Articles | Volume 19, issue 6
https://doi.org/10.5194/os-19-1687-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-1687-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling the interannual variability in Maipo and Rapel river plumes off central Chile
Julio Salcedo-Castro
CORRESPONDING AUTHOR
Institute for Marine and Antarctic Studies, College of Sciences and Engineering, University of Tasmania, Hobart, Australia
School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology, Brisbane, Australia
Sino-Australian Research Consortium for Coastal Management, School of Science, UNSW Canberra, Canberra, ACT, Australia
Antonio Olita
National Research Council – Institute of Atmospheric Sciences and Climate, Cagliari, Italy
Freddy Saavedra
Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
Laboratorio de Teledetección Ambiental (TeleAmb), Universidad de Playa Ancha, Valparaíso, Chile
HUB Ambiental, Universidad de Playa Ancha, Valparaíso, Chile
Gonzalo S. Saldías
Departamento de Física, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, Chile
Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, Chile
Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción, Chile
Raúl C. Cruz-Gómez
Departamento de Física, Universidad de Guadalajara, Blvd. Marcelino García Barragín y Calzada Olímpica C.P. 44840, Guadalajara, Jalisco, Mexico
Cristian D. De la Torre Martínez
Departamento de Física, Universidad de Guadalajara, Blvd. Marcelino García Barragín y Calzada Olímpica C.P. 44840, Guadalajara, Jalisco, Mexico
Related authors
No articles found.
Macarena Díaz-Astudillo, Manuel I. Castillo, Pedro A. Figueroa, Leonardo R. Castro, Ramiro Riquelme-Bugueño, Iván Pérez-Santos, Oscar Pizarro, and Gonzalo S. Saldías
Ocean Sci., 21, 1833–1848, https://doi.org/10.5194/os-21-1833-2025, https://doi.org/10.5194/os-21-1833-2025, 2025
Short summary
Short summary
Submarine canyons are known hotspots of marine productivity and biodiversity, but we do not fully understand why. We studied a submarine canyon located in central Chile and found that it is a highly dynamic environment in both space and time. We think that the alternating currents and the contrasting distribution of zooplankton within the canyon might interact to promote zooplankton retention. Our results help to explain why submarine canyons host such high zooplankton diversity and abundance.
Pedro A. Figueroa, Gonzalo S. Saldías, and Susan E. Allen
Ocean Sci., 21, 643–659, https://doi.org/10.5194/os-21-643-2025, https://doi.org/10.5194/os-21-643-2025, 2025
Short summary
Short summary
Submarine canyons are topographic features found along the continental slope worldwide. Here we use numerical simulations to study how a submarine canyon influences the circulation near the coast when winds moving poleward influence the region. Our results show that submarine canyons modify the circulation near the coast, causing strong velocities perpendicular to the coast. These changes can trap particles inside the canyon, an important mechanism to explain its role as a biological hotspot.
Federico Angel Velázquez-Muñoz, Raúl Candelario Cruz-Gómez, and Cesar Monzon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3403, https://doi.org/10.5194/egusphere-2024-3403, 2024
Preprint archived
Short summary
Short summary
We identify the Mexican Coastal Current interaction with coastline using sea level anomaly and derived geostrophic velocities, finding that an average width of 95 km and an average speed of 0.3 m/s width seasonal variability. Numerical modeling proves that interaction of coastal current with the coastline generates ocean eddies in some places that form a wide concavity. These eddies are formed while the current is present getting intense and detaching from the coast until the current weakens.
Alexis Caro, Thomas Condom, Antoine Rabatel, Nicolas Champollion, Nicolás García, and Freddy Saavedra
The Cryosphere, 18, 2487–2507, https://doi.org/10.5194/tc-18-2487-2024, https://doi.org/10.5194/tc-18-2487-2024, 2024
Short summary
Short summary
The glacier runoff changes are still unknown in most of the Andean catchments, thereby increasing uncertainties in estimating water availability, especially during the dry season. Here, we simulate glacier evolution and related glacier runoff changes across the Andes between 2000 and 2019. Our results indicate a glacier reduction in 93 % of the catchments, leading to a 12 % increase in glacier melt. These results can be downloaded and integrated with discharge measurements in each catchment.
Cited articles
Abrosimova, A., Zhabin, I., and Dubina, V.: Influence of the Amur River runoff on the hydrological conditions of the Amur Liman and Sakhalin Bay (Sea of Okhotsk) during the spring-summer flood, Tech. rep., V. I. Il'ichev Pacific Oceanological Institute, FEB RAS, Vladivostok, Russia, https://doi.org/10.3103/S1068373910040084, 2009. a
Aguirre, C., Pizarro, Ó., Strub, P. T., Garreaud, R., and Barth, J. A.: Seasonal dynamics of the near-surface alongshore flow off central Chile, J. Geophys. Res.-Oceans, 117, C01006, https://doi.org/10.1029/2011JC007379, 2012. a, b, c, d
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018. a
Alvarez-Garreton, C., Boisier, J. P., Garreaud, R., Seibert, J., and Vis, M.: Progressive water deficits during multiyear droughts in basins with long hydrological memory in Chile, Hydrol. Earth Syst. Sci., 25, 429–446, https://doi.org/10.5194/hess-25-429-2021, 2021. a
Archetti, R. and Mancini, M.: Freshwater dispersion plume in the sea: Dynamic description and case study, in: Hydrodynamics – Natural Water Bodies, edited by: Schulz, H. E., Simoes, A. L. A., and Lobosco, R. J., IntechOpen, London, https://doi.org/10.5772/28390, 2012. a
Bai, Y., He, X., Pan, D., Zhu, Q., Lei, H., Tao, B., and Hao, Z.: The extremely high concentration of suspended particulate matter in Changjiang Estuary detected by MERIS data, in: Remote Sensing of the Coastal Ocean, Land, and Atmosphere Environment, 1–14 October 2010, Incheon, Republic of Korea, vol. 7858, p. 78581D, SPIE, https://doi.org/10.1117/12.869632, 2010. a
Bainbridge, Z. T., Wolanski, E., Álvarez-Romero, J. G., Lewis, S. E., and Brodie, J. E.: Fine sediment and nutrient dynamics related to particle size and floc formation in a Burdekin River flood plume, Australia, Mar. Pollut. Bull., 65, 236–248, https://doi.org/10.1016/j.marpolbul.2012.01.043, 2012. a, b
Bao, S., Wang, H., Zhang, R., Yan, H., Chen, J., and Bai, C.: Application of Phenomena-Resolving Assessment Methods to Satellite Sea Surface Salinity Products, Earth Space Sci., 8, 1–14, https://doi.org/10.1029/2020EA001410, 2021. a
Basdurak, N. and Largier, J.: Wind Effects on Small-Scale River and Creek Plumes, J. Geophys. Res.-Oceans, 128, e2021JC018381, https://doi.org/10.1029/2021JC018381, 2023. a
Berghuijs, W. R., Woods, R. A., and Hrachowitz, M.: A precipitation shift from snow towards rain leads to a decrease in streamflow, Nat. Clim. Change, 4, 583–586, https://doi.org/10.1038/nclimate2246, 2014. a
Blaas, M., Dong, C., Marchesiello, P., McWilliams, J. C., and Stolzenbach, K. D.: Sediment-transport modeling on Southern Californian shelves: A ROMS case study, Cont. Shelf Res., 27, 832–853, https://doi.org/10.1016/j.csr.2006.12.003, 2007. a
Bloodsworth, K. H., Tilburg, C. E., and Yund, P. O.: Influence of a River Plume on the Distribution of Brachyuran Crab and Mytilid Bivalve Larvae in Saco Bay, Maine, Estuar. Coast., 38, 1951–1964, https://doi.org/10.1007/s12237-015-9951-5, 2015. a, b
Burla, M., Baptista, A. M., Zhang, Y., and Frolov, S.: Seasonal and interannual variability of the Columbia River plume: A perspective enabled by multiyear simulation databases, J. Geophys. Res., 115, C00B16, https://doi.org/10.1029/2008JC004964, 2010. a
Carreon-Martinez, L. B., Wellband, K. W., Johnson, T. B., Ludsin, S. A., and Heath, D. D.: Novel molecular approach demonstrates that turbid river plumes reduce predation mortality on larval fish, Mol. Ecol., 23, 5366–5377, https://doi.org/10.1111/mec.12927, 2014. a
Chakraborty, S. and Lohrenz, S. E.: Phytoplankton community structure in the river-influenced continental margin of the northern Gulf of Mexico, Mar. Ecol. Prog. Ser., 521, 31–47, https://doi.org/10.3354/meps11107, 2015. a
Chao, S.-Y.: River-forced estuarine plumes, J. Phys. Oceanogr., 18, 72–88, 1988. a
Chen, F., MacDonald, D. G., and Hetland, R. D.: Lateral spreading of a near-field river plume: Observations and numerical simulations, J. Geophys. Res.-Oceans, 114, C07013, https://doi.org/10.1029/2008JC004893, 2009. a
Chen, Z., Gong, W., Cai, H., Chen, Y., and Zhang, H.: Dispersal of the Pearl River plume over continental shelf in summer, Estuar. Coast. Shelf S., 194, 252–262, https://doi.org/10.1016/j.ecss.2017.06.025, 2017a. a, b
Chen, Z., Pan, J., Jiang, Y., and Lin, H.: Far-reaching transport of Pearl River plume water by upwelling jet in the northeastern South China Sea, J. Marine Syst., 173, 60–69, https://doi.org/10.1016/j.jmarsys.2017.04.008, 2017b. a
Choi, B. J. and Wilkin, J. L.: The effect of wind on the dispersal of the Hudson River plume, J. Phys. Oceanogr., 37, 1878–1897, https://doi.org/10.1175/JPO3081.1, 2007. a
Clark, J. B. and Mannino, A.: The Impacts of Freshwater Input and Surface Wind Velocity on the Strength and Extent of a Large High Latitude River Plume, Front. Mar. Sci., 8, 793217, https://doi.org/10.3389/fmars.2021.793217, 2022. a
Cobb, M., Keen, T. R., and Walker, N. D.: Modeling the circulation of the Atchafalaya Bay system. Part 2: River plume dynamics during cold fronts, J. Coastal Res., 24, 1048–1062, https://doi.org/10.2112/07-0879.1, 2008. a
Debreu, L., Marchesiello, P., Penven, P., and Cambon, G.: Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation, Ocean Model., 49–50, 1–21, https://doi.org/10.1016/j.ocemod.2012.03.003, 2012. a
Delpey, M. T., Ardhuin, F., Otheguy, P., and Jouon, A.: Effects of waves on coastal water dispersion in a small estuarine bay, J. Geophys. Res.-Oceans, 119, 70–86, https://doi.org/10.1002/2013JC009466, 2014. a
Devlin, M. J., Petus, C., da Silva, E., Tracey, D., Wolff, N. H., Waterhouse, J., and Brodie, J.: Water quality and river plume monitoring in the Great Barrier Reef: An overview of methods based on ocean colour satellite data, Remote Sens.-Basel, 7, 12909–12941, https://doi.org/10.3390/rs71012909, 2015. a
Döll, P. and Schmied, H. M.: How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis, Environ. Res. Lett., 7, 014037, https://doi.org/10.1088/1748-9326/7/1/014037, 2012. a
Dong, L., Su, J., Ah Wong, L., Cao, Z., and Chen, J. C.: Seasonal variation and dynamics of the Pearl River plume, Cont. Shelf Res., 24, 1761–1777, https://doi.org/10.1016/j.csr.2004.06.006, 2004. a
D'sa, E. J. and Miller, R. L.: Bio-optical properties in waters influenced by the Mississippi River during low flow conditions, Remote Sens. Environ.t, 84, 538–549, 2003. a
Emery, W. J. and Thomson, R. E.: Data Analysis Methods in Physical Oceanography, 2nd edn., Elsevier, Amsterdam, ISBN 0-12-387782-2, 978-0-12-387782-6, 2004. a
Falcieri, F. M., Benetazzo, A., Sclavo, M., Russo, A., and Carniel, S.: Po River plume pattern variability investigated from model data, Cont. Shelf Res., 87, 84–95, https://doi.org/10.1016/j.csr.2013.11.001, 2014. a, b
Fan, Y., Zhang, S., Du, X., Wang, G., Yu, S., Dou, S., Chen, S., Ji, H., Li, P., and Liu, F.: The effects of flow pulses on river plumes in the Yellow River Estuary, in spring, J. Hydroinform., 00, 1–15, https://doi.org/10.2166/hydro.2022.049, 2022. a
Fernández-Nóvoa, D., Mendes, R., DeCastro, M., Dias, J. M., Sánchez-Arcilla, A., and Gómez-Gesteira, M.: Analysis of the influence of river discharge and wind on the Ebro turbid plume using MODIS-Aqua and MODIS-Terra data, J. Marine Syst., 142, 40–46, https://doi.org/10.1016/j.jmarsys.2014.09.009, 2015. a, b
Fiedler, P. C. and Laurs, R. M.: Variability of the Columbia River plume observed in visible and infrared satellite imagery, Int J. Remote Sens., 11, 999–1010, 1990. a
Flores, R. P., Williams, M. E., and Horner-Devine, A. R.: River Plume Modulation by Infragravity Wave Forcing, Geophys. Res. Lett., 49, e2021GL097467, https://doi.org/10.1029/2021GL097467, 2022. a, b, c, d
Fong, D. A. and Rockwell Geyer, W.: Response of a river plume during an upwelling favorable wind event, J. Geophys. Res.-Oceans, 106, 1067–1084, https://doi.org/10.1029/2000JC900134, 2001. a
Forrest, B. M., Gillespie, P. A., Cornelisen, C. D., and Rogers, K. M.: Multiple indicators reveal river plume influence on sediments and benthos in a New Zealand coastal embayment, New Zeal. J. Mar. Fresh., 41, 13–24, 2007. a
Freeman, N. M. and Lovenduski, N. S.: Mapping the Antarctic Polar Front: weekly realizations from 2002 to 2014, Earth Syst. Sci. Data, 8, 191–198, https://doi.org/10.5194/essd-8-191-2016, 2016. a
Fulton, D. P.: Modeling the Columbia River Plume on the Oregon Shelf during Summer Upwelling, Tech. Rep., Cooperative Institute for Oceanographic Satellite Studies, 14 p., 2007. a
García Berdeal, I., Hickey, B. M., and Kawase, M.: Influence of wind stress and ambient flow on a high discharge river plume, J. Geophys. Res.-Oceans, 107, 3130, https://doi.org/10.1029/2001jc000932, 2002. a
Garreaud, R. D. and Falvey, M.: The coastal winds off western subtropical South America in future climate scenarios, Int. J. Climatol., 29, 543–554, https://doi.org/10.1002/joc.1716, 2009. a
Hernandez, D., Mendoza, P. A., Boisier, J. P., and Ricchetti, F.: Hydrologic Sensitivities and ENSO Variability Across Hydrological Regimes in Central Chile (28∘–41∘ S), Water Resour. Res., 58, e2021WR031860, https://doi.org/10.1029/2021wr031860, 2022. a, b
Hernández-Miranda, E., Palma, A. T., and Ojeda, F. P.: Larval fish assemblages in nearshore coastal waters off central Chile: Temporal and spatial patterns, Estuar. Coast. Shelf S., 56, 1075–1092, https://doi.org/10.1016/S0272-7714(02)00308-6, 2003. a
Hetland, R. D.: Relating river plume structure to vertical mixing, J. Phys. Oceanogr., 35, 1667–1688, 2005. a
Hetland, R. D.: The effects of mixing and spreading on density in near-field river plumes, Dyn. Atmos. Oceans, 49, 37–53, https://doi.org/10.1016/j.dynatmoce.2008.11.003, 2010. a
Hickey, B., Geier, S., Kachel, N., and MacFadyen, A.: A bi-directional river plume: The Columbia in summer, Cont. Shelf Res., 25, 1631–1656, https://doi.org/10.1016/j.csr.2005.04.010, 2005. a, b
Hilt, M., Auclair, F., Benshila, R., Bordois, L., Capet, X., Debreu, L., Dumas, F., Jullien, S., Lemarié, F., Marchesiello, P., Nguyen, C., and Roblou, L.: Numerical modelling of hydraulic control, solitary waves and primary instabilities in the Strait of Gibraltar, Ocean Model., 151, 101642, https://doi.org/10.1016/j.ocemod.2020.101642, 2020. a
Horner-Devine, A. R., Hetland, R. D., and MacDonald, D. G.: Mixing and transport in coastal river plumes, 47, 569–594, https://doi.org/10.1146/annurev-fluid-010313-141408, 2015. a, b
Kudela, R. M. and Peterson, T. D.: Influence of a buoyant river plume on phytoplankton nutrient dynamics: What controls standing stocks and productivity?, J. Geophys. Res.-Oceans, 114, C00B11, https://doi.org/10.1029/2008JC004913, 2009. a
Lentz, S. J. and Largier, J.: The influence of wind forcing on the Chesapeake Bay buoyant coastal current, J. Phys. Oceanogr., 36, 1305–1316, 2006. a
Letelier, J., Pizarro, O., and Nuñez, S.: Seasonal variability of coastal upwelling and the upwelling front off central Chile, J. Geophys. Res.-Oceans, 114, C12009, https://doi.org/10.1029/2008JC005171, 2009. a
Liu, W. T., Tang, W., and Polito, P. S.: NASA scatterometer provides global ocean-surface wind fields with more structures than numerical weather prediction, Geophys. Res. Lett., 25, 761, https://doi.org/10.1029/98GL00544, 1998. a
Mallin, M. A., Cahoon, L. B., and Durako, M. J.: Contrasting food-web support bases for adjoining river-influenced and non-river influenced continental shelf ecosystems, Estuar. Coast. Shelf S., 62, 55–62, https://doi.org/10.1016/j.ecss.2004.08.006, 2005. a
Martínez, C., Contreras-López, M., Winckler, P., Hidalgo, H., Godoy, E., and Agredano, R.: Coastal erosion in central Chile: A new hazard?, Ocean Coast Manage., 156, 141–155, https://doi.org/10.1016/j.ocecoaman.2017.07.011, 2018. a, b
Martínez, C., Grez, P. W., Martín, R. A., Acuña, C. E., Torres, I., and Contreras-López, M.: Coastal erosion in sandy beaches along a tectonically active coast: The Chile study case, Prog. Phys. Geog., 46, 250–271, https://doi.org/10.1177/03091333211057194, 2022. a, b
Masotti, I., Aparicio-Rizzo, P., Yevenes, M. A., Garreaud, R., Belmar, L., and Farías, L.: The influence of river discharge on nutrient export and phytoplankton biomass off the Central Chile Coast (33∘–37∘ S): Seasonal cycle and interannual variability, Front. Mar. Sci., 5, 423, https://doi.org/10.3389/fmars.2018.00423, 2018. a, b
Mestres, M., Sierra, J. P., Sánchez-Arcilla, A., González del Río, J., Wolf, T., Rodríguez, A., and Ouillo, S.: Modelling of the Ebro River plume. Validation with field observations, Sci. Mar., 67, 379–391, 2003. a
O'Donnell, J.: The dynamics of estuary plumes and fronts, in: Contemporary Issues in Estuarine Physics, edited by: Valle-Levinson, A., Cambridge University Press, Cambridge, UK, 326 pp., https://doi.org/10.1017/CBO9780511676567.009, 2010. a
Olita, A., Ribotti, A., Sorgente, R., Fazioli, L., and Perilli, A.: SLA - chlorophyll-a variability and covariability in the Algero-Provençal Basin (1997-2007) through combined use of EOF and wavelet analysis of satellite data, Ocean Dyn.s, 61, 89–102, https://doi.org/10.1007/s10236-010-0344-9, 2011a. a
Osadchiev, A., Sedakov, R., and Barymova, A.: Response of a small river plume on wind forcing, Front. Mar. Sci., 8, 809566, https://doi.org/10.3389/fmars.2021.809566, 2021. a
Penven, P., Debreu, L., Marchesiello, P., and McWilliams, J. C.: Evaluation and application of the ROMS 1-way embedding procedure to the central california upwelling system, Ocean Model., 12, 157–187, https://doi.org/10.1016/j.ocemod.2005.05.002, 2006. a
Peterson, J. O. and Peterson, W. T.: Influence of the Columbia River plume (USA) on the vertical and horizontal distribution of mesozooplankton over the Washington and Oregon shelf, ICES J. Mar. Sci., 65, 477–483, 2008. a
Piñones, A., Valle-Levinson, A., Narváez, D. A., Vargas, C. A., Navarrete, S. A., Yuras, G., and Castilla, J. C.: Wind-induced diurnal variability in river plume motion, Estuar. Coast. Shelf S., 65, 513–525, https://doi.org/10.1016/j.ecss.2005.06.016, 2005. a, b
Rojas, C. M., Saldías, G. S., Flores, R. P., Vásquez, S. I., Salas, C., and Vargas, C. A.: A modeling study of hydrographic and flow variability along the river-influenced coastal ocean off central Chile, Ocean Model., 181, 102155, https://doi.org/10.1016/j.ocemod.2022.102155, 2023. a, b, c, d, e, f, g
Salcedo-Castro, J., de Camargo, R., Marone, E., and Sepúlveda, H.: Using the mean pressure gradient and NCEP/NCAR reanalysis to estimate the strength of the South Atlantic Anticyclone, Dyn. Atmos. Oceans, 71, 83–90, https://doi.org/10.1016/j.dynatmoce.2015.06.003, 2015. a
Salcedo-Castro, J., Saldías, G., Saavedra, F., and Donoso, D.: Climatology of Maipo and Rapel river plumes off Central Chile from numerical simulations, Regional Studies in Marine Science, 38, 101389, https://doi.org/10.1016/j.rsma.2020.101389, 2020. a, b, c
Saldías, G. S. and Lara, C.: Satellite-derived sea surface temperature fronts in a river-influenced coastal upwelling area off central – southern Chile, Regional Studies in Marine Science, 37, 101322, https://doi.org/10.1016/j.rsma.2020.101322, 2020. a
Saldías, G. S., Largier, J. L., Mendes, R., Pérez-Santos, I., Vargas, C. A., and Sobarzo, M.: Satellite-measured interannual variability of turbid river plumes off central-southern Chile: Spatial patterns and the influence of climate variability, Prog. Oceanogr., 146, 212–222, https://doi.org/10.1016/j.pocean.2016.07.007, 2016a. a, b, c, d, e, f
Saldías, G. S., Shearman, R. K., Barth, J. A., and Tufillaro, N.: Optics of the offshore Columbia River plume from glider observations and satellite imagery, J. Geophys. Res.-Oceans, 121, 2367–2384, 2016b. a
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Model., 9, 347–404, https://doi.org/10.1016/j.ocemod.2004.08.002, 2005. a
Simpson, J.: The shelf-sea fronts: implications of their existence and behaviour, Philos. T. R. Soc. S.-A, 302, 531–546, 1981. a
Simpson, J. H., Allen, C. M., and Morris, N. C. G.: Fronts on the continental shelf, J. Geophys. Res.-Oceans, 83, 4607–4614, https://doi.org/10.1029/JC083iC09p04607, 1978. a
Strub, P. T., Mesías, J. M., Montecino, V., Rutlant, J., and Salinas, S.: Coastal ocean circulation off western South America, in: The Sea, Volume 11, edited by: Robinson, A. R. and Brink, K. H., John Wiley and Sons Inc, ISBN 0674017412, 273–313, 1998. 1998. a
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79, 61–78, 1998. a
Vargas, C. A., Narva, D. A., Piñones, A., Navarrete, S. A., and Lagos, N. A.: River plume dynamic influences transport of barnacle larvae in the inner shelf off central Chile, J. Mar. Biol. Assoc. UK, 86, 1057–1065, 2006. a
Vergara, O. A., Echevin, V., Sobarzo, M., Sepúlveda, H. H., Castro, L., and Soto-Mendoza, S.: Impacts of the freshwater discharge on hydrodynamical patterns in the Gulf of Arauco (central-southern Chile) using a high-resolution circulation model, J. Marine Syst., 240, 103862, https://doi.org/10.1016/j.jmarsys.2023.103862, 2023. a, b
Warrick, J. A., A.k. Mertes, L., Washburn, L., and A. Siegel, D.: A conceptual model for river water and sediment dispersal in the Santa Barbara Channel, California, Cont. Shelf Res., 24, 2029–2043, https://doi.org/10.1016/j.csr.2004.07.010, 2004. a
Winckler, P., Aguirre, C., Farías, L., Contreras-López, M., and Masotti, Í.: Evidence of climate-driven changes on atmospheric, hydrological, and oceanographic variables along the Chilean coastal zone, Clim. Change, 163, 633–652, https://doi.org/10.1007/s10584-020-02805-3, 2020. a, b
Yu, L.: Sea-surface salinity fronts and associated salinity-minimum zones in the tropical ocean, J. Geophys. Res.-Oceans, 120, 4205–4225, https://doi.org/10.1002/2015JC010790, 2015. a
Zhi, H., Wu, H., Wu, J., Zhang, W., and Wang, Y.: River Plume Rooted on the Sea-Floor: Seasonal and Spring-Neap Variability of the Pearl River Plume Front, Front. Mar. Sci., 9, 1–17, https://doi.org/10.3389/fmars.2022.791948, 2022. a
Short summary
Considering the relevance and impact of river discharges on the coastal environment, it is necessary to understand the processes associated with river plume dynamics in different regions and at different scales. Modeling studies focused on the eastern Pacific coast under the influence of the Humboldt Current are scarce. Here, we conduct for the first time an interannual modeling study of two river plumes off central Chile and discuss their characteristics.
Considering the relevance and impact of river discharges on the coastal environment, it is...