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S1 Assessment and propagation of uncertainties

The Monte Carlo simulations (N=3000) of the two-population Mie scattering model were used to estimate uncertainty of the
retrieved PSD parameters that is due to assumptions of the values of the model input parameters. The input distributions from
which the varying input parameters were sampled for the Monte Carlo simulations are shown in main text Tables 1 and 2. This
approach resulted in 3000 different realizations of modeled spectral bbp, for each ξ input value. The median of all realizations is
used as the SAM end-members, and Kruskal-Wallis analysis of variance is used to determine class similarity (where each input
ξ value represents a class). This analysis determined, for each class, the neighboring classes that are statistically not different
from it (at the 5% significance level) in terms of spectral angle. This gave a range of possible retrieved ξ values. This range is
not always symmetric, but it is approximated as a symmetric 95% confidence interval (CI) and converted to standard deviation
for use in subsequent analytical error propagation. The standard deviation of the corresponding N0 parameter across all similar
classes and all Monte Carlo realizations is used as the uncertainty estimate for N0.

The uncertainties of the PSD parameters and allometric coefficients were used with the first order derivatives of the derived
products (absolute and fractional size-partitioned phyto C) with respect to those variables to analytically propagate the un-
certainty estimate to the derived products. Phyto C absolute values are functions of both PSD parameters and both allometric
coefficients, whereas the fractional values are functions only of ξ and the b allometric coefficient because a ratio of phyto
C values is taken (Eq. 5). We use the allometric coefficients obtained by Roy et al. (2017), who use information from three
different regressions presented in Menden-Deuer and Lessard (2000). The weighted mean of the confidence intervals of the
Menden-Deuer and Lessard (2000) allometric coefficients was used. Uncertainties were also propagated analytically to the
composite imagery (monthly and overall climatologies) provided in the OC-CCI-derived PSD/phyto C data set (Kostadinov
et al. (2022b)). For more details see the scientific code used to do the uncertainty propagation (Kostadinov et al. (2022a)), as
well as Kostadinov et al. (2016) and their Supplement.

S2 Modeled Backscattering Efficiencies

Example output phytoplankton Qbb are plotted in Fig. S2A. For a fixed diameter, wavelength can significantly affect the
values, especially at intermediate diameters. Coated sphere scattering patterns also exhibit spikes, the influence of which on
computed IOPs is minimized here by having a high sampling frequency in diameter, D. Figure S2A also shows the Qbb curves
corresponding to the Gladstone-Dale (GD) equivalent homogeneous spheres. For most diameters, homogeneous spheres exhibit
significantly lower backscattering efficiencies, which is consistent with prior studies (e.g. Bernard et al. (2009); Quirantes and
Bernard (2006); Organelli et al. (2018)). This indicates that the contribution of phytoplankton to backscattering in the global
ocean has likely been underestimated in previous studies (see Dall’Olmo et al. (2009)), in which homogeneous spheres were
assumed for modeling of phytoplankton (e.g. Stramski and Kiefer (1991); Kostadinov et al. (2009)).

The difference between modeled phytoplankton and NAP Qbb curves is shown in Fig. S2B. Unlike panel A, the curves here
are band-averaged (see main text Sec. 2.2) and the median across all Monte Carlo runs is shown as an example. Note that NAP
are modeled over a wider range of diameters as compared with phytoplankton. Phytoplankton represented as coated spheres
still exhibit higher efficiencies than homogeneous NAP, but mostly only over the 1 to 10 µm diameter range. The difference
here is driven by the choices of Mie inputs for phytoplankton vs. NAP. In particular, NAP are allowed to have a wider range of
real RIs, accommodating possible contributions by minerogenic particles. Purely organic detrital NAP would have lower Qbb

than is shown in Supplementary Fig. S2B.

S3 Cumulative Backscattering Analysis

Here, we focus on investigating what particle size ranges contribute to the backscattering signal, which is investigated via
cumulative bbp plots (Fig. S4). Cumulative modeled bbp curves for phytoplankton (Fig. S4A, 443 and 560 nm shown) indicate
that, as expected, the higher the PSD slope, the larger fraction of the phytoplankton bbp signal is due to the smallest phyto-
plankton cells. Generally, the 443 and 560 nm bands behave similarly, however, differences exist, e.g. at PSD slopes 3.5 and
4.0; specifically, at ξ=4.0, ≈60% of the signal is due to phytoplankton cells with D < 3 µm at 560 nm, whereas this value rises
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to ≈85% at 443 nm. A sigmoidal-like shape of this curve indicates that asymptotic values tend to be reached at low diameters
and high diameters, i.e. most of the bbp signal is captured within the range of D values used. Note that the size of the smallest
photoautotroph - Prochlorococcus ( ≈ 0.5 µm in diameter (Morel et al. (1993)) informs the choice of the lower diameter limit
used for phytoplankton (Table 1).

Cumulative NAP bbp for modeled spectra (Supplement Fig. S4B) indicates that for most PSD slopes, the size range used
captures most of the signal, if NAP can be reasonably represented by homogeneous spheres. Importantly, for ξ=4.0, most of
the signal comes from particles with D between 0.1 and 1.0 µm, and these smaller particles are also essential for reproducing
modeled spectral shapes in the same range as observed satellite bbp spectra. Coated spheres representing phytoplankton within
their size range alone are not able to do so (not shown). This is an important observation, illustrating the need to better
understand the nature of sub-micron particles (e.g. Stramski et al. (2004)). The difference between coated spheres and their
Gladstone-Dale (GD) homogeneous equivalents in terms of cumulative bbp (Fig. S4C) are a function of the differences in Qbb

curve shapes (Fig. S2A) and the PSD slope used. At intermediate values of the PSD slope such as 4.0, ≈30% of the signal is
due to particles smaller than D = 1.0 µm in the case of coated spheres, whereas almost 60% of the signal is due to particles
smaller than this threshold in the case of homogeneous spheres.

S4 PSD Validation Results: Further Discussion by Location

The PSD validation is briefly analyzed here further by location, taking a look first at all data except the in-line LISST data
from the NAAMES and EXPORTS cruises (Fig. S6A and B), and then the EXPORTS and NAAMES cruises in-line LISST
data alone (Fig. S6C and D).

Fig. S6A illustrates that data from two specific locations are numerous and also likely drive the regression to a large degree
- 1) the Plumes and Blooms (PnB) Project LISST data, which represents a coastal site, namely the Santa Barbara Channel in
California, USA (SBC), and 2) the Equatorial Pacific (EqPac). While at SBC the satellite data underestimates PSD slopes, it
overestimates them at EqPac. Data from these locations tend to be clusters around specific ξ values, and these span a larger
range in the satellite data, consistent with higher oligotrophy in the EqPac than in the SBC; the same is observed in the in-situ
data, but to a lesser degree. Data from other various locations tend to span a wider in-situ range, which is captured by the
satellite retrievals, albeit with substantial noise. With regards to N0, inspection of the location-coded plot (Fig. S6B) indicates
that a lot of the underestimated points come from the Equatorial Pacific clustered around in-situ N0 = 1015.75 m−4; many
overestimated points are from the SBC.

Validation with the NAAMES and EXPORTS LISST data (Fig. S6C and D) adds a very significant number of matched-up
points, compared to all the rest of the data, illustrating the value of in-line data collection. Validation regression slopes for these
figures are quite similar to those for all the rest of the validation data, indicating a tendency for the satellite data to exhibit larger
ranges and to overestimate values at the high end, and underestimate values at the low end, for both ξ and N0. Importantly,
both regressions for the EXPORTS and NAAMES data appear to be driven by a cluster of points that is separate from the main
another cluster of data. These main clusters are quite noisy and do not have a very large dynamic range. We note that these
data come from the NAAMES 4 cruise for both ξ and N0, and may not necessarily represent the same points. Importantly,
the NAAMES 4 cruise is the only one of the four cruises that samples lower latitude, oligotrophic, open- ocean waters (Fig.
S5B). This illustrates a limitation of the in-situ validation data - that its spatio-temporal coverage might be insufficient to
representatively sample the full dynamic range of the PSD parameters and/or to capture their global overall relationship.

S5 Details of Empirical Tuning Derivation

This section describes the details of the derivation of the NO empirical tuning method. Monthly OC-CCI v5.0 imagery for
years 2004 and 2015 (48 total images, 24 each for Chl and POC) were used to compute the PSD-derived Chl and POC. These
values were then compared on a per-pixel basis against the standard OC-CCI v5.0 Chl product, and against the Stramski et al.
(2008) POC retrieval (termed the standard values here). These comparisons were used in an optimization procedure that finds
the best linear regression correction of the decimal logarithm of N0. The cost function used was the average absolute value of
the decimal logarithm of the ratio between the PSD-based and the standard values, summing the Chl and POC contributions and
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weighting them equally. This cost function is minimal when both Chl and POC standard and PSD-based retrievals are the same
everywhere. The optimization was performed using the Statistics and MachineLearning® Toolbox of MATLAB®. A hybrid
optimization technique was implemented, using genetic algorithms (ga function) and the fmincon function. The optimization
for each month returns one global value of linear slope and intercept to be applied to the original, un-tuned N0 retrievals, in
order to obtain the tuned retrievals (retrievals without tuning applied are referred to as "original"). The median of the 48 tuning
slopes and intercepts thus obtained were subsequently used to adjust N0 in log10 space as follows:

S6 Comparison with KSM09 Look-Up Tables

When the modeled bbp spectra (main text Fig. 2A) are used to design look-up tables (LUTs) as in KSM09 (Kostadinov et al.,
2009), one can compare the KSM09 algorithm to the model developed here. Results indicate that the LUTs relating the bbp
slope to the PSD slope are quite similar, differing by ≈0.2 (in PSD slope) at the most, when ξ values are from 3.5 to 4.0 (not
shown). The LUTs practically coincide for very low and very high PSD slopes. LUTs of the new algorithm for the various
sensors are very similar to each other. The LUTs linking the bbp slope to the N0 parameter for KSM09 and the new algorithm
are also similar to first order (in logarithmic space). Importantly, the new algorithm LUTs (also nearly coinciding for the various
sensors) indicate higher backscattering per particle for low bbp slope values below ≈0.75 (typical for more eutrophic waters),
and they indicate lower backscattering per particle for steeper backscattering spectral slopes (typical for more oligotrophic
conditions). This can lead to up to a factor of ≈2 difference in retrieved N0, i.e. in particle concentrations retrieved. This LUT
difference leads to a reduction of the apparent range exaggeration of retrieved phyto C globally (low values in the subtropical
gyres, and high values in the eutrophic areas). It is this range exaggeration that led to the need for the empirical tuning in
Kostadinov et al. (2016). While the need for this tuning seems to persist for the new algorithm and is also implemented here
(Sec. S5), validation and comparisons results here suggest that for some variables and algorithms being compared with, the
original version of the novel PSD/phyto C algorithm performs better.
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S7 Supplement Figures

Figure S1. EAP-based hyperspectral complex refractive index (RI) inputs to the coated spheres (representing phytoplankton cells) code,
given relative to the index of refraction of seawater: A) real RI of the coat as chloroplast, B) real RI of the core as cytoplasm, C) imaginary RI
of the coat as chloroplast, and D) imaginary RI of the core as cytoplasm. In panel A, the mean and median curves almost coincide. For panels
A-C, the statistics of the input distributions used in the Monte Carlo simulation are given, namely mean, median, mean plus and minus one
standard deviation, and the minimum and maximum values. Panels A and B exhibit spectral dependencies according to the Kramers-Kronig
relations.
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Figure S2. (A) Example backscattering efficiencies, Qbb, for phytoplankton modeled as coated spheres. A single Aden-Kerker computation
run is shown, using the median inputs from the Monte Carlo simulations. The coated sphere results for three different wavelengths (corre-
sponding to OLCI nominal bands and OC-CCI v5.0 data set bands; color coded as in legend) are shown as solids lines. The corresponding
Gladstone-Dale (GD) - equivalent homogeneous sphere results are shown in dash-dot lines. (B) Band-averaged backscattering efficiencies,
Qbb(λ), for phytoplankton modeled as coated spheres (solid lines) and NAP modeled as homogeneous spheres (dash-dot lines). The median
values across all Monte Carlo simulation runs are shown.
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Figure S3. Modeled hyperspectral particulate absorption coefficient by (A) phytoplankton, aph(λ), using EAP-based coated spheres scat-
tering computations, and (B) non-algal particles (NAP), ap(λ), modeled as homogeneous spheres, as a function of the input power-law PSD
slope (color-coded solid lines, as in legend). All spectra are shown normalized to the respective values at 555 nm.

S6



Figure S4. Cumulative bbp(443) (solid lines) and bbp(560) (dash-dot lines) for phytoplankton (A) and NAP (B) as a function of PSD slope
ξ (color coded as in legend). For each particle diameter (x-axes) the plots show the percentage of backscattering due to particles smaller
than or equal to that diameter (y-axes). (C) Cumulative bbp(443) for phytoplankton modeled as coated spheres (solid lines) and for the
corresponding Gladstone-Dale (GD) equivalent homogeneous spheres (dash-dot lines). Curve pairs are shown for three different PSD slopes
ξ, namely 2.5, 4.0 and 6.0 (color coded as in legend). All panels display results of the single forward illustrative scattering calculation run
which uses medians of the Monte Carlo varied inputs.
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Figure S5. A) Locations of in-situ PSD data used in algorithm validation, other than those from the EXPORTS North Atlantic (NA),
EXPORTS North Pacific (NP) and NAAMES 3 and NAAMES 4 cruises. Different regions are shown using symbols as in the legend, in
which acronyms are as follows - Plumes and Blooms Project (PnB), Equatorial Pacific (EqPac), Equatorial Indian Ocean (EqIO), Southern
Ocean (SO), CA coastal areas excluding PnB (CA coastal), Northern Hemisphere higher latitudes (NH), and Southern Atlantic (SA). B) In-
line LISST 100-X (Sequoia Scientfic®) PSD data used in algorithm validation, from the EXPORTS North Atlantic (NA), EXPORTS North
Pacific (NP) and NAAMES 3 and NAAMES 4 cruises (as in legend). C) Locations of in-situ data used in validation match-ups for particulate
organic carbon (POC, blue triangle), and pico-phytoplankton carbon (pico C, yellow ’x’). In all three panels, only locations for which a valid
match-up is available (and used in the validation presented here) are shown.
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Figure S6. (A) The same validation regression as in main text Fig. 8A, but only data not coming from the EXPORTS and NAAMES cruises
in-line LISST 100-X (Sequoia Scientfic®) measurements are plotted, and the points are color and symbol coded according to geographic
area, as follows: Plumes and Blooms project (e.g. Toole and Siegel (2001); Kostadinov et al. (2007)) (PnB, green ’x’); Equatorial Pacific
(EqPac, red circles); Equatorial Indian Ocean (EqIO, red ’+’); Southern Ocean (SO, black ’*’); California (CA) coastal area (purple squares);
higher latitude Northern Hemisphere points (> 30◦ latitude, NH, cyan diamonds), and South Atlantic (SA, black triangles); (B) same as in
panel A, but for the N0 parameter (axes in log10 space). (C) Same as in panel A, but for the in-line LISST measurements from the EXPORTS
and NAAMES cruises, as in the legend (NA = North Atlantic, NP = North Pacific). Points are color-coded according to matched-up satellite
OC-CCI v5.0 chlorophyll-a values, as in the colorbar (log-10 scale in mg m−3). (D) Same as in panel C, but for the N0 parameter (axes in
log10 space).
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Figure S7. (A) The N0 parameter (m−4, mapped in log10 space) after tuning has been applied (main text Eq. 7) in order to achieve more
realistic global estimates of POC and Chl via the PSD model presented here; (B) A multiplicative tuning factor (dimensionless) to be applied
to absolute carbon (and POC and Chl) estimates from the PSD-based algorithm; the factor is applied in linear space, but it is plotted in log10
space, i.e. a map value of 0 indicates a tuning factor of 1, meaning that the tuned and original values are the same. Both panels use the
monthly OC-CCI v5.0 data for May 2015 as input.
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Figure S8. (A) Original PSD-based phyto C, same as main text Fig. 4A; (B) Tuned PSD-based phyto C; (C) The Roy et al. (2017) absorption-
based and PSD-based phyto C retrieval, and (D) the Graff et al. (2015) phyto C retrieval, based on a scaling of bbp. All three panels use the
monthly OC-CCI v5.0 data for May 2015 as input. Note the different color scale of panels A and C vs. panels B and D.
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Figure S9. A 2D histogram of the PSD slope ξ vs. the N0 parameter. The overall climatological PSD parameters images (Kostadinov et al.,
2022b) based on the OC-CCI v5.0 data set (Sathyendranath et al., 2021) were used for these histograms, in sinusoidal projection. Panel A
uses the original (not tuned) N0 parameter, and panel B uses the tuned N0. The climatological satellite data histogram is overlaid with a
scatter plot of the matched-up in-situ data used in the validation. Type II (reduced major axis, RMA) regression lines through both satellite
and in-situ data are shown, with regression statistics printed. The satellite data regression line and statistics are red, with N = 16,833,792 and
the line is with a negative slope. The in-situ data regression line is with a positive slope and black, and its associated statistics is printed in
black, with N = 911.
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Figure S10. 2D histograms of OC-CCI v5.0 (Sathyendranath et al., 2021) Chlorophyll (Chl) vs. (A) the PSD slope ξ, (B) the tuned N0

parameter, (C) PSD-based total phytoplankton carbon (phyto C) (tuned), and (D) the Stramski et al. (2008) POC. The May 2015 images
based on the OC-CCI v5.0 data set were used for these histograms, in sinusoidal projection. Type II (reduced major axis, RMA) regression
lines through the satellite data are shown, with regression statistics printed.
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