean, down to 1500 m depth.
Andrea Pisano, Daniele Ciani, Salvatore Marullo, Rosalia Santoleri, and Bruno Buongiorno Nardelli
Earth Syst. Sci. Data, 14, 4111–4128, https://doi.org/10.5194/essd-14-4111-2022, https://doi.org/10.5194/essd-14-4111-2022, 2022
Short summary
Short summary
A new operational diurnal sea surface temperature (SST) product has been developed within the Copernicus Marine Service, providing gap-free hourly mean SST fields from January 2019 to the present. This product is able to accurately reproduce the diurnal cycle, the typical day–night SST oscillation mainly driven by solar heating, including extreme diurnal warming events. This product can thus represent a valuable dataset to improve the study of those processes that require a subdaily frequency.
Cited articles
Balado, J., Olabarria, C., Martínez-Sánchez, J., Rodríguez-Pérez, J. R., and Pedro, A.: Semantic segmentation of major macroalgae in coastal environments using high-resolution ground imagery and deep learning, Int. J. Remote Sens., 42, 1785–1800, 2021. a
Ballarotta, M., Ubelmann, C., Pujol, M.-I., Taburet, G., Fournier, F., Legeais, J.-F., Faugère, Y., Delepoulle, A., Chelton, D., Dibarboure, G., and Picot, N.: On the resolutions of ocean altimetry maps, Ocean Sci., 15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, 2019. a
Bolton, T. and Zanna, L.: Applications of deep learning to ocean data inference and subgrid parameterization, J. Adv. Model. Earth Sy., 11, 376–399, 2019. a
Bowen, M. M., Emery, W. J., Wilkin, J. L., Tildesley, P. C., Barton, I. J., and Knewtson, R.: Extracting multiyear surface currents from sequential thermal imagery using the maximum cross-correlation technique, J. Atmos. Ocean. Tech., 19, 1665–1676, 2002. a
Bretherton, F. P., Davis, R. E., and Fandry, C.: A technique for objective analysis and design of oceanographic experiments applied to MODE-73, Deep Sea Res., 23, 559–582, 1976. a
Castro, S. L., Emery, W. J., Wick, G. A., and Tandy, W.: Submesoscale sea surface temperature variability from UAV and satellite measurements, Remote Sens.-Basel, 9, 1089, https://doi.org/10.3390/rs9111089, 2017. a
Chang, Y. and Cornillon, P.: A comparison of satellite-derived sea surface temperature fronts using two edge detection algorithms, Deep-Sea Res. Pt. II, 119, 40–47, 2015. a
Ciani, D., Rio, M.-H., Nardelli, B. B., Etienne, H., and Santoleri, R.: Improving the altimeter-derived surface currents using sea surface temperature (SST) data: A sensitivity study to SST products, Remote Sens.-Basel, 12, 1601, https://doi.org/10.3390/rs12101601, 2020. a, b
Coppo, P., Brandani, F., Faraci, M., Sarti, F., Dami, M., Chiarantini, L., Ponticelli, B., Giunti, L., Fossati, E., and Cosi, M.: Leonardo spaceborne infrared payloads for Earth observation: SLSTRs for Copernicus Sentinel 3 and PRISMA hyperspectral camera for PRISMA satellite, Appl. Optics, 59, 6888–6901, 2020. a
Cui, B., Zhang, H., Jing, W., Liu, H., and Cui, J.: SRSe-net: Super-resolution-based semantic segmentation network for green tide extraction, Remote Sens.-Basel, 14, 710, https://doi.org/10.3390/rs14030710, 2022. a
Deo, M. and Naidu, C. S.: Real time wave forecasting using neural networks, Ocean Eng., 26, 191–203, 1998. a
Deser, C., Alexander, M. A., Xie, S.-P., and Phillips, A. S.: Sea surface temperature variability: Patterns and mechanisms, Annu. Rev. Mar. Sci., 2, 115–143, 2010. a
Dong, C., Liu, L., Nencioli, F., Bethel, B. J., Liu, Y., Xu, G., Ma, J., Ji, J., Sun, W., Shan, H., Lin, X., and Zou, B.: The near-global ocean mesoscale eddy atmospheric-oceanic-biological interaction observational dataset, Scientific Data, 9, 436, https://doi.org/10.1038/s41597-022-01550-9, 2022a. a
Dong, C., Xu, G., Han, G., Bethel, B. J., Xie, W., and Zhou, S.: Recent developments in artificial intelligence in oceanography, Ocean-Land-Atmosphere Research, 2022, 9870950, https://doi.org/10.34133/2022/9870950, 2022b. a
Ducournau, A. and Fablet, R.: Deep learning for ocean remote sensing: an application of convolutional neural networks for super-resolution on satellite-derived SST data, in: 2016 9th IAPR Workshop on Pattern Recogniton in Remote Sensing (PRRS), 4 December 2016, Cancun, Mexico, IEEE, 1–6, https://doi.org/10.1109/PRRS.2016.7867019, 2016. a
Duo, Z., Wang, W., and Wang, H.: Oceanic mesoscale eddy detection method based on deep learning, Remote Sens.-Basel, 11, 1921, https://doi.org/10.3390/rs11161921, 2019. a
European Union-Copernicus Marine Service: Mediterranean Sea High Resolution and Ultra High Resolution Sea Surface Temperature Analysis, Mercator Ocean International [data set], https://doi.org/10.48670/moi-00172, 2008. a
Fablet, R., Amar, M., Febvre, Q., Beauchamp, M., and Chapron, B.: End-to-end physics-informed representation learning for satellite ocean remote sensing data: Applications to satellite altimetry and sea surface currents, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3, 295–302, 2021. a
Fablet, R., Febvre, Q., and Chapron, B.: Multimodal 4DVarNets for the reconstruction of sea surface dynamics from SST-SSH synergies, IEEE T. Geosci. Remote, IEEE Transactions on Geoscience and Remote Sensing, 61, 1–14, 2023. a
Ghiasi, G., Lin, T.-Y., and Le, Q. V.: Dropblock: A regularization method for convolutional networks, Adv. Neur. In., 31, https://doi.org/10.48550/arXiv.1810.12890, 2018. a
González-Haro, C. and Isern-Fontanet, J.: Global ocean current reconstruction from altimetric and microwave SST measurements, J. Geophys. Res.-Oceans, 119, 3378–3391, 2014. a
Goodfellow, I., Bengio, Y., and Courville, A.: Deep learning, MIT Press, ISBN: 9780262035613, 2016. a
Ham, Y.-G., Kim, J.-H., and Luo, J.-J.: Deep learning for multi-year ENSO forecasts, Nature, 573, 568–572, 2019. a
He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 27–30 June 2016, Las Vegas, NV, USA, IEEE, 770–778, https://doi.org/10.1109/CVPR.2016.90, 2016. a
Hu, J., Shen, L., and Sun, G.: Squeeze-and-excitation networks, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 18–23 June 2018, Salt Lake City, UT, USA, IEEE, 7132–7141, https://doi.org/10.1109/CVPR.2018.00745, 2018. a
Isern-Fontanet, J., Chapron, B., Lapeyre, G., and Klein, P.: Potential use of microwave sea surface temperatures for the estimation of ocean currents, Geophys. Res. Lett., 33, L24608, 2006. a
Jha, B., Hu, Z.-Z., and Kumar, A.: SST and ENSO variability and change simulated in historical experiments of CMIP5 models, Clim. Dynam., 42, 2113–2124, 2014. a
Kim, J., Lee, J. K., and Lee, K. M.: Accurate image super-resolution using very deep convolutional networks, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1646–1654, 2016a. a
Kim, J., Lee, J. K., and Lee, K. M.: Deeply-recursive convolutional network for image super-resolution, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 27–30 June 2016, Las Vegas, NV, USA, IEEE, 1637–1645, https://doi.org/10.1109/CVPR.2016.181, 2016b. a
Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, arXiv [preprint], arXiv:1412.6980, 2014. a
Krasnopolsky, V. M., Fox-Rabinovitz, M. S., and Belochitski, A. A.: Using ensemble of neural networks to learn stochastic convection parameterizations for climate and numerical weather prediction models from data simulated by a cloud resolving model, Advances in Artificial Neural Systems, 2013, 5–5, 2013. a
Kurkin, A., Kurkina, O., Rybin, A., and Talipova, T.: Comparative analysis of the first baroclinic Rossby radius in the Baltic, Black, Okhotsk, and Mediterranean seas, Russ. J. Earth Sci., 20, ES4008-4008, https://doi.org/10.2205/2020ES000737, 2020. a, b
Lguensat, R., Sun, M., Fablet, R., Tandeo, P., Mason, E., and Chen, G.: EddyNet: A deep neural network for pixel-wise classification of oceanic eddies, in: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 22–27 July 2018, Valencia, Spain, IEEE, 1764–1767, https://doi.org/10.1109/IGARSS.2018.8518411, 2018. a
Liberti, G. L., Sabatini, M., Wethey, D. S., and Ciani, D.: A Multi-Pixel Split-Window Approach to Sea Surface Temperature Retrieval from Thermal Imagers with Relatively High Radiometric Noise: Preliminary Studies, Remote Sens.-Basel, 15, 2453, https://doi.org/10.3390/rs15092453, 2023. a
Lim, B., Son, S., Kim, H., Nah, S., and Mu Lee, K.: Enhanced deep residual networks for single image super-resolution, in: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 21–26 July 2017, Honolulu, HI, USA, IEEE, 136–144, https://doi.org/10.1109/CVPRW.2017.151, 2017. a, b, c, d
Lloyd, D. T., Abela, A., Farrugia, R. A., Galea, A., and Valentino, G.: Optically enhanced super-resolution of sea surface temperature using deep learning, IEEE T. Geosci. Remote, 60, 1–14, 2021. a
MacKenzie, B. R. and Schiedek, D.: Long-term sea surface temperature baselines—time series, spatial covariation and implications for biological processes, J. Marine Syst., 68, 405–420, 2007. a
Maloney, E. D. and Chelton, D. B.: An assessment of the sea surface temperature influence on surface wind stress in numerical weather prediction and climate models, J. Climate, 19, 2743–2762, 2006. a
Meng, Y., Rigall, E., Chen, X., Gao, F., Dong, J., and Chen, S.: Physics-guided generative adversarial networks for sea subsurface temperature prediction, IEEE T. Neur. Net. Lear., 34, 3357–3370, https://doi.org/10.1109/TNNLS.2021.3123968, 2021. a
Minnett, P., Alvera-Azcárate, A., Chin, T., Corlett, G., Gentemann, C., Karagali, I., Li, X., Marsouin, A., Marullo, S., Maturi, E., Santoleri, R., Saux Picart, S., Steele, M., and Vazquez-Cuervo, J.: Half a century of satellite remote sensing of sea-surface temperature, Remote Sens. Environ., 233, 111366, 2019. a
Mohan, A. T., Lubbers, N., Livescu, D., and Chertkov, M.: Embedding hard physical constraints in neural network coarse-graining of 3D turbulence, arXiv [preprint], arXiv:2002.00021, 2020. a
Pearson, K., Good, S., Merchant, C. J., Prigent, C., Embury, O., and Donlon, C.: Sea surface temperature in global analyses: Gains from the Copernicus Imaging Microwave Radiometer, Remote Sens.-Basel, 11, 2362, https://doi.org/10.3390/rs11202362, 2019. a
Pisano, A., Marullo, S., Artale, V., Falcini, F., Yang, C., Leonelli, F. E., Santoleri, R., and Buongiorno Nardelli, B.: New evidence of Mediterranean climate change and variability from sea surface temperature observations, Remote Sens.-Basel, 12, 132, https://doi.org/10.3390/rs12010132, 2020. a
Rio, M.-H., Santoleri, R., Bourdalle-Badie, R., Griffa, A., Piterbarg, L., and Taburet, G.: Improving the altimeter-derived surface currents using high-resolution sea surface temperature data: a feasability study based on model outputs, J. Atmos. Ocean. Tech., 33, 2769–2784, 2016. a
Singha, S., Bellerby, T. J., and Trieschmann, O.: Satellite oil spill detection using artificial neural networks, IEEE J. Sel. Top. Appl., 6, 2355–2363, 2013. a
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.: Image quality assessment: from error visibility to structural similarity, IEEE T. Image Process., 13, 600–612, 2004. a
Warner, T. T., Lakhtakia, M. N., Doyle, J. D., and Pearson, R. A.: Marine atmospheric boundary layer circulations forced by Gulf Stream sea surface temperature gradients, Mon. Weather Rev., 118, 309–323, 1990. a
Woollings, T., Hoskins, B., Blackburn, M., Hassell, D., and Hodges, K.: Storm track sensitivity to sea surface temperature resolution in a regional atmosphere model, Clim. Dynam., 35, 341–353, 2010. a
Yang, C., Leonelli, F. E., Marullo, S., Artale, V., Beggs, H., Buongiorno Nardelli, B., Chin, T. M., De Toma, V., Good, S., Huang, B., Merchant, C. J., Sakurai, T., Santoleri, R., Vazquez-Cuervo, J., Zhang, H.-M., and Pisano, A.: Sea surface temperature intercomparison in the framework of the Copernicus Climate Change Service (C3S), J. Climate, 34, 5257–5283, 2021. a
Zanna, L. and Bolton, T.: Data-driven equation discovery of ocean mesoscale closures, Geophys. Res. Lett., 47, e2020GL088376, https://doi.org/10.1029/2020GL088376, 2020. a
Zanna, L., Brankart, J., Huber, M., Leroux, S., Penduff, T., and Williams, P.: Uncertainty and scale interactions in ocean ensembles: From seasonal forecasts to multidecadal climate predictions, Q. J. Roy. Meteor. Soc., 145, 160–175, 2019. a
Short summary
Sea surface temperature (SST) is an essential variable to understanding the Earth's climate system, and its accurate monitoring from space is essential. Since satellite measurements are hindered by cloudy/rainy conditions, data gaps are present even in merged multi-sensor products. Since optimal interpolation techniques tend to smooth out small-scale features, we developed a deep learning model to enhance the effective resolution of gap-free SST images over the Mediterranean Sea to address this.
Sea surface temperature (SST) is an essential variable to understanding the Earth's climate...