Articles | Volume 19, issue 3
https://doi.org/10.5194/os-19-923-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-923-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Factors influencing the meridional width of the equatorial deep jets
Swantje Bastin
CORRESPONDING AUTHOR
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
now at: Climate Variability Department, Max Planck Institute for Meteorology, Hamburg, Germany
Martin Claus
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Faculty of Mathematics and Natural Sciences, Kiel University, Kiel, Germany
Richard J. Greatbatch
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Faculty of Mathematics and Natural Sciences, Kiel University, Kiel, Germany
Peter Brandt
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Faculty of Mathematics and Natural Sciences, Kiel University, Kiel, Germany
Related authors
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
Geosci. Model Dev., 18, 1189–1220, https://doi.org/10.5194/gmd-18-1189-2025, https://doi.org/10.5194/gmd-18-1189-2025, 2025
Short summary
Short summary
Vertical mixing is an important process, for example, for tropical sea surface temperature, but cannot be resolved by ocean models. Comparisons of mixing schemes and settings have usually been done with a single model, sometimes yielding conflicting results. We systematically compare two widely used schemes with different parameter settings in two different ocean models and show that most effects from mixing scheme parameter changes are model-dependent.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
Yawouvi Dodji Soviadan, Miriam Beck, Joelle Habib, Alberto Baudena, Laetitia Drago, Alexandre Accardo, Remi Laxenaire, Sabrina Speich, Peter Brandt, Rainer Kiko, and Stemmann Lars
Biogeosciences, 22, 3485–3501, https://doi.org/10.5194/bg-22-3485-2025, https://doi.org/10.5194/bg-22-3485-2025, 2025
Short summary
Short summary
Key parameters representing the gravity flux in global models are sinking speed and vertical attenuation of exported material. We calculate, for the first time, these parameters in situ in the ocean for six intermittent blooms followed by export events using high-resolution (3 d) time series of 0–1000 m depth profiles from imaging sensors mounted on an Argo float. We show that sinking speed depends not only on size but also on the morphology of the particles, with density being an important property.
Florian Schütte, Johannes Hahn, Ivy Frenger, Arne Bendinger, Fehmi Dilmahamod, Marco Schulz, and Peter Brandt
EGUsphere, https://doi.org/10.5194/egusphere-2025-2175, https://doi.org/10.5194/egusphere-2025-2175, 2025
Short summary
Short summary
We found extreme drops in oxygen levels in the tropical Atlantic linked to surprisingly long-lived, small subsurface eddies. These eddies are hidden beneath the surface (undetectable by satellites) and are unusually stable, even in the highly dynamic ocean near the equator. Using long-term measurements and computer models, we show that these features can strongly influence oxygen supply and potentially impact marine ecosystems.
Léo C. Aroucha, Joke F. Lübbecke, Peter Brandt, Franziska U. Schwarzkopf, and Arne Biastoch
Ocean Sci., 21, 661–678, https://doi.org/10.5194/os-21-661-2025, https://doi.org/10.5194/os-21-661-2025, 2025
Short summary
Short summary
The west African coastal region sustains highly productive fisheries and marine ecosystems influenced by sea surface temperature. We use oceanic models to show that the freshwater input from land to ocean strengthens a surface northward (southward) coastal current north (south) of the Congo River mouth, promoting a transfer of cooler (warmer) waters to north (south) of the Congo discharge location. We highlight the significant impact of river discharge on ocean temperatures and circulation.
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
Geosci. Model Dev., 18, 1189–1220, https://doi.org/10.5194/gmd-18-1189-2025, https://doi.org/10.5194/gmd-18-1189-2025, 2025
Short summary
Short summary
Vertical mixing is an important process, for example, for tropical sea surface temperature, but cannot be resolved by ocean models. Comparisons of mixing schemes and settings have usually been done with a single model, sometimes yielding conflicting results. We systematically compare two widely used schemes with different parameter settings in two different ocean models and show that most effects from mixing scheme parameter changes are model-dependent.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Joelle Habib, Lars Stemmann, Alexandre Accardo, Alberto Baudena, Franz Philip Tuchen, Peter Brandt, and Rainer Kiko
EGUsphere, https://doi.org/10.5194/egusphere-2024-3365, https://doi.org/10.5194/egusphere-2024-3365, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study investigates how carbon moves from the ocean surface to the depths in the equatorial Atlantic, contributing to long-term carbon storage. Using an Argo float equipped with a camera, we captured two periods with major carbon export events. By identifying particle types and their sinking behaviors, we found that smaller, compact particles are key drivers of carbon transport. Our findings underscore the value of using imaging tools on autonomous platforms in tracking carbon sequestration.
Eike E. Köhn, Richard J. Greatbatch, Peter Brandt, and Martin Claus
Ocean Sci., 20, 1281–1290, https://doi.org/10.5194/os-20-1281-2024, https://doi.org/10.5194/os-20-1281-2024, 2024
Short summary
Short summary
The latitudinally alternating zonal jets are a ubiquitous feature of the ocean. We use a simple model to illustrate the potential role of these jets in the formation, maintenance, and multidecadal variability in the oxygen minimum zones, using the eastern tropical North Atlantic oxygen minimum zone as an example.
Kristin Burmeister, Franziska U. Schwarzkopf, Willi Rath, Arne Biastoch, Peter Brandt, Joke F. Lübbecke, and Mark Inall
Ocean Sci., 20, 307–339, https://doi.org/10.5194/os-20-307-2024, https://doi.org/10.5194/os-20-307-2024, 2024
Short summary
Short summary
We apply two different forcing products to a high-resolution ocean model to investigate their impact on the simulated upper-current field in the tropical Atlantic. Where possible, we compare the simulated results to long-term observations. We find large discrepancies between the two simulations regarding the wind and current fields. We propose that long-term observations, once they have reached a critical length, need to be used to test the quality of wind-driven simulations.
Peter Brandt, Gaël Alory, Founi Mesmin Awo, Marcus Dengler, Sandrine Djakouré, Rodrigue Anicet Imbol Koungue, Julien Jouanno, Mareike Körner, Marisa Roch, and Mathieu Rouault
Ocean Sci., 19, 581–601, https://doi.org/10.5194/os-19-581-2023, https://doi.org/10.5194/os-19-581-2023, 2023
Short summary
Short summary
Tropical upwelling systems are among the most productive ecosystems globally. The tropical Atlantic upwelling undergoes a strong seasonal cycle that is forced by the wind. Local wind-driven upwelling and remote effects, particularly via the propagation of equatorial and coastal trapped waves, lead to an upward and downward movement of the nitracline. Turbulent mixing results in upward supply of nutrients. Here, we review the different physical processes responsible for biological productivity.
Jufen Lai, Richard J. Greatbatch, and Martin Claus
Ocean Sci., 19, 421–430, https://doi.org/10.5194/os-19-421-2023, https://doi.org/10.5194/os-19-421-2023, 2023
Short summary
Short summary
The El Niño Southern Oscillation (ENSO) has a global influence on weather and climate. Over most of the equatorial Pacific, where ENSO is focused, variations in sea surface height, such as measured by satellite, are strongly influenced by vertical displacements of the ocean thermocline. We show that linearly removing this influence leads to a time series of sea surface height that capture ENSO dynamics in the central Pacific, where ENSO variability has become more active in recent decades.
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
Mareike Körner, Peter Brandt, and Marcus Dengler
Ocean Sci., 19, 121–139, https://doi.org/10.5194/os-19-121-2023, https://doi.org/10.5194/os-19-121-2023, 2023
Short summary
Short summary
The coastal waters off Angola host a productive ecosystem. Surface waters at the coast are colder than further offshore. We find that surface heat fluxes warm the coastal region more strongly than the offshore region and cannot explain the differences. The influence of horizontal heat advection is minor on the surface temperature change. In contrast, ocean turbulence data suggest that cooling associated with vertical mixing is an important mechanism to explain the near-coastal cooling.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Josefine Herrford, Peter Brandt, Torsten Kanzow, Rebecca Hummels, Moacyr Araujo, and Jonathan V. Durgadoo
Ocean Sci., 17, 265–284, https://doi.org/10.5194/os-17-265-2021, https://doi.org/10.5194/os-17-265-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important component of the climate system. Understanding its structure and variability is a key priority for many scientists. Here, we present the first estimate of AMOC variations for the tropical South Atlantic from the TRACOS array at 11° S. Over the observed period, the AMOC was dominated by seasonal variability. We investigate the respective mechanisms with an ocean model and find that different wind-forced waves play a big role.
Cited articles
Bastin, S., Claus, M., Brandt, P., and Greatbatch, R. J.: Equatorial Deep Jets
and Their Influence on the Mean Equatorial Circulation in an Idealized Ocean
Model Forced by Intraseasonal Momentum Flux Convergence, Geophys. Res.
Lett., 47, e2020GL087808, https://doi.org/10.1029/2020gl087808, 2020. a, b, c, d, e, f, g, h, i, j, k
Bastin, S., Claus, M., Greatbatch, R. J., and Brandt, P.: Supplementary dataset and scripts to Bastin et al.: Factors influencing the meridional width of the equatorial deep jets (Ocean Science) (2.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7940306, 2023. a
Bourlès, B., Andrié, C., Gouriou, Y., Eldin, G., du Penhoat, Y.,
Freudenthal, S., Dewitte, B., Gallois, F., Chuchla, R., Baurand, F., Aman,
A., and Kouadio, G.: The deep currents in the Eastern Equatorial Atlantic
Ocean, Geophys. Res. Lett., 30, 8002, https://doi.org/10.1029/2002gl015095, 2003. a
Brandt, P., Funk, A., Hormann, V., Dengler, M., Greatbatch, R. J., and Toole,
J. M.: Interannual atmospheric variability forced by the deep equatorial
Atlantic Ocean, Nature, 473, 497–500, https://doi.org/10.1038/nature10013, 2011. a
Brandt, P., Greatbatch, R. J., Claus, M., Didwischus, S.-H., Hormann, V., Funk,
A., Hahn, J., Krahmann, G., Fischer, J., and Körtzinger, A.: Ventilation of
the equatorial Atlantic by the equatorial deep jets, J. Geophys. Res.-Oceans, 117, C12015, https://doi.org/10.1029/2012jc008118, 2012. a
Brandt, P., Bange, H. W., Banyte, D., Dengler, M., Didwischus, S.-H., Fischer, T., Greatbatch, R. J., Hahn, J., Kanzow, T., Karstensen, J., Körtzinger, A., Krahmann, G., Schmidtko, S., Stramma, L., Tanhua, T., and Visbeck, M.: On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic, Biogeosciences, 12, 489–512, https://doi.org/10.5194/bg-12-489-2015, 2015. a
Bunge, L., Provost, C., Lilly, J. M., d'Orgeville, M., Kartavtseff, A., and
Melice, J.-L.: Variability of the Horizontal Velocity Structure in the Upper
1600 m of the Water Column on the Equator at 10∘ W, J. Phys. Ocean., 36, 1287–1304, https://doi.org/10.1175/jpo2908.1, 2006. a
Cane, M. A. and Moore, D. W.: A Note on Low-Frequency Equatorial Basin Modes,
J. Phys. Ocean., 11, 1578–1584,
https://doi.org/10.1175/1520-0485(1981)011<1578:anolfe>2.0.co;2, 1981. a, b, c, d
Claus, M., Greatbatch, R. J., and Brandt, P.: Influence of the Barotropic Mean
Flow on the Width and the Structure of the Atlantic Equatorial Deep Jets,
J. Phys. Ocean., 44, 2485–2497,
https://doi.org/10.1175/jpo-d-14-0056.1, 2014. a, b
Claus, M., Greatbatch, R. J., Brandt, P., and Toole, J. M.: Forcing of the
Atlantic Equatorial Deep Jets Derived from Observations, J. Phys. Ocean., 46, 3549–3562, https://doi.org/10.1175/jpo-d-16-0140.1, 2016. a, b
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in science
communication, Nat. Commun., 11, 5444, https://doi.org/10.1038/s41467-020-19160-7,
2020. a
Dengler, M. and Quadfasel, D.: Equatorial Deep Jets and Abyssal Mixing in the
Indian Ocean, J. Phys. Ocean., 32, 1165–1180,
https://doi.org/10.1175/1520-0485(2002)032<1165:edjaam>2.0.co;2, 2002. a, b
Dietze, H. and Loeptien, U.: Revisiting “nutrient
trapping” in global coupled biogeochemical ocean
circulation models, Global Biogeochem. Cy., 27, 265–284,
https://doi.org/10.1002/gbc.20029, 2013. a
d'Orgeville, M., Hua, B. L., and Sasaki, H.: Equatorial deep jets triggered by
a large vertical scale variability within the western boundary layer, J.
Mar. Res., 65, 1–25, https://doi.org/10.1357/002224007780388720, 2007. a, b
Eriksen, C. C.: Geostrophic equatorial deep jets, J.
Mar. Res.,
40, 143–156, 1982. a
Firing, E., Fernandes, F., Barna, A., and Abernathey, R.: TEOS-10/GSW-Python:
v3.3.1,
https://github.com/TEOS-10/GSW-Python/releases/tag/v3.3.1 (last access: 17 February 2020),
2019. a
Getzlaff, J. and Dietze, H.: Effects of increased isopycnal diffusivity
mimicking the unresolved equatorial intermediate current system in an earth
system climate model, Geophys. Res. Lett., 40, 2166–2170,
https://doi.org/10.1002/grl.50419, 2013. a
Gill, A. E.: Atmosphere-Ocean Dynamics, Academic Press, International
Geophysics Series Volume 30, ISBN-13 978-0-12-283520-9, 1982. a
Gouriou, Y., Andrié, C., Bourlès, B., Freudenthal, S., Arnault, S.,
Aman, A., Eldin, G., du Penhoat, Y., Baurand, F., Gallois, F., and Chuchla,
R.: Deep circulation in the equatorial Atlantic Ocean, Geophys. Res. Lett., 28, 819–822, https://doi.org/10.1029/2000gl012326, 2001. a
Greatbatch, R. J., Claus, M., Brandt, P., Matthießen, J.-D., Tuchen, F. P.,
Ascani, F., Dengler, M., Toole, J., Roth, C., and Farrar, J. T.: Evidence for
the Maintenance of Slowly Varying Equatorial Currents by Intraseasonal
Variability, Geophys. Res. Lett., 45, 1923–1929,
https://doi.org/10.1002/2017gl076662, 2018. a, b, c, d, e, f, g
Gregg, M. C., Sanford, T. B., and Winkel, D. P.: Reduced mixing from the
breaking of internal waves in equatorial waters, Nature, 422, 513–515,
https://doi.org/10.1038/nature01507, 2003. a, b
Hayes, S. P. and Milburn, H. B.: On the Vertical Structure of Velocity in the
Eastern Equatorial Pacific, J. Phys. Ocean., 10, 633–635,
https://doi.org/10.1175/1520-0485(1980)010<0633:otvsov>2.0.co;2, 1980. a
Hua, B. L., d'Orgeville, M., Fruman, M. D., Ménesguen,
C., Schopp, R., Klein, P., and Sasaki, H.: Destabilization of mixed Rossby
gravity waves and the formation of equatorial zonal jets, J. Fluid
Mech., 610, 311–341, https://doi.org/10.1017/s0022112008002656, 2008. a
Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/mcse.2007.55, 2007. a
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M.,
Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang,
J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-Year Reanalysis Project, B. Am. Meteorol. Soc.,
77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996. a
Kistler, R., Collins, W., Saha, S., White, G., Woollen, J., Kalnay, E.,
Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H.,
Jenne, R., and Fiorino, M.: The NCEP-NCAR 50-Year
Reanalysis: Monthly Means CD-ROM and Documentation, B. Am. Meteorol. Soc., 82, 247–267,
https://doi.org/10.1175/1520-0477(2001)082<0247:tnnyrm>2.3.co;2, 2001. a
Krahmann, G. and Mehrtens, H.: SFB754 LADCP data,
https://doi.org/10.1594/PANGAEA.926517, 2021. a, b
Krahmann, G., Arévalo-Martínez, D. L., Dale, A. W., Dengler, M., Engel, A.,
Glock, N., Grasse, P., Hahn, J., Hauss, H., Hopwood, M. J., Kiko, R.,
Loginova, A. N., Löscher, C. R., Maßmig, M., Roy, A.-S., Salvatteci, R.,
Sommer, S., Tanhua, T., and Mehrtens, H.: Climate-Biogeochemistry
Interactions in the Tropical Ocean: Data Collection and Legacy, Front. Mar. Sci., 8, 723304, https://doi.org/10.3389/fmars.2021.723304, 2021. a
Kundu, P. K., Cohen, I. M., and Dowling, D. R.: Fluid Mechanics, Academic
Press, 5th edn., ISBN 978-0-521-72169-1, 2012. a
Körner, M., Claus, M., Brandt, P., and Tuchen, F. P.: Sources and Pathways of
Intraseasonal Meridional Kinetic Energy in the Equatorial Atlantic Ocean,
J. Phys. Ocean., 52, 2445–2462,
https://doi.org/10.1175/JPO-D-21-0315.1, 2022. a, b
Leetmaa, A. and Spain, P. F.: Results from a Velocity Transect Along the
Equator from 125 to 159∘ W, J. Phys. Ocean., 11, 1030–1033,
https://doi.org/10.1175/1520-0485(1981)011<1030:rfavta>2.0.co;2, 1981. a
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M. M., Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K. W., Paver, C. R., and Smolyar, I. V.: World Ocean Atlas 2018, Volume 1: Temperature. A. Mishonov, Technical Editor. NOAA Atlas NESDIS 81, 52 pp., 2019. a
Luyten, J. R. and Swallow, J.: Equatorial undercurrents, Deep Sea Res., 23, 999–1001, https://doi.org/10.1016/0011-7471(76)90830-5,
1976. a
MacLachlan, C., Arribas, A., Peterson, K. A., Maidens, A., Fereday, D., Scaife,
A. A., Gordon, M., Vellinga, M., Williams, A., Comer, R. E., Camp, J.,
Xavier, P., and Madec, G.: Global Seasonal forecast system version 5
(GloSea5): a high-resolution seasonal forecast system, Q. J. Roy. Meteor. Soc., 141, 1072–1084, https://doi.org/10.1002/qj.2396,
2015. a
Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud, C., Bruciaferri, D.,
Calvert, D., Chanut, J., Clementi, E., Coward, A., Delrosso, D., Ethé, C.,
Flavoni, S., Graham, T., Harle, J., Iovino, D., Lea, D., Lévy, C., Lovato,
T., Martin, N., Masson, S., Mocavero, S., Paul, J., Rousset, C., Storkey, D.,
Storto, A., and Vancoppenolle, M.: NEMO ocean engine, Notes du Pôle
de modélisation de l'Institut Pierre-Simon Laplace (IPSL),
https://doi.org/10.5281/ZENODO.3248739, 2017. a
Matthießen, J.-D., Greatbatch, R. J., Brandt, P., Claus, M., and
Didwischus, S.-H.: Influence of the equatorial deep jets on the north
equatorial countercurrent, Ocean Dynam., 65, 1095–1102,
https://doi.org/10.1007/s10236-015-0855-5, 2015.
a, b
Matthießen, J.-D., Greatbatch, R. J., Claus, M., Ascani, F., and Brandt,
P.: The emergence of equatorial deep jets in an idealised primitive equation
model: an interpretation in terms of basin modes, Ocean Dynam., 67,
1511–1522, https://doi.org/10.1007/s10236-017-1111-y, 2017. a, b
Ménesguen, C., Hua, B. L., Fruman, M. D., and Schopp, R.: Intermittent
layering in the Atlantic equatorial deep jets, J. Mar. Res.,
67, 347–360, https://doi.org/10.1357/002224009789954748, 2009. a
Ménesguen, C., Delpech, A., Marin, F., Cravatte, S., Schopp, R., and
Morel, Y.: Observations and Mechanisms for the Formation of Deep Equatorial
and Tropical Circulation, Earth Space Sci., 6, 370–386,
https://doi.org/10.1029/2018ea000438, 2019. a
Pacanowski, R. C. and Philander, S. G. H.: Parameterization of Vertical Mixing
in Numerical Models of Tropical Oceans, J. Phys. Ocean., 11,
1443–1451, https://doi.org/10.1175/1520-0485(1981)011<1443:povmin>2.0.co;2, 1981. a
Tuchen, F. P., Brandt, P., Claus, M., and Hummels, R.: Deep Intraseasonal
Variability in the Central Equatorial Atlantic, J. Phys. Ocean., 48, 2851–2865, https://doi.org/10.1175/jpo-d-18-0059.1, 2018. a, b
Tuchen, F. P., Brandt, P., Hahn, J., Hummels, R., Krahmann, G., Bourlès,
B., Provost, C., McPhaden, M. J., and Toole, J. M.: Two Decades of Full-Depth
Current Velocity Observations From a Moored Observatory in the Central
Equatorial Atlantic at 0∘ N, 23∘ W, Front. Mar.
Sci., 9, 910979, https://doi.org/10.3389/fmars.2022.910979, 2022a. a
Tuchen, F. P., Brandt, P., Hahn, J., Hummels, R., Krahmann, G.,
Bourlès, B., Provost, C., McPhaden, M. J., and Toole, J. M.:
Data product of full-depth current velocity observations at 0∘ N,
23∘ W from 2001–2021 (v1.0), https://doi.org/10.1594/PANGAEA.941042, 2022b. a
von Schuckmann, K., Brandt, P., and Eden, C.: Generation of tropical
instability waves in the Atlantic Ocean, J. Geophys., Res.,
113, C08034, https://doi.org/10.1029/2007jc004712, 2008. a
Yamagata, T. and Philander, S. G. H.: The role of damped equatorial waves in
the oceanic response to winds, J. Ocean. Soc. Jpn., 41, 345–357, https://doi.org/10.1007/BF02109241, 1985. a, b
Zweng, M., Reagan, J., Seidov, D., Boyer, T., Locarnini, R., Garcia, H.,
Mishonov, A., Baranova, O., Weathers, K., Paver, C., and Smolyar, I.: World Ocean Atlas 2018, Volume 2: Salinity. A. Mishonov, Technical Editor, NOAA Atlas NESDIS 82, 50 pp., 2019. a
Short summary
Equatorial deep jets are ocean currents that flow along the Equator in the deep oceans. They are relevant for oxygen transport and tropical surface climate, but their dynamics are not yet entirely understood. We investigate different factors leading to the jets being broader than theory predicts. Mainly using an ocean model, but corroborating the results with shipboard observations, we show that loss of momentum is the main factor for the broadening but that meandering also contributes.
Equatorial deep jets are ocean currents that flow along the Equator in the deep oceans. They are...