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Abstract. Sea surface temperature (SST) is one of the es-
sential variables of the Earth’s climate system. Being at the
air–sea interface, SST modulates heat fluxes in and out of
the ocean, provides insight into several upper and interior
ocean dynamical processes, and is a fundamental indicator
of climate variability potentially impacting the health of ma-
rine ecosystems. Its accurate estimation and regular monitor-
ing from space is therefore crucial. However, even if satel-
lite infrared/microwave measurements provide much better
coverage than what is achievable from in situ platforms,
they cannot sense the sea surface under cloudy and rainy
conditions. Large gaps are present even in merged multi-
sensor satellite products, and different statistical strategies,
mostly based on optimal interpolation (OI) algorithms, have
thus been proposed to obtain gap-free (L4) images. These
techniques, however, filter out the signals below the space–
time decorrelation scales considered, significantly smooth-
ing most of the small mesoscale and submesoscale features.
Here, deep learning models, originally designed for single-
image super resolution (SR), are applied to enhance the ef-
fective resolution of SST products and the accuracy of SST
gradients. SR schemes include a set of computer vision tech-
niques leveraging convolutional neural networks to retrieve
high-resolution data from low-resolution images. A dilated
convolutional multi-scale learning network, which includes
an adaptive residual strategy and implements a channel at-
tention mechanism, is used to reconstruct features in SST
data at 1/100° spatial resolution starting from 1/16° data
over the Mediterranean Sea. The application of this technique
shows an improvement in the high-resolution reconstruction,
capturing small-scale features and providing a root-mean-

squared-difference improvement of 0.02 °C with respect to
the L3 ground-truth data.

1 Introduction

Investigating ocean dynamics and climate variability requires
accurate, regular and systematic observations of the sea sur-
face temperature (SST). SST indeed plays a key role in
air–sea interaction and upper ocean circulation processes
(Warner et al., 1990; Deser et al., 2010; Chang and Cornil-
lon, 2015); it is used to track climate variability and change
(Jha et al., 2014; Pisano et al., 2020), and it is at the base
of various chemical and biological processes (MacKenzie
and Schiedek, 2007; Dong et al., 2022a). SST and the esti-
mate of its gradients have also been proven to be a powerful
tool for assessing and investigating mesoscale and subme-
soscale variability (e.g., Bowen et al., 2002; Isern-Fontanet
et al., 2006; González-Haro and Isern-Fontanet, 2014; Rio
et al., 2016; Castro et al., 2017; Ciani et al., 2020). There-
fore, the availability of high-resolution SST fields is crucial
since they serve as the primary data source for many scien-
tific and operational applications. However, their reliability is
hindered by the limitations of infrared (IR) and microwave-
based (MW) measurements (Minnett et al., 2019). In fact,
thermal IR instruments are able to provide SST images at
a kilometer- to sub-kilometer-scale resolution, although their
application is limited by cloud cover, aerosols radiation emis-
sion/absorption and scattering. Conversely, SST retrieval in
the microwave is hampered only by sunglint, rain, radio fre-
quency interference or proximity to land, but the lower spa-
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tial resolution achievable with present platforms represents a
significant disadvantage (for instance, the footprint of each
sample of the NASA Advanced Microwave Scanning Ra-
diometer for Earth Observing System is an ellipse of approx-
imately 45 km× 64 km in size). Higher-resolution MW SSTs
(' 15 km resolution) will only be available after the launch
of the Copernicus Imaging Microwave Radiometer (Pearson
et al., 2019), which is expected to be released during 2029.
Consequently, SST fields at high resolution are generally af-
fected by several data voids. For this reason, a few statistical
techniques, mostly based on optimal interpolation (OI), have
been developed to obtain gap-free SST images (Bretherton
et al., 1976). However, as a result of the temporal and spa-
tial averaging applied during the interpolation, the effective
resolution of the interpolated products can be significantly
coarser than the nominal grid resolution, rarely getting down
to less than a few tens of kilometers (Chin et al., 2017; Ciani
et al., 2020; Yang et al., 2021). As such, providing interpo-
lated data increases the accessibility of sea surface tempera-
ture fields for a wide community of users, but this improve-
ment comes with a trade-off, as statistical interpolation leads
to a strong smoothing of small-scale ocean features.

In this context, here we investigate the potential of ap-
plying deep learning models to improve the effective reso-
lution of a gap-free SST field, providing those small-scale
features even when direct measurements are missing. We ex-
ploit techniques generally used in the field of computer vi-
sion, which have proven to be very successful, especially for
processing gridded data and managing large-scale datasets
while controlling the computational efficiency. In the field of
oceanography, the research community only recently started
to explore the applicability of machine learning (ML) meth-
ods to ocean remote sensing images (Dong et al., 2022b).
The applications include oil spill (Singha et al., 2013) and
eddy detection (Lguensat et al., 2018; Duo et al., 2019)
and parametrization (Bolton and Zanna, 2019), marine algae
species discrimination (Balado et al., 2021; Cui et al., 2022),
forecasting of ocean variables (Deo and Naidu, 1998; Ham
et al., 2019), and estimation of meteorological parameters
(Krasnopolsky et al., 2013; Zanna et al., 2019). Moreover,
good results have been achieved by applying neural networks
(NNs) to space–time interpolation and short-term forecast-
ing issues with satellite altimetry data (Fablet et al., 2021),
high-performance descriptions of turbulence processes (Mo-
han et al., 2020; Zanna and Bolton, 2020), and SST recon-
struction (Meng et al., 2021; Lloyd et al., 2021).

Among image-processing techniques, impressive results
have been obtained with convolutional neural networks
(CNNs) due to their high level of ability to extract the
most important information from two-dimensional spatial
fields. Recently, the application of CNN architectures in the
process of reconstructing high-resolution images from low-
resolution ones, the so-called single-image super-resolution
(SR) problem, has attracted much attention in a wide range
of scientific challenges. The idea is to implement a network

that directly learns the end-to-end mapping between low- and
high-resolution images. One of the simplest attempts made
by Dong et al. (2015) was the construction of a network for
image restoration composed of three two-dimensional con-
volutional layers with different kernel sizes. The three layers
might be seen as the three conceptual phases of this NN al-
gorithm: a first extraction of overlapping tiles from the input
images converting them to feature maps and the non-linear
mapping of these maps onto one high-dimensional vector of
high-resolution feature maps, the final reconstruction aggre-
gating the above representations to generate the final high-
resolution image. This final image is expected to be simi-
lar to the ground-truth one. Despite the simplicity of the ar-
chitecture, the Super Resolution Convolutional Neural Net-
work (SRCNN) developed by Dong et al. (2015) achieved
excellent results with respect to more traditional methods and
it has already been applied to reconstruct satellite-derived
SST data, with promising results (Ducournau and Fablet,
2016). Building on Dong’s work, several more complicated
structures have been developed to tackle the super-resolution
problem. In subsequent years, a few attempts to develop
residual networks have shown the convergence improvement
of deeper architectures, which was mainly given by the intro-
duction of skip connections and recursive convolutions (He
et al., 2016; Kim et al., 2016a, b). Similarly, a step forward
has been made by Lim et al. (2017) with the development
of an enhanced deep residual network for super resolution
(EDSR), which makes use of residual blocks with constant
scaling layers after the last convolutional layer in order to
stabilize the training even in the presence of a large num-
ber of filters. This modification led to significantly better ac-
curacy using much deeper networks, while controlling the
computational cost of the training phase. A further step has
been proposed by Liu et al. (2019) with the adaptive residual
blocks (ARBs), which replace the constant factor with adap-
tive residual factors, increasing the adaptability of the net-
work. More specifically, in the ARB, feature responses (i.e.,
filter output channels) are re-calibrated on a channel-wise ba-
sis using a so-called squeeze-and-excitation module, before
being combined with the block input. This process is in fact
able to enhance the network’s capability to capture intricate
relationships among the learned feature channels. Recently,
to further push these networks to efficiently handle different
spatial scales in a multichannel input (each channel including
a different variable with characteristic feature scales), Buon-
giorno Nardelli et al. (2022) introduced dilated convolutional
multi-scale learning modules in the network developed by
Liu et al. (2019), expanding the network receptive fields
while still controlling its computational cost. In that work,
the deep learning network was designed to super-resolve ab-
solute dynamic topography (ADT) by learning from both
low-resolution ADT and high-resolution SST data through
an observing system simulation experiment (namely, simu-
lating all observations through an ocean general circulation
numerical model).
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Our aim is to exploit the ability of the dilated SR net-
work to increase gap-free SST effective resolution by di-
rectly training our network on remote sensing SST data for
both input and target datasets. We make use of the data
produced by the Institute of Marine Sciences of the Ital-
ian National Research Council (CNR-ISMAR) within the
Copernicus Marine Service, which consists of merged multi-
sensor (L3S) and gap-free (L4) sea surface temperature prod-
ucts over the Mediterranean Sea at a high resolution (HR;
nominally 1/16°) and ultra-high resolution (UHR; nominally
1/100°) (Buongiorno Nardelli et al., 2013). Considering that
our UHR interpolation accounts for space–time decorrela-
tion scales of 5 km and 1 d, in the presence of valid L3 UHR
observations, the resulting L4 data can be considered to be
submesoscale-resolving (Kurkin et al., 2020). UHR OI pro-
cessing makes use of upsized L4 HR fields as an initial guess.
This guess is left unchanged in the absence of L3 UHR data
and the L4 effective resolution is thus, by definition, lower
than 1/100° there. Therefore, our goal is to enhance the ef-
fective resolution of the gap-free upsized 1/16° background
field.

2 Materials and methods

2.1 Training and test datasets

When dealing with deep learning methods, it is important
to construct the training and test datasets; ensure a suffi-
cient generalization capability; and, more specifically, avoid
under- and over-fitting problems. Under-fitting occurs when
the model fails to achieve a suitably low error in the training
set, while over-fitting occurs when the gap between the train-
ing error and test error becomes excessively wide (Goodfel-
low et al., 2016). Remote sensing data are a very suitable re-
source used to prevent the occurrence of these problems due
to the wide availability of large-scale gridded datasets which
are complex enough to encapsulate an extensive variety of
features.

The suite of products considered for this project pro-
vides the foundation SST (i.e., the temperature free of di-
urnal variability) over the Mediterranean Sea from 2008 to
the present (https://doi.org/10.48670/moi-00172) at near-real
time (NRT). These data are built from level 2 (L2) infrared
measurements (i.e., data in satellite native grid/swath coordi-
nates) processed through a series of steps divided into differ-
ent modules as detailed by Buongiorno Nardelli et al. (2013)
and sketched in Fig. 1.

The L2 measurements are obtained from several instru-
ments on board both geostationary and polar-orbiting satel-
lites (including Sentinel-3A and Sentinel-3B, NOAA-20,
Suomi NPP, Metop-B, Metop-C, Aqua, Terra, and SEVIRI).
After a first shared module for the upstream data collection
(M1), two separated processing chains are used to obtain the
SST products at 1/16° and 1/100° spatial resolution. Both

include a second module for the geographical and temporal
extraction of the L2 data and the remapping onto the corre-
sponding regular grid (M2) and a third module for the bias
correction and quality control, which lead to the merging of
all the data from the different sensors (M3). The output of
each of these processing paths is an L3S product at the as-
sociated spatial resolution. The final gap-free fields are pro-
vided by applying a space–time optimal interpolation algo-
rithm to the L3 data for both HR and UHR products (M4).
However, the two OI schemes use different initial guesses in
the absence of the observed data. While the HR processing
chain makes use of a climatological background field to pro-
duce the L4 SST image at 1/16° resolution, in the case of
the finer-resolution product, the initial guess used by the OI
algorithm is the L4 HR SST field, preliminarily upsized onto
a 1/100° regular grid (through a thin plate spline). As a con-
sequence, due to the small decorrelation scales assumed in
the UHR interpolation, small-scale features are correctly rep-
resented only when valid UHR L3 observations are present
close to the interpolation point within a short temporal win-
dow. For this reason, in the absence of these observations,
the final UHR product will have an effective resolution that
is equal to or coarser than 1/16°.

We train the network to improve the satellite SST effec-
tive resolution by introducing realistic small-scale features in
the interpolated and upsized gap-free L4 HR SST images (di-
lated Adaptive Deep Residual Network for Super Resolution,
dADRSR, input in Fig. 1). The target data are derived from a
ground-truth super-collated L3S UHR SST dataset (namely,
merged multi-sensor data) that was specifically built for this
purpose. The dataset (hereinafter called L3S Sentinel) is ob-
tained by applying the first three modules of the UHR SST
processing chain to acquisitions only from the Sea and Land
Surface Temperature Radiometer (SLSTR) on board of the
Sentinel-3A and Sentinel-3B satellites due to their high ra-
diometric accuracy and kilometer-scale resolving capabili-
ties (Coppo et al., 2020).

Both input and target datasets are mapped on a regular
grid at 1/100° spatial resolution over the Mediterranean Sea
for the year 2020. Since our goal is to retrieve small-scale
features, a first moving-average high-pass filter (with a ker-
nel radius of 200 km) is applied to remove the large-scale
dynamics in both input and target images (Kurkin et al.,
2020). Then, all 100 km× 100 km regions (herein referred
to as tiles) consisting of at least 95 % valid values were ex-
tracted from the filtered fields. Tiles were allowed to over-
lap at most one other tile by 50 %. SST values are then
transformed into anomalies to avoid seasonal variability and
scaled between −1 and 1 through a classical min–max nor-
malization technique, i.e.,

SSTnorm = 2
(

SST−min(SST)
max(SST)−min(SST)

)
− 1. (1)
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Figure 1. Sketch of the processing chains for the production of L3S and L4 SST fields at 1/16° and 1/100° spatial resolutions over the
Mediterranean Sea. Green boxes represent shared modules, blue boxes contain the information and the data for the HR product, yellow boxes
refer to the UHR processing chain, and red boxes highlight the application of the super-resolution technique.

The test dataset is finally selected, setting aside 4 individ-
ual days which are representative of the different seasons and
composing the 15 % of the total number of the tiles avail-
able after the preprocessing. These data are separated in a
fully independent dataset (i.e., data never used in the train-
ing phase), which is composed of 18 576 overlapping tiles.
The training dataset finally consists of 94 110 pairs of tiles
extracted from the remaining 362 d, of which one part (prop-
erly separated from the original training dataset at the be-
ginning of the training phase following an 85 : 15 ratio be-
tween the two) is used by the network in the validation phase.
In Fig. 2, an example of the images used to construct the
two datasets is shown. The top-left panel depicts the gap-
free first-guess map (i.e., L4 HR upsized at 1/100° spatial
resolution) on 4 January 2020 and below the corresponding
L3S Sentinel image derived from merged Sentinel-3A and
Sentinel-3B data. On the right, we provide an example of
the a pair of tiles extracted from the related low- and high-
resolution SST fed as the input and target to train the net-
work, respectively.

2.2 Super-resolution convolutional neural network

In deep learning, super-resolution algorithms are example-
based methods, which generate exemplar patches from the
input image. As mentioned above, the application of convo-
lutional neural networks to the super-resolution problem is

based on networks that directly learn an end-to-end mapping
between low- and high-resolution images. These networks
consist of a series of interconnected layers, which make use
of the convolution operator simulating the connectivity be-
tween neurons observed in the organization of the animal vi-
sual cortex. Formally, the output Y of each layer i is a func-
tion of a transformation of the previous layer output X; that
is, the following applies:

Y = F(Wi ∗X+Bi), (2)

where F is the non-linear activation function (in this case,
the rectified linear unit or ReLU), Wi the weights, Bi the bi-
ases and ∗ the convolution operator. The array of weights,
generally called filters or kernels, is able to detect a specific
type of feature in the input (generating what is called a fea-
ture map) and might include, for instance, Gaussian-like fil-
ters or edge detectors along different direction or any other
kind of filter learned during the training. Due to each of the
layers having its own functionality, they will contain differ-
ent structures. The main idea is that the network learns the
weights of the filters and updates the parameters of the sys-
tem through an optimization process based on minimizing
the error between the output and the data from the valida-
tion set. This simple yet powerful idea can be augmented
as much as desired, especially when exploiting the poten-
tial of deep networks. The CNN implemented here was orig-
inally developed by Buongiorno Nardelli et al. (2022) and
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Figure 2. On the left are the SST first-guess maps used to extract the input tiles (a) and the SST L3S Sentinel target image (b) on 4 January
2020. On the right are examples of extracted tiles used for the training and test datasets.

Figure 3. Schematic of the dilated adaptive deep residual network for super resolution developed by Buongiorno Nardelli et al. (2022).
Conv stands for convolutional, M-ARB for multi-scale adaptive residual block, SE for squeeze-and-excitation module, and Add indicates
aggregations of the outputs from the networks blocks.

called dilated Adaptive Deep Residual Network for Super
Resolution (dADRSR). In the dADRSR network (schema-
tized in Fig. 3) the low-resolution input dataset is initially fed
to three parallel dilated convolutional layers with the same
number of filters (equal to 3× 3) but increasing dilation fac-
tor (1, 3 and 5, respectively), which allows for a larger recep-
tive field, extracting information at different scales without

increasing the number of parameters. After this first stage,
the data pass through a sequence of 12 multi-scale adaptive
residual blocks (M-ARBs), each including two sets of paral-
lel dilated convolutional layers (with 120 and 10 filters, re-
spectively) and a squeeze-and-excitation (SE) module that is
able to improve channel interdependencies at almost no com-
putational cost (Hu et al., 2018) before being summed up to
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produce the final high-resolution output. The main charac-
teristics of an adaptive strategy involve replacing the fixed
scaling of learned features with an adaptive scaling mecha-
nism, carried out by the SE block (which is a kind of atten-
tion mechanism). It captures the global importance of each
channel by initially squeezing the feature maps to a single nu-
meric value (therefore obtaining a vector of a size equal to the
number of channels) and, finally, feeding this output to a two-
layer “bottleneck” network which will produce new features
maps, scaling each channel based on its importance. The de-
tailed discussion of the architecture of the network may be
found in Buongiorno Nardelli et al. (2022). The training al-
gorithm follows an early stopping rule which terminates the
iterations as soon as the validation loss function increases for
a previously chosen number of epochs (defined by the pa-
tience parameter, which is set to 20 here). An adaptive learn-
ing rate (initialized at lr = 10−4) is given by the Adam op-
timizer (Kingma and Ba, 2014) where the hyperparameters
are set following the values found in most recent literature
(Lim et al., 2017; Liu et al., 2019; Buongiorno Nardelli et al.,
2022): the numerical stability constant is ε = 10−8, the expo-
nential decay rates for the first- and the second-moment es-
timates are set to β1 = 0.9 and β2 = 0.999, respectively. In-
stead of using the classical dropout regularization technique,
a DropBlock strategy is implemented where contiguous re-
gions of a feature map are dropped together, which has been
shown to increase the accuracy of the network for convo-
lutional layers (Ghiasi et al., 2018). To evaluate the accu-
racy, the mean-squared error is used as a reference in the loss
function. Finally, the dADRSR training model uses almost
1.6 M trainable parameters. All codes are written in Python
using the deep learning framework Keras and the training
was performed on a single NVIDIA T4 GPU in almost 4 d.

2.3 Evaluation of model performances

Three different error measures are calculated to evaluate the
network reconstruction performance between the ground-
truth image x and the network output y.

Firstly, we consider the classical root-mean-squared error
(RMSE) given by

RMSE(x,y)=

√∑N
i (xi − yi)

N
, (3)

where xi and yi are the SST values of the ith pixel of im-
ages x and y, respectively, and N is the total number of pix-
els. This measure can be useful for evaluating the accuracy
of a reconstructed value pixel by pixel, but it can be mis-
leading in the assessment of the ocean state reconstruction
depending on the objectives of the application considered.
For instance, if the NN is able to reproduce an ocean struc-
ture in a position which is slightly misplaced with respect to
the ground-truth measurement, the RMSE will be high, in-
dicating a poor reconstruction, which is even worse than if it

entirely missed the structure. This issue is often referred to as
the double penalty issue since point-matching measures will
penalize the misplacement twice (where the structure should
actually be and where it is incorrectly predicted). However,
in some cases, it is possible that capturing an ocean phe-
nomenon, even if in a slightly wrong position, is better than
missing it completely. For this reason, we also consider two
additional measures that are usually considered in image pro-
cessing.

The most commonly used measure for reconstructed im-
age quality is the peak signal-to-noise ratio (PSNR), repre-
senting the ratio between the maximum possible pixel value
of image I and the power of distorting noise that affects
the quality of its representation, usually represented by the
RMSE itself:

PSNR(x,y)= 20log10

(
max(I )

RMSE(x,y)

)
. (4)

The PSNR can be seen as an approximation to human per-
ception of reconstruction quality, where the higher the value,
the better the quality of the image.

The third error measure is the structural similarity index
measure (SSIM) proposed by Wang et al. (2004), which is
widely used for measuring image quality and especially the
similarity between two images. The concept is based on the
idea that while PSNR estimates perceived errors to quan-
tify image degradation, SSIM captures changes in perceived
structural information variation. That is, if a reconstructed
image is altered with a different type of degradation (for in-
stance, mean-shifted, blurred or with a salt–pepper impulsive
noise effect) while the RMSE comes out nearly identical for
all the cases, the SSIM will capture the different perceptual
quality, which is a weighted combination of luminance, con-
trast and structure measurements. The mathematical formu-
lation of the SSIM between two images, x and y, is given
by

SSIM(x,y)=

(
2µxµy + c1

)(
2σxy + c2

)(
µ2
x +µ

2
y + c1

)(
σ 2
x + σ

2
y + c2

) , (5)

where µx and µy are the mean values of x and y, respec-
tively; σxy is the cross-correlation of x and y; σ 2

x and σ 2
y are

the variance of x and y, respectively; and c1 and c2 are
the regularization constants for the luminance, contrast and
structural terms.

All these errors are computed for the final reconstructed
maps over the whole Mediterranean Sea. The combination of
the super-resolved tiles is made by considering a linear com-
bination of the values obtained for the same pixel, weighted
according to their position within the tile. That is, the coeffi-
cient of each value decreases as its distance becomes larger
from the central pixel of the tile. Finally, the large-scale field,
initially removed to isolate the small-scale features, is added
back to reproduce the large-scale structure of the original
SST field.
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3 Results and discussion

Our aim is to verify whether the dADRSR network, trained
by means of satellite-derived observations, is able to im-
prove the effective resolution of the SST fields in the areas
where our interpolation technique removes most of the spa-
tial variability associated with mesoscale and submesoscale
processes. Due to computational costs, a preliminary study
based on a restricted test dataset was performed. The perfor-
mances of the dADRSR network in comparison with other
deep learning algorithms and a sensitivity analysis on the im-
pact of different choices for the architecture are presented in
Sect. 3.1. Finally, an additional test on an independent dataset
built on a 1-year-long series of SST fields was carried out
(Sect. 3.2).

3.1 Preliminary validation study

Figure 4 shows the comparison of the result obtained on one
of the SST fields included in the test dataset, which corre-
sponds to the SST daily map of 1 August 2020. The recon-
struction of the dADRSR network at 1/100° spatial resolu-
tion over the Mediterranean Sea is shown in the top panel.
In order to visually evaluate the reconstruction of the net-
work, the corresponding L3S SST merged field observed by
Sentinel-3A and Sentinel-3B (central panel) and the first-
guess map used in the optimal interpolation algorithm (bot-
tom panel) are shown below the network output. What is ev-
ident from this figure is that the SST features estimated by
the CNN appear much sharper than the ones approximated
by the low-resolution map, showing promising capabilities
to effectively reconstruct dynamical features.

To highlight the ability of the CNN to more accurately cap-
ture small-scale features with respect to the statistical algo-
rithm, we show in Fig. 5 three smaller panels corresponding
to zoomed-in regions of the fields shown in Fig. 4, delim-
ited by the coordinates 30–40° N, 19–36° E, with the corre-
spondent SST spatial gradients (calculated using the Sobel
operator) for the dADRSR reconstruction, the L3S Sentinel
ground-truth data and the first-guess approximation (from
top to bottom, respectively). This particularly structure-rich
area is an excellent example to demonstrate the ability of the
network to capture dynamical processes which are quite clear
in the high-resolution L3S Sentinel data (shown in the cen-
tral panels). In fact, SST fronts are strongly connected with
the surface dynamics, and they are generally associated with
energetic motions at the mesoscale and submesoscale. While
the CNN is able to capture at least the most energetic struc-
tures (as shown in the top panels of Fig. 5), the first guess
presents an extremely smooth field due to the OI algorithm
applied where all the small-scale features have been filtered
out even when high-resolution data are present. We recall that
the Sobel gradient operates on a 3 pixel× 3 pixel kernel, a
spatial scale not readily visible in the figures. This is why the
first-guess gradient field is so much weaker than the CNN

Table 1. Error estimations of the SST given by the first-guess
map, the EDSR network (Lim et al., 2017), the ADR reconstruc-
tion (Liu et al., 2019), the dADRSR built with half of the M-ARB
(called dADRSR/2) and the dADRSR output with respect to the
L3S ground truth; the RMSE given by Eq. (3) and the correspond-
ing confidence interval calculated by the bootstrapping procedure,
the peak signal-to-noise ratio obtained by Eq. (4), and the structural
similarity index measure given by Eq. (5).

Model RMSE [°C] PSNR SSIM

First guess 0.33± 7× 10−5 37.5 0.53
EDSR 0.32± 6× 10−5 37.7 0.54
ADR 0.32± 6× 10−5 37.9 0.54
dADRSR/2 0.32± 8× 10−5 37.7 0.54
dADRSR 0.31± 7× 10−5 37.9 0.54

or SLSTR fields even though the large-scale structures are
similar.

This visual analysis is quantitatively confirmed by the
maps in Fig. 6, displaying the difference between the error
made by the low-resolution approximation and the dADRSR
model with respect to the original L3S Sentinel image, av-
eraged to 1°× 1° boxes. Here, red indicates an improvement
of the CNN with respect to the first-guess image and blue a
degradation. A clear predominance of red boxes is found in
both the SST and the SST gradient error maps.

In Table 1, the comparison is summarized quanti-
tatively, with the network reconstruction presenting a
RMSE= 0.31 °C (versus the 0.33 °C obtained from the first-
guess approximation) and a mean PSNR equal to 37.9 and
a SSIM equal to 0.54, both larger than the first-guess re-
sult. To highlight the quality of the dADRSR reconstruction,
we performed the same test using other deep learning super-
resolution models: the enhanced deep residual network for
super resolution (EDSR) proposed by Lim et al. (2017), the
adaptive deep residual (ADR) network for super resolution
developed by Liu et al. (2019) and the dADRSR proposed
by Buongiorno Nardelli et al. (2022), setting the number of
M-ARBs to be equal to 6 instead of 12 (called dADRSR/2
hereinafter). We recall that while the RMSE should be low
to ensure a good approximation, for the other two quantities
high values indicate an improvement. The dADRSR output
achieves the best value for all the evaluation methods pre-
sented.

To analyze the effectiveness of the high-resolution recon-
struction, we compare the power spectral density (PSD) of
the network output with the L3S Sentinel product and the
first-guess map over three selected zones. We compute the
PSD via a fast Fourier transform (FFT) with a Blackman–
Harris window over the three areas corresponding to the
boxes labeled a, b and c in Fig. 7. The zones are chosen in
order to have the maximum number of valid pixels available
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Figure 4. Comparison of the SST fields of 1 August 2020 provided by the reconstruction of the dADRSR (a), the L3S data measured by
Sentinel-3A and Sentinel-3B (b), and the first-guess SST field (c).

in the L3S Sentinel observations and represent the following
different dynamical regimes:

a. a region over the Sea of Sardinia of low spatial variabil-
ity,

b. a region over the Ionian Sea with an important SST vari-
ability between the eastern and the western part of the
area, and

c. a region over the Levantine Sea characterized by small-
scale structures.

The three central panels of Fig. 7 show the PSD, presented
as a function of the wavenumber, of the SST reconstructed
by the dADRSR (in yellow), the first-guess map (in red) and
the high-resolution L3S Sentinel observations (in blue) over
the three zones delimited by the black rectangles over the
L3S SST field on the top panel. In all these cases, note that

the PSD follows the same behavior for wavenumbers smaller
than 1 per degree, i.e., for scales larger than 100 km. This
means that for such scales, the SST fields obtained by both
the CNN and the first-guess characterize large mesoscale fea-
tures well. Conversely, for regions a and b, both the first-
guess and the network reconstruction exhibit a significant
PSD decrease for wavenumbers higher than 1 per degree,
but starting from approximately 10 per degree, the first-guess
spectrum separates from the dADRSR spectrum (and conse-
quently increases the distance from the L3S Sentinel one),
indicating a poorer reconstruction of spatial features below
10 km. The network spectrum, on the other hand, shows that
the machine learning algorithm captures those small-scale
features in all the cases better. Analogous behavior is found
for the spectra of the SST gradients over the same three re-
gions (three bottom panels). The abrupt decreases seen in the
L3S Sentinel and first-guess spectra starting at 3× 10 per
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Figure 5. Comparison of the SST (a, d) and SST gradients (c, f) provided by the reconstruction of the dADRSR (a–c), the L3S data measured
by Sentinel-3A and Sentinel-3B (b, e), and the optimal interpolated first guess (d–f) in the selected region delimited by the coordinates 30–
40° N, 19–36° E.

Figure 6. Comparison of the performance of the SST (a) and ∇SST (b) dADRSR reconstruction and the first guess with respect to the
L3S data measured by Sentinel-3A and Sentinel-3B satellites. Positive red values show an improvement of the network reconstruction with
respect to the optimal interpolated first guess.
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Figure 7. The PSD of the SST (b–d) and SST gradients (e–g) reconstructed by the dADRSR (in yellow), the first-guess map (in red) and
the L3S Sentinel high-resolution observations (in blue) over the three zones delimited by black rectangles on the L3S SST field on 1 August
2020 in panel (a).

degree are probably due to artifacts introduced by the re-
gridding, as already discussed by Liberti et al. (2023), lead-
ing to the lack of physical meaning for the spectra from this
point onwards (i.e., for the highest wavenumbers). Overall,
we can conclude that the CNN spectra tracks the observed
spectra from 1 to 10 per degree quite well, while the first-
guess spectra are more energetic in this region. On the other
hand, although the CNN spectra are less energetic than the
L3S Sentinel spectra for wave numbers greater than 10 per
degree, they are more representative of the true spectra in
this region than the first-guess spectra.

To quantify the differences between the effective res-
olution of the products, we calculated the PSD ratio

(RPSD) between the spectral content of the mapping er-
ror (e.g., SSTL3S−SSTdADRSR) and the spectral content of
the L3S Sentinel observation of the SST for the dADRSR-
reconstructed fields and the first-guess map (see Fig. 8) as
follows:

RPSD(λ)=
PSDdiff(λ)

PSDL3S(λ)
, (6)

where λ is the wavelength, PSDL3S is the spectra of the
L3S Sentinel observations, and PSDdiff is the spectra of the
differences between the L3S data and either the output of the
CNN or the first-guess field. The RPSD defined in Eq. (6) is
calculated over the three zones delimited by black rectangles
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Figure 8. The ratio between the spectral content of the mapping error and the spectral content of the L3S observation of the SST for the
dADRSR reconstructed fields (in yellow) and the first-guess map (in red) over the three zones delimited by black rectangles on the L3S SST
field on 1 August 2020 presented in Fig. 7a. The black line represents the ratio equal to 0.5 and the dashed black line and the dotted black
line represent the intersection between PSD ratio of the first guess and the dADRSR, respectively, showing the effective resolution of the
products.

Figure 9. The power spectral density profiles (c, d) of different SST products under cloudy conditions calculated along the three transects
(black lines) on the L3S SST field on 20 December 2020 (a, b). The MED L4 NRT HR product at 1/16° (Copernicus) is in blue, the MED
L4 NRT UHR at 1/100° (Copernicus) is in red, the GLOBAL OCEAN OSTIA product at 0.05° (Copernicus) is in yellow, the Multi-scale
Ultra-high Resolution (MUR) product at 0.01° (NASA-JPL) is in purple and the dADRSR reconstruction developed in this work is in green.

on the L3S SST field on 1 August 2020 presented in the bot-
tom panel of Fig. 7. The effective resolution of the products,
based on the intersection between this PSD ratio and the ratio
equal to 0.5 as defined by Ballarotta et al. (2019), shows the
ability of the dADRSR network to resolve smaller scales.

In order to demonstrate the effective spatial resolution en-
hancement of the super-resolved images under cloudy con-
ditions, we performed a power spectral density analysis on

different SST products available over the Mediterranean Sea
(Fig. 9). The products used are the L4 NRT HR at a nom-
inal 1/16° resolution and the L4 NRT UHR at a nominal
1/100° spatial resolution provided by CNR for the Coper-
nicus Marine Service (https://doi.org/10.48670/moi-00172),
the Global Ocean OSTIA product developed by the UK Met
Office at a 0.05° resolution (https://doi.org/10.48670/moi-
00165), the Multi-scale Ultra-high Resolution (MUR) prod-
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Figure 10. Comparison of the daily RMSE time series of the SST
obtained via dADRSR reconstruction (red) and the L4 first guess
(blue) with respect to the L3S data measured by Sentinel-3A and
Sentinel-3B satellites during the year 2021. The jump at Julian
day 134 is due to the absence of L3 observation for that day, which
made the comparison with the input and the output of the network
impossible.

uct provided by the NASA-JPL at a 0.01° resolution (Chin
et al., 2017), and the super-resolved SST field obtained by
the application of the dADRSR network developed in this
work at a 0.01° resolution. The PSD are computed along the
three transects (a, b and c in Fig. 9a), chosen in three ar-
eas affected (at different levels) by cloud coverage. In all
cases, the slope of the spectra is very similar for the three
products at higher resolution (namely, the UHR, the MUR
and the dADRSR approximations), while lower values are
observed for the HR and OSTIA products (which do not
reach wavenumbers larger than 0.1 per degree by construc-
tion). The PSD analysis for section a (Fig. 9b) shows that the
dADRSR approximation is not affected by excessive noise as
are the other products, presenting PSD values that are higher
than the corresponding values of the MUR and UHR spec-
tra (especially at small scales). For sections b (Fig. 9c) and c
(Fig. 9d), the green line representing the dADRSR spectrum
lies above all the other lines for almost the entire wavenum-
ber range.

3.2 An extensive test dataset

Having established the potential ability of the network, we
performed an additional validation test with the aim to
strengthen the robustness of the statistics. We built a new to-
tally independent dataset exploiting the L4 SST fields used
as an initial guess for the OI algorithm, which produces
gap-free SST maps over the Mediterranean Sea for the year
2021 at a 0.01°× 0.01° spatial resolution. Before applying
the dADRSR network to this dataset, the fields were pre-
processed following the same steps described in Sect. 2.1.
The comparison between the evolution of the daily basin-
scale RMSE for the input first guesses and the dADRSR re-
constructions for the entire year confirms the improvement
of the network output with respect to the first-guess fields

(Fig. 10). The mean values of the RMSE for 2021 are in line
with the ones found for the previous test (i.e., 0.31 °C for the
dADRSR output versus 0.33 °C for the first-guess approxi-
mation).

Analogous to Fig. 6, the differences (averaged on 1°× 1°
boxes) between the errors in the two methods approximating
the L3S Sentinel-observed data (Fig. 11) present an overall
improvement of the output of the dADRSR network with re-
spect to the interpolated maps. The positive red values are
found almost everywhere for both SST and SST gradient
fields.

4 Conclusions

The advance obtained by the application of machine-
learning-based techniques for the improvement of the ef-
fective resolution of remote sensing observations have re-
cently opened a new way to approach satellite-derived data
processing. The great advantages provided by making high-
resolution gap-free images available to a wide range of scien-
tific users are severely limited by the number of valid L3 ob-
servations. In the case of sea surface temperature measure-
ments, infrared data are commonly contaminated by cloud
cover, reducing the quality of the L4 data that can be ob-
tained via statistical interpolation techniques. The machine
learning approach used here exploits the progress made in
the field of computer vision for extrapolating high-resolution
features even when a direct measurement is missing. Learn-
ing directly from L3S SST fields and taking advantage of
both dilated convolution and attention mechanisms, the deep
neural network employed here proved to be able to reproduce
small-scale signals that are generally smoothed out by op-
timal interpolation algorithms. The strong variability in the
SST in the Mediterranean Sea allowed us to obtain excel-
lent results even by only considering 1 year of data during
the training phase. However, it is important to investigate
whether using longer time series may help to improve the
network ability to reconstruct SST fields as well as to rely
on more robust statistics. Moreover, given the inhomogene-
ity of the spatial error distribution related to the interpolation
technique, it would be interesting to expand the present in-
vestigation in order to take into account the OI error field
as an additional predictor and to consider the contribution of
the error in the SST gradients in the loss function. Another
aspect that deserves further investigation concerns the appli-
cability of the dADRSR network to differentiating between
sea and ocean areas even though fine-tuning the model would
probably be needed.

In the future, we also plan to study other super-resolution
techniques which have recently become popular in the field
of computer vision. Firstly, we are currently investigating
the possibility of improving the reconstruction of small-scale
features in SST fields via other successful generative AI,
such as GANs or diffusion models. The former exploits the
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Figure 11. Comparison of the performance of the SST (a) and ∇SST (b) dADRSR reconstruction and the L4 first guess with respect to the
L3S data measured by Sentinel-3A and Sentinel-3B satellites during the year 2021. Positive red values show an improvement of the network
reconstruction with respect to the optimal interpolated first guess.

outcomes of a min–max game between a generator of re-
constructed images and a discriminator which tries to distin-
guish the real image from the output of the other network; the
latter builds super-resolved fields, initially introducing noise
into the initial signal, only to then reverse this process until
it converges to the desired distribution. However, although
such networks applied to remote sensing data have proven
to be able to reconstruct very realistic small-scale structures,
they seem to fail to optimize a point-match evaluation of re-
constructed remotely sensed SST fields. Secondly, we would
like to explore the usage of vision transformers (ViT) for un-
derstanding and reproducing high-level structures by under-
standing contextual relationships between the patches of an
image.

The results achieved here, however, may already benefit a
wide range of applications. Super-resolved SST fields would
facilitate the challenging task of two-dimensional/three-
dimensional ocean dynamics reconstruction in synergy with
other variables (e.g., Buongiorno Nardelli et al., 2022; Fablet
et al., 2023) or the monitoring of ocean fronts in areas of par-
ticular interest (e.g., areas affected by vertical exchange and
upwelling regions). Enhancement of the effective resolution
of SST data and especially SST gradients may also benefit
data assimilation in forecast modeling given their proven sen-
sibility to small structures of sea surface temperature (Mal-
oney and Chelton, 2006; Woollings et al., 2010). We also
plan to validate our results exploiting the high-resolution

SST data derived by the CNN reconstruction within the oper-
ational SST chain in the framework of the Copernicus Marine
Service.
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the network developed by Buongiorno Nardelli et al. (2022), which
is available at: https://github.com/bbuong/dADR-SR, last access:
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