Articles | Volume 19, issue 3
https://doi.org/10.5194/os-19-703-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-703-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ocean color algorithm for the retrieval of the particle size distribution and carbon-based phytoplankton size classes using a two-component coated-sphere backscattering model
Tihomir S. Kostadinov
CORRESPONDING AUTHOR
Department of Liberal Studies, California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA 92096, USA
Lisl Robertson Lain
Earth Observation, Smart Places, CSIR 7700, Cape
Town, South Africa
Christina Eunjin Kong
Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon, PL1 3DH, UK
Xiaodong Zhang
Division of Marine Science, School of Ocean Science and Engineering, The University of Southern Mississippi, Stennis Space Center, MS 39529, USA
Stéphane Maritorena
Earth Research Institute, University of California at Santa Barbara,
Santa Barbara, CA 93106-3060, USA
Stewart Bernard
SANSA, Enterprise Building, Mark Shuttleworth Street, Innovation Hub, Pretoria 0087, South Africa
Hubert Loisel
Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, IRD, UMR 8187 – LOG – Laboratoire d'Océanologie et de Géosciences, 62930 Wimereux, France
Daniel S. F. Jorge
Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, IRD, UMR 8187 – LOG – Laboratoire d'Océanologie et de Géosciences, 62930 Wimereux, France
Ekaterina Kochetkova
Department of Earth and Environmental Science, Hayden Hall, University of Pennsylvania, 240 South 33rd St., Philadelphia, PA 19104, USA
Shovonlal Roy
Department of Geography and Environmental Science, University of Reading, Reading, RG6 6DW, UK
Bror Jonsson
National Centre for Earth Observation, Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon, PL1 3DH, UK
Victor Martinez-Vicente
Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon, PL1 3DH, UK
Shubha Sathyendranath
National Centre for Earth Observation, Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon, PL1 3DH, UK
Related authors
Tihomir S. Kostadinov
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-12, https://doi.org/10.5194/gmd-2021-12, 2021
Preprint withdrawn
Short summary
Short summary
Here, I introduce and describe AstroGeoVis v1.0: open-source software that calculates the position of the Sun in the sky and produces astronomical visualizations relevant to the Earth and climate sciences. The code also calculates the amount of solar energy falling on a tilted flat solar panel. The code and the dynamically generated figures are intended for educational applications, in a wide variety of fields and levels; research use is also envisioned.
Tihomir S. Kostadinov, Svetlana Milutinović, Irina Marinov, and Anna Cabré
Ocean Sci., 12, 561–575, https://doi.org/10.5194/os-12-561-2016, https://doi.org/10.5194/os-12-561-2016, 2016
Short summary
Short summary
Recent advances in ocean color remote sensing have allowed the quantification of the particle size distribution (and thus volume) of suspended particles in surface waters, using their backscattering signature. Here, we leverage these developments and use volume-to-carbon allometric relationships to quantify phytoplankton carbon globally using SeaWiFS ocean color data. Phytoplankton carbon concentrations are partitioned among three size classes: picoplankton, nanoplankton and microplankton.
T. S. Kostadinov and R. Gilb
Geosci. Model Dev., 7, 1051–1068, https://doi.org/10.5194/gmd-7-1051-2014, https://doi.org/10.5194/gmd-7-1051-2014, 2014
Alain Fumenia, Hubert Loisel, Rick Allen Reynolds, and Dariusz Stramski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2218, https://doi.org/10.5194/egusphere-2024-2218, 2024
Short summary
Short summary
Particulate organic nitrogen (PON) in the ocean refers to nitrogen contained in particles suspended such as phytoplankton, zooplankton, bacteria, viruses, and organic detritus. We used field measurements to determine relationships between PON and inherent optical properties of seawater across a broad range of marine environments. The presented relationships are expected to have application in the assessment of PON distribution and variations from in situ and satellite optical observations
Roy El Hourany, Juan Pierella Karlusich, Lucie Zinger, Hubert Loisel, Marina Levy, and Chris Bowler
Ocean Sci., 20, 217–239, https://doi.org/10.5194/os-20-217-2024, https://doi.org/10.5194/os-20-217-2024, 2024
Short summary
Short summary
Satellite observations offer valuable information on phytoplankton abundance and community structure. Here, we employ satellite observations to infer seven phytoplankton groups at a global scale based on a new molecular method from Tara Oceans. The link has been established using machine learning approaches. The output of this work provides excellent tools to collect essential biodiversity variables and a foundation to monitor the evolution of marine biodiversity.
Hubert Loisel, Lucile Duforêt-Gaurier, Trung Kien Tran, Daniel Schaffer Ferreira Jorge, François Steinmetz, Antoine Mangin, Marine Bretagnon, and Odile Hembise Fanton d'Andon
State Planet, 1-osr7, 11, https://doi.org/10.5194/sp-1-osr7-11-2023, https://doi.org/10.5194/sp-1-osr7-11-2023, 2023
Short summary
Short summary
In this paper, we will show how a proxy for particulate composition (PPC), classifying the suspended particulate matter into its organic, mineral, or mixed fractions, can be estimated from remote-sensing observations. The selected algorithm will then be applied to MERIS observations (2002–2012) over global coastal waters to discuss the significance of this new product. A specific focus will be on the English Channel and the southern North Sea.
Bror F. Jönsson, Christopher L. Follett, Jacob Bien, Stephanie Dutkiewicz, Sangwon Hyun, Gemma Kulk, Gael L. Forget, Christian Müller, Marie-Fanny Racault, Christopher N. Hill, Thomas Jackson, and Shubha Sathyendranath
Geosci. Model Dev., 16, 4639–4657, https://doi.org/10.5194/gmd-16-4639-2023, https://doi.org/10.5194/gmd-16-4639-2023, 2023
Short summary
Short summary
While biogeochemical models and satellite-derived ocean color data provide unprecedented information, it is problematic to compare them. Here, we present a new approach based on comparing probability density distributions of model and satellite properties to assess model skills. We also introduce Earth mover's distances as a novel and powerful metric to quantify the misfit between models and observations. We find that how 3D chlorophyll fields are aggregated can be a significant source of error.
Hubert Loisel, Daniel Schaffer Ferreira Jorge, Rick A. Reynolds, and Dariusz Stramski
Earth Syst. Sci. Data, 15, 3711–3731, https://doi.org/10.5194/essd-15-3711-2023, https://doi.org/10.5194/essd-15-3711-2023, 2023
Short summary
Short summary
Studies of light fields in aquatic environments require data from radiative transfer simulations that are free of measurement errors. In contrast to previously published synthetic optical databases, the present database was created by simulations covering a broad range of seawater optical properties that exhibit probability distributions consistent with a global ocean dominated by open-ocean pelagic environments. This database is intended to support ocean color science and applications.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Marie Barbieux, Julia Uitz, Alexandre Mignot, Collin Roesler, Hervé Claustre, Bernard Gentili, Vincent Taillandier, Fabrizio D'Ortenzio, Hubert Loisel, Antoine Poteau, Edouard Leymarie, Christophe Penkerc'h, Catherine Schmechtig, and Annick Bricaud
Biogeosciences, 19, 1165–1194, https://doi.org/10.5194/bg-19-1165-2022, https://doi.org/10.5194/bg-19-1165-2022, 2022
Short summary
Short summary
This study assesses marine biological production in two Mediterranean systems representative of vast desert-like (oligotrophic) areas encountered in the global ocean. We use a novel approach based on non-intrusive high-frequency in situ measurements by two profiling robots, the BioGeoChemical-Argo (BGC-Argo) floats. Our results indicate substantial yet variable production rates and contribution to the whole water column of the subsurface layer, typically considered steady and non-productive.
Tihomir S. Kostadinov
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-12, https://doi.org/10.5194/gmd-2021-12, 2021
Preprint withdrawn
Short summary
Short summary
Here, I introduce and describe AstroGeoVis v1.0: open-source software that calculates the position of the Sun in the sky and produces astronomical visualizations relevant to the Earth and climate sciences. The code also calculates the amount of solar energy falling on a tilted flat solar panel. The code and the dynamically generated figures are intended for educational applications, in a wide variety of fields and levels; research use is also envisioned.
Maria Paula da Silva, Lino A. Sander de Carvalho, Evlyn Novo, Daniel S. F. Jorge, and Claudio C. F. Barbosa
Biogeosciences, 17, 5355–5364, https://doi.org/10.5194/bg-17-5355-2020, https://doi.org/10.5194/bg-17-5355-2020, 2020
Short summary
Short summary
In this study, we analyze the seasonal changes in the dissolved organic matter (DOM) quality (based on its optical properties) in four Amazon floodplain lakes. DOM plays a fundamental role in surface water chemistry, controlling metal bioavailability and mobility, and nutrient cycling. The model proposed in our paper highlights the potential to study DOM quality at a wider spatial scale, which may help to better understand the persistence and fate of DOM in the ecosystem.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford B. Hooker, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Hubert Loisel, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 11, 1037–1068, https://doi.org/10.5194/essd-11-1037-2019, https://doi.org/10.5194/essd-11-1037-2019, 2019
Short summary
Short summary
A compiled set of in situ data is useful to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2018) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Prima Anugerahanti, Shovonlal Roy, and Keith Haines
Biogeosciences, 15, 6685–6711, https://doi.org/10.5194/bg-15-6685-2018, https://doi.org/10.5194/bg-15-6685-2018, 2018
Short summary
Short summary
Minor changes in the biogeochemical model equations lead to major dynamical changes. We assessed this structural sensitivity for the MEDUSA biogeochemical model on chlorophyll and nitrogen concentrations at five oceanographic stations over 10 years, using 1-D ensembles generated by combining different process equations. The ensemble performed better than the default model in most of the stations, suggesting that our approach is useful for generating a probabilistic biogeochemical ensemble model.
Kristofer Döös, Bror Jönsson, and Joakim Kjellsson
Geosci. Model Dev., 10, 1733–1749, https://doi.org/10.5194/gmd-10-1733-2017, https://doi.org/10.5194/gmd-10-1733-2017, 2017
Short summary
Short summary
The TRACMASS trajectory code with corresponding schemes has been improved and become more accurate and user friendly over the years. An outcome of the present study is that we strongly recommend the use of the
time-dependentTRACMASS scheme. We would also like to dissuade the use of the more primitive
stepwise-stationaryscheme, since the velocity fields remain stationary for longer periods, creating abrupt discontinuities in the velocity fields and yielding inaccurate solutions.
Corinne Le Quéré, Erik T. Buitenhuis, Róisín Moriarty, Séverine Alvain, Olivier Aumont, Laurent Bopp, Sophie Chollet, Clare Enright, Daniel J. Franklin, Richard J. Geider, Sandy P. Harrison, Andrew G. Hirst, Stuart Larsen, Louis Legendre, Trevor Platt, I. Colin Prentice, Richard B. Rivkin, Sévrine Sailley, Shubha Sathyendranath, Nick Stephens, Meike Vogt, and Sergio M. Vallina
Biogeosciences, 13, 4111–4133, https://doi.org/10.5194/bg-13-4111-2016, https://doi.org/10.5194/bg-13-4111-2016, 2016
Short summary
Short summary
We present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types, and use the model to assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean. Our results suggest that observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community, despite iron limitation of phytoplankton growth.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Hervé Claustre, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford Hooker, Mati Kahru, Holger Klein, Susanne Kratzer, Hubert Loisel, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Alex J. Poulton, Michel Repecaud, Timothy Smyth, Heidi M. Sosik, Michael Twardowski, Kenneth Voss, Jeremy Werdell, Marcel Wernand, and Giuseppe Zibordi
Earth Syst. Sci. Data, 8, 235–252, https://doi.org/10.5194/essd-8-235-2016, https://doi.org/10.5194/essd-8-235-2016, 2016
Short summary
Short summary
A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2012) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Tihomir S. Kostadinov, Svetlana Milutinović, Irina Marinov, and Anna Cabré
Ocean Sci., 12, 561–575, https://doi.org/10.5194/os-12-561-2016, https://doi.org/10.5194/os-12-561-2016, 2016
Short summary
Short summary
Recent advances in ocean color remote sensing have allowed the quantification of the particle size distribution (and thus volume) of suspended particles in surface waters, using their backscattering signature. Here, we leverage these developments and use volume-to-carbon allometric relationships to quantify phytoplankton carbon globally using SeaWiFS ocean color data. Phytoplankton carbon concentrations are partitioned among three size classes: picoplankton, nanoplankton and microplankton.
B. Nechad, K. Ruddick, T. Schroeder, K. Oubelkheir, D. Blondeau-Patissier, N. Cherukuru, V. Brando, A. Dekker, L. Clementson, A. C. Banks, S. Maritorena, P. J. Werdell, C. Sá, V. Brotas, I. Caballero de Frutos, Y.-H. Ahn, S. Salama, G. Tilstone, V. Martinez-Vicente, D. Foley, M. McKibben, J. Nahorniak, T. Peterson, A. Siliò-Calzada, R. Röttgers, Z. Lee, M. Peters, and C. Brockmann
Earth Syst. Sci. Data, 7, 319–348, https://doi.org/10.5194/essd-7-319-2015, https://doi.org/10.5194/essd-7-319-2015, 2015
Short summary
Short summary
The CoastColour Round Robin (CCRR) project (European Space Agency) was designed to set up the first database for remote-sensing algorithm testing and accuracy assessment of water quality parameter retrieval in coastal waters, from satellite imagery. This paper analyses the CCRR database, which includes in situ bio-geochemical and optical measurements in various water types, match-up reflectance products from the MEdium Resolution Imaging Spectrometer (MERIS), and radiative transfer simulations.
P. R. Renosh, F. G. Schmitt, and H. Loisel
Nonlin. Processes Geophys., 22, 633–643, https://doi.org/10.5194/npg-22-633-2015, https://doi.org/10.5194/npg-22-633-2015, 2015
Short summary
Short summary
Intermittent dynamics of particle size distribution in coastal waters is studied. Particle sizes are separated into four size classes: silt, fine, coarse and macro particles. The time series of each size class is derived, and their multiscaling properties studied. Similar analysis has been done for suspended particulate matter and total volume concentration. All quantities display a nonlinear moment function and a negative Hurst scaling exponent.
B. F. Jonsson, S. Doney, J. Dunne, and M. L. Bender
Biogeosciences, 12, 681–695, https://doi.org/10.5194/bg-12-681-2015, https://doi.org/10.5194/bg-12-681-2015, 2015
Short summary
Short summary
We compare how two global circulation models simulate biological production over the year with observations. Note that models simulate the range of biological production and biomass well but fail with regard to timing and regional structures. This is probably because the physics in the models are wrong, especially vertical processes such as mixed layer dynamics.
T. S. Kostadinov and R. Gilb
Geosci. Model Dev., 7, 1051–1068, https://doi.org/10.5194/gmd-7-1051-2014, https://doi.org/10.5194/gmd-7-1051-2014, 2014
Cited articles
Aden, A. L. and Kerker, M.: Scattering of Electromagnetic Waves from Two
Concentric Spheres, J. Appl. Phys., 22, 1242–1246,
https://doi.org/10.1063/1.1699834, 1951. a
Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., and Stramski, D.: Light
scattering properties of marine particles in coastal and open ocean waters as
related to the particle mass concentration, Limnol. Oceanogr., 48,
843–859, https://doi.org/10.4319/lo.2003.48.2.0843, 2003. a
Bader, H.: The hyperbolic distribution of particle sizes, J.
Geophys. Res., 75, 2822–2830,
https://doi.org/10.1029/JC075i015p02822, 1970. a
Behrenfeld, M. J., Boss, E., Siegel, D. A., and Shea, D. M.: Carbon-based
ocean productivity and phytoplankton physiology from space, Global
Biogeochem. Cy., 19, 1–14, https://doi.org/10.1029/2004GB002299, 2005. a, b, c, d
Bellacicco, M., Volpe, G., Briggs, N., Brando, V., Pitarch, J., Landolfi, A.,
Colella, S., Marullo, S., and Santoleri, R.: Global Distribution of
Non-algal Particles From Ocean Color Data and Implications for Phytoplankton
Biomass Detection, Geophys. Res. Lett., 45, 7672–7682,
https://doi.org/10.1029/2018GL078185, 2018. a, b
Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by
Small Particles, Wiley, New York, ISBN: 9780471293408, https://onlinelibrary.wiley.com/doi/book/10.1002/9783527618156 (last access: 17 May 2023), 1998. a
Boss, E., Twardowski, M. S., and Herring, S.: Shape of the particulate beam
attenuation spectrum and its inversion to obtain the shape of the particulate
size distribution, Appl. Opt., 40, 4885–4893, https://doi.org/10.1364/AO.40.004885,
2001. a, b, c
Boss, E. and Haëntjens, N.: NAAMES (LISST 100X Data), SeaWiFS Bio-optical Archive and Storage System (SeaBASS), NASA [data set], https://doi.org/10.5067/SeaBASS/NAAMES/DATA001, 2017. a
Boss, E. and Haëntjens, N.: EXPORTS (LISST 100X Data), SeaWiFS Bio-optical Archive and Storage System (SeaBASS), NASA [data set], https://doi.org/10.5067/SeaBASS/EXPORTS/DATA001, 2018. a
Boss, E., Haëntjens, N., Westberry, T. K., Karp-Boss, L., and Slade, W. H.:
Validation of the particle size distribution obtained with the laser in-situ
scattering and transmission (LISST) meter in flow-through mode, Opt. Exp.,
26, 11125–11136, https://doi.org/10.1364/OE.26.011125, 2018. a
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., and Weber, T.:
Multi-faceted particle pumps drive carbon sequestration in the ocean,
Nature, 568, 327–335, https://doi.org/10.1038/s41586-019-1098-2, 2019. a
Brewin, R. J., Sathyendranath, S., Platt, T., Bouman, H., Ciavatta, S.,
Dall'Olmo, G., Dingle, J., Groom, S., Jönsson, B., Kostadinov, T. S.,
Kulk, G., Laine, M., Martínez-Vicente, V., Psarra, S., Raitsos, D. E.,
Richardson, K., Rio, M. H., Rousseaux, C. S., Salisbury, J., Shutler, J. D.,
and Walker, P.: Sensing the ocean biological carbon pump from space: A
review of capabilities, concepts, research gaps and future developments,
Earth-Sci. Rev., 217, 103604, https://doi.org/10.1016/j.earscirev.2021.103604, 2021. a, b
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., and West, G. B.:
Toward a metabolic theory of ecology, Ecology, 85, 1771–1789,
https://doi.org/10.1890/03-9000, 2004. a
Buesseler, K. O. and Boyd, P. W.: Shedding light on processes that control
particle export and flux attenuation in the twilight zone of the open ocean,
Limnol. Oceanogr., 54, 1210–1232, https://doi.org/10.4319/lo.2009.54.4.1210,
2009. a
Buonassissi, C. J. and Dierssen, H. M.: A regional comparison of particle size
distributions and the power law approximation in oceanic and estuarine
surface waters, J. Geophys. Res.-Ocean., 115, 1–12,
https://doi.org/10.1029/2010JC006256, 2010. a
Burd, A. B. and Jackson, G. A.: Particle Aggregation, Annu. Rev. Mar.
Sci., 1, 65–90, https://doi.org/10.1146/annurev.marine.010908.163904, 2009. a
Cael, B. B., Chase, A., and Boss, E.: Information content of absorption spectra
and implications for ocean color inversion, Appl. Opt., 59, 3971–3984,
https://doi.org/10.1364/AO.389189, 2020. a, b
Chisholm, S. W.: Stirring times in the Southern Ocean, Nature, 407, 685–687,
https://doi.org/10.1038/35037696, 2000. a
Clavano, W., Boss, E., and Karp-Boss, L.: Inherent Optical Properties of
Non-Spherical Marine-Like Particles – From Theory To
Observation, Oceanogr. Mar. Biol., 45, 1–38,
https://doi.org/10.1201/9781420050943.ch1, 2007. a
Dall'Olmo, G., Westberry, T. K., Behrenfeld, M. J., Boss, E., and Slade, W. H.:
Significant contribution of large particles to optical backscattering in the
open ocean, Biogeosciences, 6, 947–967, https://doi.org/10.5194/bg-6-947-2009, 2009. a
Dennison, P. E., Halligan, K. Q., and Roberts, D. A.: A comparison of error
metrics and constraints for multiple endmember spectral mixture analysis and
spectral angle mapper, Remote Sens. Environ., 93, 359–367,
https://doi.org/10.1016/j.rse.2004.07.013, 2004. a
Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux and
planktonic new production in the deep ocean, Nature, 282, 677–680, 1979. a
Evers-King, H., Martinez-Vicente, V., Brewin, R. J. W., Dall'Olmo, G., Hickman,
A. E., Jackson, T., Kostadinov, T. S., Krasemann, H., Loisel, H.,
Röttgers, R., Roy, S., Stramski, D., Thomalla, S., Platt, T., and
Sathyendranath, S.: Validation and Intercomparison of Ocean Color Algorithms
for Estimating Particulate Organic Carbon in the Oceans, Front. Mar.
Sci., 4, 1–20, https://doi.org/10.3389/fmars.2017.00251, 2017. a
Falkowski, P. G., Barber, R. T., and Smetacek, V.: Biogeochemical controls and
feedbacks on ocean primary production, Science, 281, 200–206,
https://doi.org/10.1126/science.281.5374.200, 1998. a, b
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.: Primary
production of the biosphere: Integrating terrestrial and oceanic components,
Science, 281, 237–240, https://doi.org/10.1126/science.281.5374.237, 1998. a
Graff, J. R., Westberry, T. K., Milligan, A. J., Brown, M. B., Dall'Olmo, G.,
van Dongen-Vogels, V., Reifel, K. M., and Behrenfeld, M. J.: Analytical
phytoplankton carbon measurements spanning diverse ecosystems, Deep-Sea
Res. Pt. I, 102, 16–25,
https://doi.org/10.1016/j.dsr.2015.04.006, 2015. a, b, c, d, e, f, g, h, i, j, k, l
Hatton, I. A., Heneghan, R. F., Bar-On, Y. M., and Galbraith, E. D.: The
global ocean size spectrum from bacteria to whales, Sci. Adv., 7,
1–13, https://doi.org/10.1126/sciadv.abh3732, 2021. a, b, c
Haëntjens, N., Boss, E. S., Graff, J. R., Chase, A. P., and Karp-Boss, L.:
Phytoplankton size distributions in the western North Atlantic and their
seasonal variability, Limnol. Oceanogr., 67, 1865–1878,
https://doi.org/10.1002/lno.12172, 2022. a
Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Le Moigne, F., and
Quartly, G. D.: A reduced estimate of the strength of the ocean's biological
carbon pump, Geophys. Res. Lett., 38, 10–14,
https://doi.org/10.1029/2011GL046735, 2011. a
Jackson, T., Sathyendranath, S., and Platt, T.: An exact solution for modeling
photoacclimation of the carbon-to-chlorophyll ratio in phytoplankton,
Front. Mar. Sci., 4, 1–10, https://doi.org/10.3389/fmars.2017.00283, 2017. a
Jonasz, M.: Particle-size distributions in the Baltic, Tellus B, 35, 346–358, https://doi.org/10.3402/tellusb.v35i5.14624, 1983. a
Jorge, D. S., Loisel, H., Jamet, C., Dessailly, D., Demaria, J., Bricaud, A.,
Maritorena, S., Zhang, X., Antoine, D., Kutser, T., Bélanger, S., Brando,
V. O., Werdell, J., Kwiatkowska, E., Mangin, A., and d'Andon, O. F.: A
three-step semi analytical algorithm (3SAA) for estimating inherent optical
properties over oceanic, coastal, and inland waters from remote sensing
reflectance, Remote Sensing of Environ., 263, 112537,
https://doi.org/10.1016/j.rse.2021.112537, 2021. a
Koestner, D., Stramski, D., and Reynolds, R. A.: Assessing the effects of
particle size and composition on light scattering through measurements of
size-fractionated seawater samples, Limnol. Oceanogr., 65,
173–190, https://doi.org/10.1002/lno.11259, 2020. a, b
Kostadinov, T., Siegel, D., Maritorena, S., and Guillocheau, N.: Ocean color
observations and modeling for an optically complex site: Santa Barbara
Channel, California, USA, J. Geophys. Res.-Ocean., 112, C07011,
https://doi.org/10.1029/2006JC003526, 2007. a
Kostadinov, T., Siegel, D., Maritorena, S., and Guillocheau, N.: Optical
assessment of particle size and composition in the Santa Barbara Channel,
California, Appl. Optics, 51, 3171–3189, https://doi.org/10.1364/AO.51.003171, 2012. a, b
Kostadinov, T. S., Milutinovic, S., Marinov, I., and Cabré, A.:
Size-partitioned phytoplankton carbon concentrations retrieved from ocean
color data, links to data in NetCDF format, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.859005,
2016b. a
Kostadinov, T. S., Roberston-Lain, L., Bernard, S., Zhang, X., and Loisel, H.: PSD_PhytoC_v2021: Ocean Color Algorithm for the Retrieval of the Particle Size Distribution and Size-Partitioned Phytoplankton Carbon: Algorithm Development and Operational Code (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.6354654, 2022a. a
Kostadinov, T. S., Robertson-Lain, L., Kong, C. E., Zhang, X., Maritorena, S., Bernard, S., Loisel, H., Jorge, D. S. F., Kochetkova, E., Roy, S., Jönsson, B., Martinez-Vicente, V., and Sathyendranath, S.: Particle Size Distribution and Size-partitioned Phytoplankton Carbon Using a Two-Component Coated-Spheres Bio-optical Model: Monthly Global 4 km Imagery Based on the OC-CCI v5.0 Merged Ocean Color Satellite Data Set, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.939863, 2022b. a, b, c, d
Kramer, S. J., Siegel, D. A., Maritorena, S., and Catlett, D.: Modeling
surface ocean phytoplankton pigments from hyperspectral remote sensing
reflectance on global scales, Remote Sens. Environ., 270, 112879,
https://doi.org/10.1016/j.rse.2021.112879, 2022. a
Lee, Z., Carder, K. L., and Arnone, R. A.: Deriving inherent optical properties
from water color: a multiband quasi-analytical algorithm for optically deep
waters, Appl. Optics, 41, 5755, https://doi.org/10.1364/AO.41.005755, 2002. a
Lee, Z. P., Carder, K., Arnone, R., and He, M. X.: Determination of primary
spectral bands for remote sensing of aquatic environments, Sensors, 7,
3428–3441, https://doi.org/10.3390/s7123428, 2007. a
Loisel, H. and Stramski, D.: Estimation of the inherent optical properties of
natural waters from the irradiance attenuation coefficient and reflectance in
the presence of Raman scattering, Appl. Opt., 39, 3001–3011,
https://doi.org/10.1364/AO.39.003001, 2000. a, b, c, d
Loisel, H., Nicolas, J. M., Sciandra, A., Stramski, D., and Poteau, A.:
Spectral dependency of optical backscattering by marine particles from
satellite remote sensing of the global ocean, J. Geophys.
Res.-Ocean., 111, 1–14, https://doi.org/10.1029/2005JC003367, 2006. a, b, c
Loisel, H., Stramski, D., Dessailly, D., Jamet, C., Li, L., and Reynolds,
R. A.: An Inverse Model for Estimating the Optical Absorption and
Backscattering Coefficients of Seawater From Remote-Sensing Reflectance Over
a Broad Range of Oceanic and Coastal Marine Environments, J.
Geophys. Res.-Ocean., 123, 2141–2171, https://doi.org/10.1002/2017JC013632,
2018. a, b
Marañón, E.: Cell Size as a Key Determinant of Phytoplankton
Metabolism and Community Structure, Annu. Rev. Mar. Sci., 7,
241–264, https://doi.org/10.1146/annurev-marine-010814-015955, 2015. a
Maritorena, S., Siegel, D. A., and Peterson, A. R.: Optimization of a
semianalytical ocean color model for global-scale applications, Appl.
Optics, 41, 2705, https://doi.org/10.1364/AO.41.002705, 2002. a
Maritorena, S., d'Andon, O. H. F., Mangin, A., and Siegel, D. A.: Merged
satellite ocean color data products using a bio-optical model:
Characteristics, benefits and issues, Remote Sens. Environ., 114,
1791–1804, https://doi.org/10.1016/j.rse.2010.04.002, 2010. a
Martínez-Vicente, V., Evers-King, H., Roy, S., Kostadinov, T., Tarran,
G., Graff, J., Brewin, R., Dall'Olmo, G., Jackson, T., Hickman, A.,
Röttgers, R., Krasemann, H., Marañón, E., Platt, T., and
Sathyendranath, S.: Intercomparison of ocean color algorithms for
picophytoplankton carbon in the ocean, Front. Mar. Sci., 4, 378,
https://doi.org/10.3389/fmars.2017.00378, 2017. a, b, c, d, e
Menden-Deuer, S. and Lessard, E. J.: Carbon to volume relationships for
dinoflagellates, diatoms, and other protist plankton, Limnol.
Oceanogr., 45, 569–579, https://doi.org/10.4319/lo.2000.45.3.0569, 2000. a, b
Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler
Metallösungen, Ann. Phys., 330, 377–445,
https://doi.org/10.1002/andp.19083300302, 1908. a
Mobley, C. D., Sundman, L. K., and Boss, E.: Phase function effects on oceanic
light fields, Appl. Optics, 41, 1035, https://doi.org/10.1364/ao.41.001035, 2002. a
Morel, A. and Maritorena, S.: Bio-optical properties of oceanic waters: A
reappraisal, J. Geophys. Res., 106, 7163–7180,
https://doi.org/10.1029/2000JC000319, 2001. a
Morel, A., Yu-Hwan Ahn, Partensky, F., Vaulot, D., and Claustre, H.:
Prochlorococcus and Synechococcus: a comparative study of their optical
properties in relation to their size and pigmentation, J. Mar.
Res., 51, 617–649, https://doi.org/10.1357/0022240933223963, 1993. a
Moutier, W., Duforêt-Gaurier, L., Thyssen, M., Loisel, H., Mériaux, X.,
Courcot, L., Dessailly, D., and Alvain, S.: Scattering of individual
particles from cytometry: tests on phytoplankton cultures, Opt. Exp., 24,
24188–24212, https://doi.org/10.1364/OE.24.024188, 2016. a
Mouw, C. B., Hardman-mountford, N. J., Alvain, S., Bracher, A., Brewin, R. W.,
Bricaud, A., Ciotti, A. M., Devred, E., Hirata, T., Hirawake, T., Kostadinov,
T. S., Roy, S., and Uitz, J.: A Consumer'́s Guide to Satellite Remote
Sensing of Multiple Phytoplankton Groups in the Global Ocean, Front.
Mar. Sci., 4, 41, https://doi.org/10.3389/fmars.2017.00041, 2017. a
Nuñez, J. R., Anderton, C. R., and Renslow, R. S.: Optimizing colormaps with
consideration for color vision deficiency to enable accurate interpretation
of scientific data, Plos ONE, 13, 1–14, https://doi.org/10.1371/journal.pone.0199239,
2018. a
Organelli, E. and Dall'Olmo, G.: Particle size distributions in the upper 500 m of the Atlantic Ocean from the Atlantic Meridional Transect cruise AMT26
(JR16001) using a Coulter counter [data set],
https://doi.org/10.5285/79103bda-8913-39f3-e053-6c86abc0567a, 2018. a, b
Organelli, E., Dall'Olmo, G., Brewin, R. J. W., Nencioli, F., and Tarran,
G. A.: Drivers of spectral optical scattering by particles in the upper 500 m of the Atlantic Ocean, Opt. Express, 28, 34147,
https://doi.org/10.1364/oe.408439, 2020. a, b, c
Le Quéré, C. L., Harrison, S. P., Colin Prentice, I., Buitenhuis, E. T.,
Aumont, O., Bopp, L., Claustre, H., Cotrim Da Cunha, L., Geider, R., Giraud,
X., Klaas, C., Kohfeld, K. E., Legendre, L., Manizza, M., Platt, T., Rivkin,
R. B., Sathyendranath, S., Uitz, J., Watson, A. J., and Wolf-Gladrow, D.:
Ecosystem dynamics based on plankton functional types for global ocean
biogeochemistry models, Glob. Change Biol., 11, 2016–2040,
https://doi.org/10.1111/j.1365-2486.2005.1004.x, 2005. a, b
Quinones, R. A., Platt, T., and Rodríguez, J.: Patterns of biomass-size
spectra from oligotrophic waters of the Northwest Atlantic, Prog.
Oceanogr., 57, 405–427, https://doi.org/10.1016/S0079-6611(03)00108-3, 2003. a
Quirantes, A. and Bernard, S.: Light scattering by marine algae: Two-layer
spherical and nonspherical models, J. Quant. Spectrosc.
Ra., 89, 311–321, https://doi.org/10.1016/j.jqsrt.2004.05.031, 2004. a
Quirantes, A. and Bernard, S.: Light-scattering methods for modelling algal
particles as a collection of coated and/or nonspherical scatterers, J. Quant. Spectrosc. Ra., 100, 315–324,
https://doi.org/10.1016/j.jqsrt.2005.11.048, 2006. a
Reynolds, R. A. and Stramski, D.: Variability in Oceanic Particle Size
Distributions and Estimation of Size Class Contributions Using a
Non-parametric Approach, J. Geophys. Res.-Ocean., 126,
e2021JC017946, https://doi.org/10.1029/2021JC017946, 2021. a
Reynolds, R. A., Stramski, D., Wright, V. M., and Woźniak, S. B.:
Measurements and characterization of particle size distributions in coastal
waters, J. Geophys. Res.-Ocean., 115, C08024,
https://doi.org/10.1029/2009JC005930, 2010. a
Risović, D.: Effect of suspended particulate-size distribution on the
backscattering ratio in the remote sensing of seawater, Appl. Opt., 41,
7092–7101, https://doi.org/10.1364/AO.41.007092, 2002. a
Risović, D.: Two-component model of sea particle size distribution, Deep-Sea
Res. Pt. I, 40, 1459–1473,
https://doi.org/10.1016/0967-0637(93)90123-K, 1993. a
Robertson Lain, L. and Bernard, S.: The fundamental contribution of
phytoplankton spectral scattering to ocean colour: Implications for satellite
detection of phytoplankton community structure, Appl. Sci., 8, 1–34, https://doi.org/10.3390/app8122681, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Robertson Lain, L., Bernard, S., and Evers-King, H.: Biophysical modelling
of phytoplankton communities from first principles using two-layered spheres:
Equivalent Algal Populations (EAP) model, Opt. Express, 22, 16745,
https://doi.org/10.1364/oe.22.016745, 2014. a, b
Roy, S., Sathyendranath, S., Bouman, H., and Platt, T.: The global
distribution of phytoplankton size spectrum and size classes from their
light-absorption spectra derived from satellite data, Remote Sens.
Environ., 139, 185–197, https://doi.org/10.1016/j.rse.2013.08.004, 2013. a
Roy, S., Sathyendranath, S., and Platt, T.: Size-partitioned phytoplankton
carbon and carbon-to-chlorophyll ratio from ocean colour by an
absorption-based bio-optical algorithm, Remote Sens. Environ., 194,
177–189, https://doi.org/10.1016/j.rse.2017.02.015, 2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
Runyan, H., Reynolds, R. A., and Stramski, D.: Evaluation of Particle Size
Distribution Metrics to Estimate the Relative Contributions of Different Size
Fractions Based on Measurements in Arctic Waters, J. Geophys.
Res.-Ocean., 125, e2020JC016218,
https://doi.org/10.1029/2020JC016218, 2020. a
Sathyendranath, S., Brewin, R. J., Brockmann, C., Brotas, V., Calton, B.,
Chuprin, A., Cipollini, P., Couto, A. B., Dingle, J., Doerffer, R., Donlon,
C., Dowell, M., Farman, A., Grant, M., Groom, S., Horseman, A., Jackson, T.,
Krasemann, H., Lavender, S., Martinez-Vicente, V., Mazeran, C., Mélin,
F., Moore, T. S., Müller, D., Regner, P., Roy, S., Steele, C. J.,
Steinmetz, F., Swinton, J., Taberner, M., Thompson, A., Valente, A.,
Zühlke, M., Brando, V. E., Feng, H., Feldman, G., Franz, B. A., Frouin,
R., Gould, R. W., Hooker, S. B., Kahru, M., Kratzer, S., Mitchell, B. G.,
Muller-Karger, F. E., Sosik, H. M., Voss, K. J., Werdell, J., and Platt, T.:
An ocean-colour time series for use in climate studies: The experience of
the ocean-colour climate change initiative (OC-CCI), Sensors,
19, 4285, https://doi.org/10.3390/s19194285, 2019. a, b, c, d, e
Sathyendranath, S., Platt, T., Kovač, Ž., Dingle, J., Jackson, T.,
Brewin, R. J. W., Franks, P., Marañón, E., Kulk, G., and Bouman,
H. A.: Reconciling models of primary production and photoacclimation
[Invited], Appl. Optics, 59, C100, https://doi.org/10.1364/ao.386252, 2020. a
Sathyendranath, S., Jackson, T., Brockmann, C., Brotas, V., Calton, B.,
Chuprin, A., Clements, O., Cipollini, P., Danne, O., Dingle, J., Donlon, C.,
Grant, M., Groom, S., Krasemann, H., Lavender, S., Mazeran, C., Mé́lin,
F., Mǘller, D., Steinmetz, F., Valente, A., Zǘhlke, M., Feldman,
G., Franz, B., Frouin, R., Werdell, J., and Platt, T.: ESA Ocean Colour
Climate Change Initiative (Ocean_Colour_cci): Version 5.0 Data, NERC EDS
Centre for Environmental Data Analysis,
https://doi.org/10.5285/1dbe7a109c0244aaad713e078fd3059a, 2021. a, b, c, d, e, f
Seegers, B. N., Stumpf, R. P., Schaeffer, B. A., Loftin, K. A., and Werdell,
P. J.: Performance metrics for the assessment of satellite data products: an
ocean color case study, Opt. Express, 26, 7404,
https://doi.org/10.1364/oe.26.007404, 2018. a, b
Sheldon, R. W., Prakash, A., and Sutcliffe Jr., W. H.: The size distribution of
particles in the ocean, Limnol. Oceanogr., 17, 327–340,
https://doi.org/10.4319/lo.1972.17.3.0327, 1972. a, b
Siegel, D. A., Behrenfeld, M. J., Maritorena, S., McClain, C. R., Antoine, D.,
Bailey, S. W., Bontempi, P. S., Boss, E. S., Dierssen, H. M., Doney, S. C.,
Eplee, R. E., Evans, R. H., Feldman, G. C., Fields, E., Franz, B. A., Kuring,
N. A., Mengelt, C., Nelson, N. B., Patt, F. S., Robinson, W. D., Sarmiento,
J. L., Swan, C. M., Werdell, P. J., Westberry, T. K., Wilding, J. G., and
Yoder, J. A.: Regional to global assessments of phytoplankton dynamics from
the SeaWiFS mission, Remote Sens. Environ., 135, 77–91,
https://doi.org/10.1016/j.rse.2013.03.025, 2013. a
Siegel, D. A., Buesseler, K. O., Doney, S. C., Sailley, S. F., Behrenfeld,
M. J., and Boyd, P. W.: Global assessment of ocean carbon export by
combining satellite observations and food-web models, Global Biogeochem.
Cy., 28, 181–196, https://doi.org/10.1002/2013GB004743, 2014. a, b
Siegel, D. A., Buesseler, K. O., Behrenfeld, M. J., Benitez-nelson, C. R.,
Boss, E., Brzezinski, M. A., Burd, A., Carlson, C. A., Asaro, E. A. D.,
Doney, S. C., Perry, M. J., Stanley, R. H. R., and Steinberg, D. K.:
Prediction of the Export and Fate of Global Ocean Net Primary Production :
The EXPORTS Science Plan, Front. Mar. Sci., 3, 1–10,
https://doi.org/10.3389/fmars.2016.00022, 2016. a, b, c
Siegel, D. A., Cetinić, I., Graff, J. R., Lee, C. M., Nelson, N., Perry,
M. J., Ramos, I. S., Steinberg, D. K., Buesseler, K., Hamme, R., Fassbender,
A. J., Nicholson, D., Omand, M. M., Robert, M., Thompson, A., Amaral, V.,
Behrenfeld, M., Benitez-Nelson, C., Bisson, K., Boss, E., Boyd, P. W.,
Brzezinski, M., Buck, K., Burd, A., Burns, S., Caprara, S., Carlson, C.,
Cassar, N., Close, H., D'Asaro, E., Durkin, C., Erickson, Z., Estapa, M. L.,
Fields, E., Fox, J., Freeman, S., Gifford, S., Gong, W., Gray, D., Guidi, L.,
Haëntjens, N., Halsey, K., Huot, Y., Hansell, D., Jenkins, B.,
Karp-Boss, L., Kramer, S., Lam, P., Lee, J. M., Maas, A., Marchal, O.,
Marchetti, A., McDonnell, A., McNair, H., Menden-Deuer, S., Morison, F.,
Niebergall, A. K., Passow, U., Popp, B., Potvin, G., Resplandy, L.,
Roca-Martí, M., Roesler, C., Rynearson, T., Traylor, S., Santoro, A.,
Seraphin, K. D., Sosik, H. M., Stamieszkin, K., Stephens, B., Tang, W., van
Mooy, B., Xiong, Y., and Zhang, X.: An operational overview of the EXport
processes in the ocean from RemoTe sensing (EXPORTS) northeast pacific field
deployment, Elementa, 9, 1–31, https://doi.org/10.1525/elementa.2020.00107, 2021. a
Slade, W. H. and Boss, E.: Spectral attenuation and backscattering as
indicators of average particle size, Appl. Optics, 54, 7264,
https://doi.org/10.1364/ao.54.007264, 2015. a
Stemmann, L. and Boss, E.: Plankton and Particle Size and Packaging: From
Determining Optical Properties to Driving the Biological Pump, Annu. Rev. Mar. Sci., 4, 263–290, https://doi.org/10.1146/annurev-marine-120710-100853,
2012. a
Stramski, D. and Kiefer, D. A.: Light scattering by microorganisms in the open
ocean, Prog. Oceanogr., 28, 343–383,
https://doi.org/10.1016/0079-6611(91)90032-H, 1991. a, b
Stramski, D., Bricaud, A., and Morel, A.: Modeling the inherent optical
properties of the ocean based on the detailed composition of the planktonic
community, Appl. Optics, 40, 2929, https://doi.org/10.1364/ao.40.002929, 2001. a
Stramski, D., Boss, E., Bogucki, D., and Voss, K. J.: The role of seawater
constituents in light backscattering in the ocean, Prog. Oceanogr.,
61, 27–56, https://doi.org/10.1016/j.pocean.2004.07.001, 2004. a, b, c, d
Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis, M. R.,
Röttgers, R., Sciandra, A., Stramska, M., Twardowski, M. S., Franz,
B. A., and Claustre, H.: Relationships between the surface concentration of
particulate organic carbon and optical properties in the eastern South
Pacific and eastern Atlantic Oceans, Biogeosciences, 5, 171–201,
https://doi.org/10.5194/bg-5-171-2008, 2008. a, b, c, d
Thomalla, S. J., Ogunkoya, A. G., Vichi, M., and Swart, S.: Using optical
sensors on gliders to estimate phytoplankton carbon concentrations and
chlorophyll-to-carbon ratios in the Southern Ocean, Front. Mar.
Sci., 4, 1–19, https://doi.org/10.3389/FMARS.2017.00034, 2017. a
Toole, D. A. and Siegel, D. A.: Modes and mechanisms of ocean color variability
in the Santa Barbara Channel, J. Geophys. Res.-Ocean., 106,
26985–27000, https://doi.org/10.1029/2000JC000371, 2001. a
Twardowski, M. S., Boss, E., Macdonald, J. B., Pegau, W. S., Barnard, A. H.,
and Zaneveld, J. R. V.: A model for estimating bulk refractive index from the
optical backscattering ratio and the implications for understanding particle
composition in case I and case II waters, J. Geophys. Res.-Ocean., 106, 14129–14142, https://doi.org/10.1029/2000jc000404, 2001. a
van de Hulst, H. C.: Light scattering by small particles, Dover
Publications, New York, ISBN 10 0486642283,
ISBN 13 9780486642284,
1981. a
Vidondo, B., Prairie, Y. T., Blanco, J. M., and Duarte, C. M.: Some aspects of
the analysis of size spectra in aquatic ecology, Limnol. Oceanogr.,
42, 184–192, https://doi.org/10.4319/lo.1997.42.1.0184, 1997. a
Werdell, P. J., Behrenfeld, M. J., Bontempi, P. S., Boss, E., Cairns, B.,
Davis, G. T., Franz, B. A., Gliese, U. B., Gorman, E. T., Hasekamp, O.,
Knobelspiesse, K. D., Mannino, A., Martins, J. V., McClain, C. R., Meister,
G., and Remer, L. A.: The plankton, aerosol, cloud, ocean ecosystem mission
status, science, advances, Bull. Am. Meteorol. Soc.,
100, 1775–1794, https://doi.org/10.1175/BAMS-D-18-0056.1, 2019.
a, b, c, d
Wessel, P. and Smith, W. H.: A global, self-consistent, hierarchical,
high-resolution shoreline database, J. Geophys. Res. B, 101, 8741–8743, https://doi.org/10.1029/96jb00104, 1996. a
West, G. B., Brown, J. H., and Enquist, B. J.: A general model for the origin
of allometric scaling laws in biology, Science, 276, 122–126,
https://doi.org/10.1126/science.276.5309.122, 1997. a
Woźniak, S. B. and Stramski, D.: Modeling the optical properties of mineral
particles suspended in seawater and their influence on ocean reflectance and
chlorophyll estimation from remote sensing algorithms, Appl. Opt., 43,
3489–3503, https://doi.org/10.1364/AO.43.003489, 2004. a
Zhang, X., Lewis, M., Lee, M., Johnson, B., and Korotaev, G.: The volume
scattering function of natural bubble populations, Limnol.
Oceanogr., 47, 1273–1282, https://doi.org/10.4319/lo.2002.47.5.1273, 2002. a
Zhang, X., Hu, L., and He, M.-X.: Scattering by pure seawater: Effect of
salinity, Opt. Express, 17, 5698–5710, https://doi.org/10.1364/OE.17.005698, 2009. a
Zhang, X., Twardowski, M., and Lewis, M.: Retrieving composition and sizes of
oceanic particle subpopulations from the volume scattering function, Appl.
Opt., 50, 1240–1259, https://doi.org/10.1364/AO.50.001240, 2011. a
Zhang, X., Gray, D. J., Huot, Y., You, Y., and Bi, L.: Comparison of optically
derived particle size distributions: scattering over the full angular range
versus diffraction at near forward angles, Appl. Opt., 51, 5085–5099,
https://doi.org/10.1364/AO.51.005085, 2012. a
Zhang, X., Hu, L., Xiong, Y., Huot, Y., and Gray, D.: Experimental Estimates of
Optical Backscattering Associated With Submicron Particles in Clear Oceanic
Waters, Geophys. Res. Lett., 47, e2020GL087100,
https://doi.org/10.1029/2020GL087100,2020. a, b
Short summary
We present a remote sensing algorithm to estimate the size distribution of particles suspended in natural near-surface ocean water using ocean color data. The algorithm can be used to estimate the abundance and carbon content of phytoplankton, photosynthesizing microorganisms that are at the basis of the marine food web and play an important role in Earth’s carbon cycle and climate. A merged, multi-sensor satellite data set and the model scientific code are provided.
We present a remote sensing algorithm to estimate the size distribution of particles suspended...