Articles | Volume 19, issue 5
https://doi.org/10.5194/os-19-1375-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-1375-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bivariate sea-ice assimilation for global-ocean analysis–reanalysis
Andrea Cipollone
CORRESPONDING AUTHOR
Ocean Modeling and Data Assimilation Division, Centro Euro-Mediterraneo Sui Cambiamenti Climatici, Bologna, Italy
Deep Sankar Banerjee
Ocean Modeling and Data Assimilation Division, Centro Euro-Mediterraneo Sui Cambiamenti Climatici, Bologna, Italy
present address: Plymouth Marine Laboratory, Plymouth, UK
present address: National Centre for Earth Observation, Plymouth, UK
Doroteaciro Iovino
Ocean Modeling and Data Assimilation Division, Centro Euro-Mediterraneo Sui Cambiamenti Climatici, Bologna, Italy
Ali Aydogdu
Ocean Modeling and Data Assimilation Division, Centro Euro-Mediterraneo Sui Cambiamenti Climatici, Bologna, Italy
Simona Masina
Ocean Modeling and Data Assimilation Division, Centro Euro-Mediterraneo Sui Cambiamenti Climatici, Bologna, Italy
Related authors
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Giovanni Coppini, Emanuela Clementi, Gianpiero Cossarini, Stefano Salon, Gerasimos Korres, Michalis Ravdas, Rita Lecci, Jenny Pistoia, Anna Chiara Goglio, Massimiliano Drudi, Alessandro Grandi, Ali Aydogdu, Romain Escudier, Andrea Cipollone, Vladyslav Lyubartsev, Antonio Mariani, Sergio Cretì, Francesco Palermo, Matteo Scuro, Simona Masina, Nadia Pinardi, Antonio Navarra, Damiano Delrosso, Anna Teruzzi, Valeria Di Biagio, Giorgio Bolzon, Laura Feudale, Gianluca Coidessa, Carolina Amadio, Alberto Brosich, Arnau Miró, Eva Alvarez, Paolo Lazzari, Cosimo Solidoro, Charikleia Oikonomou, and Anna Zacharioudaki
Ocean Sci., 19, 1483–1516, https://doi.org/10.5194/os-19-1483-2023, https://doi.org/10.5194/os-19-1483-2023, 2023
Short summary
Short summary
The paper presents the Mediterranean Forecasting System evolution and performance developed in the framework of the Copernicus Marine Service.
Doroteaciro Iovino, Simona Masina, Andrea Storto, Andrea Cipollone, and Vladimir N. Stepanov
Geosci. Model Dev., 9, 2665–2684, https://doi.org/10.5194/gmd-9-2665-2016, https://doi.org/10.5194/gmd-9-2665-2016, 2016
Short summary
Short summary
An 11-year simulation of a global eddying ocean (1/16) configuration is presented. Model performance is evaluated against observations and a twin 1/4 configuration. The model realistically represents the variability at upper and intermediate depths, the position and strength of the surface circulation, and exchanges of mass through key passages. Sea ice properties are close to satellite observations. This simulation constitutes the groundwork for future applications to short range ocean forecasting.
Francesco Cocetta, Lorenzo Zampieri, Julia Selivanova, and Doroteaciro Iovino
The Cryosphere, 18, 4687–4702, https://doi.org/10.5194/tc-18-4687-2024, https://doi.org/10.5194/tc-18-4687-2024, 2024
Short summary
Short summary
Arctic sea ice is thinning and retreating because of global warming. Thus, the region is transitioning to a new state featuring an expansion of the marginal ice zone, a region where mobile ice interacts with waves from the open ocean. By analyzing 30 years of sea ice reconstructions that combine numerical models and observations, this paper proves that an ensemble of global ocean and sea ice reanalyses is an adequate tool for investigating the changing Arctic sea ice cover.
Ronan McAdam, Giulia Bonino, Emanuela Clementi, and Simona Masina
State Planet, 4-osr8, 13, https://doi.org/10.5194/sp-4-osr8-13-2024, https://doi.org/10.5194/sp-4-osr8-13-2024, 2024
Short summary
Short summary
In the summer of 2022, a regional short-term forecasting system was able to predict the onset, spread, peaks, and decay of a record-breaking marine heatwave in the Mediterranean Sea up to 10 d in advance. Satellite data show that the event was record-breaking in terms of basin-wide intensity and duration. This study demonstrates the potential of state-of-the-art forecasting systems to provide early warning of marine heatwaves for marine activities (e.g. conservation and aquaculture).
Dimitra Denaxa, Gerasimos Korres, Giulia Bonino, Simona Masina, and Maria Hatzaki
State Planet, 4-osr8, 11, https://doi.org/10.5194/sp-4-osr8-11-2024, https://doi.org/10.5194/sp-4-osr8-11-2024, 2024
Short summary
Short summary
We investigate the air–sea heat flux during marine heatwaves (MHWs) in the Mediterranean Sea. Surface heat flux drives 44 % of the onset and only 17 % of the declining MHW phases, suggesting a key role of oceanic processes. Heat flux is more important in warmer months and onset phases, with latent heat dominating. Shorter events show a weaker heat flux contribution. In most cases, mixed layer shoaling occurs over the entire MHW duration, followed by vertical mixing after the MHW end day.
Anna Teruzzi, Ali Aydogdu, Carolina Amadio, Emanuela Clementi, Simone Colella, Valeria Di Biagio, Massimiliano Drudi, Claudia Fanelli, Laura Feudale, Alessandro Grandi, Pietro Miraglio, Andrea Pisano, Jenny Pistoia, Marco Reale, Stefano Salon, Gianluca Volpe, and Gianpiero Cossarini
State Planet, 4-osr8, 15, https://doi.org/10.5194/sp-4-osr8-15-2024, https://doi.org/10.5194/sp-4-osr8-15-2024, 2024
Short summary
Short summary
A noticeable cold spell occurred in Eastern Europe at the beginning of 2022 and was the main driver of intense deep-water formation and the associated transport of nutrients to the surface. Southeast of Crete, the availability of both light and nutrients in the surface layer stimulated an anomalous phytoplankton bloom. In the area, chlorophyll concentration (a proxy for bloom intensity) and primary production were considerably higher than usual, suggesting possible impacts on fishery catches.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Julia Selivanova, Doroteaciro Iovino, and Francesco Cocetta
The Cryosphere, 18, 2739–2763, https://doi.org/10.5194/tc-18-2739-2024, https://doi.org/10.5194/tc-18-2739-2024, 2024
Short summary
Short summary
Climate models show differences in sea ice representation in comparison to observations. Increasing the model resolution is a recognized way to improve model realism and obtain more reliable future projections. We find no strong impact of resolution on sea ice representation; it rather depends on the analysed variable and the model used. By 2050, the marginal ice zone (MIZ) becomes a dominant feature of the Arctic ice cover, suggesting a shift to a new regime similar to that in Antarctica.
Elena Bianco, Doroteaciro Iovino, Simona Masina, Stefano Materia, and Paolo Ruggieri
The Cryosphere, 18, 2357–2379, https://doi.org/10.5194/tc-18-2357-2024, https://doi.org/10.5194/tc-18-2357-2024, 2024
Short summary
Short summary
Changes in ocean heat transport and surface heat fluxes in recent decades have altered the Arctic Ocean heat budget and caused warming of the upper ocean. Using two eddy-permitting ocean reanalyses, we show that this has important implications for sea ice variability. In the Arctic regional seas, upper-ocean heat content acts as an important precursor for sea ice anomalies on sub-seasonal timescales, and this link has strengthened since the 2000s.
Giulia Bonino, Giuliano Galimberti, Simona Masina, Ronan McAdam, and Emanuela Clementi
Ocean Sci., 20, 417–432, https://doi.org/10.5194/os-20-417-2024, https://doi.org/10.5194/os-20-417-2024, 2024
Short summary
Short summary
This study employs machine learning to predict marine heatwaves (MHWs) in the Mediterranean Sea. MHWs have far-reaching impacts on society and ecosystems. Using data from ESA and ECMWF, the research develops accurate prediction models for sea surface temperature (SST) and MHWs across the region. Notably, machine learning methods outperform existing forecasting systems, showing promise in early MHW predictions. The study also highlights the importance of solar radiation as a predictor of SST.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Doroteaciro Iovino, Pier Giuseppe Fogli, and Simona Masina
Geosci. Model Dev., 16, 6127–6159, https://doi.org/10.5194/gmd-16-6127-2023, https://doi.org/10.5194/gmd-16-6127-2023, 2023
Short summary
Short summary
This paper describes the model performance of three global ocean–sea ice configurations, from non-eddying (1°) to eddy-rich (1/16°) resolutions. Model simulations are obtained following the Ocean Model Intercomparison Project phase 2 (OMIP2) protocol. We compare key global climate variables across the three models and against observations, emphasizing the relative advantages and disadvantages of running forced ocean–sea ice models at higher resolution.
Giovanni Coppini, Emanuela Clementi, Gianpiero Cossarini, Stefano Salon, Gerasimos Korres, Michalis Ravdas, Rita Lecci, Jenny Pistoia, Anna Chiara Goglio, Massimiliano Drudi, Alessandro Grandi, Ali Aydogdu, Romain Escudier, Andrea Cipollone, Vladyslav Lyubartsev, Antonio Mariani, Sergio Cretì, Francesco Palermo, Matteo Scuro, Simona Masina, Nadia Pinardi, Antonio Navarra, Damiano Delrosso, Anna Teruzzi, Valeria Di Biagio, Giorgio Bolzon, Laura Feudale, Gianluca Coidessa, Carolina Amadio, Alberto Brosich, Arnau Miró, Eva Alvarez, Paolo Lazzari, Cosimo Solidoro, Charikleia Oikonomou, and Anna Zacharioudaki
Ocean Sci., 19, 1483–1516, https://doi.org/10.5194/os-19-1483-2023, https://doi.org/10.5194/os-19-1483-2023, 2023
Short summary
Short summary
The paper presents the Mediterranean Forecasting System evolution and performance developed in the framework of the Copernicus Marine Service.
Michael Mayer, Takamasa Tsubouchi, Susanna Winkelbauer, Karin Margretha H. Larsen, Barbara Berx, Andreas Macrander, Doroteaciro Iovino, Steingrímur Jónsson, and Richard Renshaw
State Planet, 1-osr7, 14, https://doi.org/10.5194/sp-1-osr7-14-2023, https://doi.org/10.5194/sp-1-osr7-14-2023, 2023
Short summary
Short summary
This paper compares oceanic fluxes across the Greenland–Scotland Ridge (GSR) from ocean reanalyses to largely independent observational data. Reanalyses tend to underestimate the inflow of warm waters of subtropical Atlantic origin and hence oceanic heat transport across the GSR. Investigation of a strong negative heat transport anomaly around 2018 highlights the interplay of variability on different timescales and the need for long-term monitoring of the GSR to detect forced climate signals.
Jonathan Andrew Baker, Richard Renshaw, Laura Claire Jackson, Clotilde Dubois, Doroteaciro Iovino, Hao Zuo, Renellys C. Perez, Shenfu Dong, Marion Kersalé, Michael Mayer, Johannes Mayer, Sabrina Speich, and Tarron Lamont
State Planet, 1-osr7, 4, https://doi.org/10.5194/sp-1-osr7-4-2023, https://doi.org/10.5194/sp-1-osr7-4-2023, 2023
Short summary
Short summary
We use ocean reanalyses, in which ocean models are combined with observations, to infer past changes in ocean circulation and heat transport in the South Atlantic. Comparing these estimates with other observation-based estimates, we find differences in their trends, variability, and mean heat transport but closer agreement in their mean overturning strength. Ocean reanalyses can help us understand the cause of these differences, which could improve estimates of ocean transports in this region.
Ali Aydogdu, Pietro Miraglio, Romain Escudier, Emanuela Clementi, and Simona Masina
State Planet, 1-osr7, 6, https://doi.org/10.5194/sp-1-osr7-6-2023, https://doi.org/10.5194/sp-1-osr7-6-2023, 2023
Short summary
Short summary
This paper investigates the salt content, salinity anomaly and trend in the Mediterranean Sea using observational and reanalysis products. The salt content increases overall, while negative salinity anomalies appear in the western basin, especially around the upwelling regions. There is a large spread in the salinity estimates that is reduced with the emergence of the Argo profilers.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Sukun Cheng, Yumeng Chen, Ali Aydoğdu, Laurent Bertino, Alberto Carrassi, Pierre Rampal, and Christopher K. R. T. Jones
The Cryosphere, 17, 1735–1754, https://doi.org/10.5194/tc-17-1735-2023, https://doi.org/10.5194/tc-17-1735-2023, 2023
Short summary
Short summary
This work studies a novel application of combining a Lagrangian sea ice model, neXtSIM, and data assimilation. It uses a deterministic ensemble Kalman filter to incorporate satellite-observed ice concentration and thickness in simulations. The neXtSIM Lagrangian nature is handled using a remapping strategy on a common homogeneous mesh. The ensemble is formed by perturbing air–ocean boundary conditions and ice cohesion. Thanks to data assimilation, winter Arctic sea ice forecasting is enhanced.
Giulia Bonino, Simona Masina, Giuliano Galimberti, and Matteo Moretti
Earth Syst. Sci. Data, 15, 1269–1285, https://doi.org/10.5194/essd-15-1269-2023, https://doi.org/10.5194/essd-15-1269-2023, 2023
Short summary
Short summary
We present a unique observational dataset of marine heat wave (MHW) macroevents and their characteristics over southern Europe and western Asian (SEWA) basins in the SEWA-MHW dataset. This dataset is the first effort in the literature to archive extremely hot sea surface temperature macroevents. The advantages of the availability of SEWA-MHWs are avoiding the waste of computational resources to detect MHWs and building a consistent framework which would increase comparability among MHW studies.
Giulia Bonino, Doroteaciro Iovino, Laurent Brodeau, and Simona Masina
Geosci. Model Dev., 15, 6873–6889, https://doi.org/10.5194/gmd-15-6873-2022, https://doi.org/10.5194/gmd-15-6873-2022, 2022
Short summary
Short summary
The sea surface temperature (SST) is highly influenced by the transfer of energy driven by turbulent air–sea fluxes (TASFs). In the NEMO ocean general circulation model, TASFs are computed by means of bulk formulas. Bulk formulas require the choice of a given bulk parameterization, which influences the magnitudes of the TASFs. Our results show that parameterization-related SST differences are primarily sensitive to the wind stress differences across parameterizations.
Marco Reale, Gianpiero Cossarini, Paolo Lazzari, Tomas Lovato, Giorgio Bolzon, Simona Masina, Cosimo Solidoro, and Stefano Salon
Biogeosciences, 19, 4035–4065, https://doi.org/10.5194/bg-19-4035-2022, https://doi.org/10.5194/bg-19-4035-2022, 2022
Short summary
Short summary
Future projections under the RCP8.5 and RCP4.5 emission scenarios of the Mediterranean Sea biogeochemistry at the end of the 21st century show different levels of decline in nutrients, oxygen and biomasses and an acidification of the water column. The signal intensity is stronger under RCP8.5 and in the eastern Mediterranean. Under RCP4.5, after the second half of the 21st century, biogeochemical variables show a recovery of the values observed at the beginning of the investigated period.
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021, https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Short summary
Freshwater in the Arctic Ocean plays a critical role in the global climate system by impacting ocean circulations, stratification, mixing, and emergent regimes. In this review paper we assess how Arctic Ocean freshwater changed in the 2010s relative to the 2000s. Estimates from observations and reanalyses show a qualitative stabilization in the 2010s due to a compensation between a freshening of the Beaufort Gyre and a reduction in freshwater in the Amerasian and Eurasian basins.
Giulia Bonino, Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, Simona Masina, and Doroteaciro Iovino
Biogeosciences, 18, 2429–2448, https://doi.org/10.5194/bg-18-2429-2021, https://doi.org/10.5194/bg-18-2429-2021, 2021
Short summary
Short summary
Seasonal variations of processes such as upwelling and biological production that happen along the northwestern African coast can modulate the temporal variability of the biological activity of the adjacent open North Atlantic hundreds of kilometers away from the coast thanks to the lateral transport of coastal organic carbon. This happens with a temporal delay, which is smaller than a season up to roughly 500 km from the coast due to the intense transport by small-scale filaments.
Hiroyuki Tsujino, L. Shogo Urakawa, Stephen M. Griffies, Gokhan Danabasoglu, Alistair J. Adcroft, Arthur E. Amaral, Thomas Arsouze, Mats Bentsen, Raffaele Bernardello, Claus W. Böning, Alexandra Bozec, Eric P. Chassignet, Sergey Danilov, Raphael Dussin, Eleftheria Exarchou, Pier Giuseppe Fogli, Baylor Fox-Kemper, Chuncheng Guo, Mehmet Ilicak, Doroteaciro Iovino, Who M. Kim, Nikolay Koldunov, Vladimir Lapin, Yiwen Li, Pengfei Lin, Keith Lindsay, Hailong Liu, Matthew C. Long, Yoshiki Komuro, Simon J. Marsland, Simona Masina, Aleksi Nummelin, Jan Klaus Rieck, Yohan Ruprich-Robert, Markus Scheinert, Valentina Sicardi, Dmitry Sidorenko, Tatsuo Suzuki, Hiroaki Tatebe, Qiang Wang, Stephen G. Yeager, and Zipeng Yu
Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, https://doi.org/10.5194/gmd-13-3643-2020, 2020
Short summary
Short summary
The OMIP-2 framework for global ocean–sea-ice model simulations is assessed by comparing multi-model means from 11 CMIP6-class global ocean–sea-ice models calculated separately for the OMIP-1 and OMIP-2 simulations. Many features are very similar between OMIP-1 and OMIP-2 simulations, and yet key improvements in transitioning from OMIP-1 to OMIP-2 are also identified. Thus, the present assessment justifies that future ocean–sea-ice model development and analysis studies use the OMIP-2 framework.
Torben Koenigk, Ramon Fuentes-Franco, Virna Meccia, Oliver Gutjahr, Laura C. Jackson, Adrian L. New, Pablo Ortega, Christopher Roberts, Malcolm Roberts, Thomas Arsouze, Doroteaciro Iovino, Marie-Pierre Moine, and Dmitry V. Sein
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-41, https://doi.org/10.5194/os-2020-41, 2020
Revised manuscript not accepted
Short summary
Short summary
The mixing of water masses into the deep ocean in the North Atlantic is important for the entire global ocean circulation. We use seven global climate models to investigate the effect of increasing the model resolution on this deep ocean mixing. The main result is that increased model resolution leads to a deeper mixing of water masses in the Labrador Sea but has less effect in the Greenland Sea. However, most of the models overestimate the deep ocean mixing compared to observations.
Ali Aydoğdu, Alberto Carrassi, Colin T. Guider, Chris K. R. T Jones, and Pierre Rampal
Nonlin. Processes Geophys., 26, 175–193, https://doi.org/10.5194/npg-26-175-2019, https://doi.org/10.5194/npg-26-175-2019, 2019
Short summary
Short summary
Computational models involving adaptive meshes can both evolve dynamically and be remeshed. Remeshing means that the state vector dimension changes in time and across ensemble members, making the ensemble Kalman filter (EnKF) unsuitable for assimilation of observational data. We develop a modification in which analysis is performed on a fixed uniform grid onto which the ensemble is mapped, with resolution relating to the remeshing criteria. The approach is successfully tested on two 1-D models.
Ali Aydoğdu, Nadia Pinardi, Emin Özsoy, Gokhan Danabasoglu, Özgür Gürses, and Alicia Karspeck
Ocean Sci., 14, 999–1019, https://doi.org/10.5194/os-14-999-2018, https://doi.org/10.5194/os-14-999-2018, 2018
Short summary
Short summary
A 6-year simulation of the Turkish Straits System is presented. The simulation is performed by a model using unstructured triangular mesh and realistic atmospheric forcing. The dynamics and circulation of the Marmara Sea are analysed and the mean state of the system is discussed on annual averages. Volume fluxes computed throughout the simulation are presented and the response of the model to severe storms is shown. Finally, it was possible to assess the kinetic energy budget in the Marmara Sea.
Ali Aydoğdu, Timothy J. Hoar, Tomislava Vukicevic, Jeffrey L. Anderson, Nadia Pinardi, Alicia Karspeck, Jonathan Hendricks, Nancy Collins, Francesca Macchia, and Emin Özsoy
Nonlin. Processes Geophys., 25, 537–551, https://doi.org/10.5194/npg-25-537-2018, https://doi.org/10.5194/npg-25-537-2018, 2018
Short summary
Short summary
This study presents, to our knowledge, the first data assimilation experiments in the Sea of Marmara. We propose a FerryBox network for monitoring the state of the sea and show that assimilation of the temperature and salinity improves the forecasts in the basin. The flow of the Bosphorus helps to propagate the error reduction. The study can be taken as a step towards a marine forecasting system in the Sea of Marmara that will help to improve the forecasts in the adjacent Black and Aegean seas.
Verena Haid, Doroteaciro Iovino, and Simona Masina
The Cryosphere, 11, 1387–1402, https://doi.org/10.5194/tc-11-1387-2017, https://doi.org/10.5194/tc-11-1387-2017, 2017
Short summary
Short summary
Since the Antarctic sea ice extent shows a recent increase, we investigate the sea ice response to changed amount and distribution of surface freshwater addition in the Southern Ocean with the ocean–sea ice model NEMO/LIM2. We find that freshwater addition within the range of current estimates increases the ice extent, but higher amounts could have an opposing effect. The freshwater distribution is of great influence on the ice dynamics and the ice thickness is strongly influenced by it.
Petteri Uotila, Doroteaciro Iovino, Martin Vancoppenolle, Mikko Lensu, and Clement Rousset
Geosci. Model Dev., 10, 1009–1031, https://doi.org/10.5194/gmd-10-1009-2017, https://doi.org/10.5194/gmd-10-1009-2017, 2017
Short summary
Short summary
We performed ocean model simulations with new and old sea-ice components. Sea ice improved in the new model compared to the earlier one due to better model physics. In the ocean, the largest differences are confined close to the surface within and near the sea-ice zone. The global ocean circulation slowly deviates between the simulations due to dissimilar sea ice in the deep water formation regions, such as the North Atlantic and Antarctic.
Stephen M. Griffies, Gokhan Danabasoglu, Paul J. Durack, Alistair J. Adcroft, V. Balaji, Claus W. Böning, Eric P. Chassignet, Enrique Curchitser, Julie Deshayes, Helge Drange, Baylor Fox-Kemper, Peter J. Gleckler, Jonathan M. Gregory, Helmuth Haak, Robert W. Hallberg, Patrick Heimbach, Helene T. Hewitt, David M. Holland, Tatiana Ilyina, Johann H. Jungclaus, Yoshiki Komuro, John P. Krasting, William G. Large, Simon J. Marsland, Simona Masina, Trevor J. McDougall, A. J. George Nurser, James C. Orr, Anna Pirani, Fangli Qiao, Ronald J. Stouffer, Karl E. Taylor, Anne Marie Treguier, Hiroyuki Tsujino, Petteri Uotila, Maria Valdivieso, Qiang Wang, Michael Winton, and Stephen G. Yeager
Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, https://doi.org/10.5194/gmd-9-3231-2016, 2016
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) aims to provide a framework for evaluating, understanding, and improving the ocean and sea-ice components of global climate and earth system models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). This document defines OMIP and details a protocol both for simulating global ocean/sea-ice models and for analysing their output.
Doroteaciro Iovino, Simona Masina, Andrea Storto, Andrea Cipollone, and Vladimir N. Stepanov
Geosci. Model Dev., 9, 2665–2684, https://doi.org/10.5194/gmd-9-2665-2016, https://doi.org/10.5194/gmd-9-2665-2016, 2016
Short summary
Short summary
An 11-year simulation of a global eddying ocean (1/16) configuration is presented. Model performance is evaluated against observations and a twin 1/4 configuration. The model realistically represents the variability at upper and intermediate depths, the position and strength of the surface circulation, and exchanges of mass through key passages. Sea ice properties are close to satellite observations. This simulation constitutes the groundwork for future applications to short range ocean forecasting.
Italo Epicoco, Silvia Mocavero, Francesca Macchia, Marcello Vichi, Tomas Lovato, Simona Masina, and Giovanni Aloisio
Geosci. Model Dev., 9, 2115–2128, https://doi.org/10.5194/gmd-9-2115-2016, https://doi.org/10.5194/gmd-9-2115-2016, 2016
Short summary
Short summary
The present work aims at evaluating the scalability performance of a high-resolution global ocean biogeochemistry model (PELAGOS025) on massive parallel architectures and the benefits in terms of the time-to-solution reduction. The outcome of the analysis demonstrated that the lack of scalability is due to several factors such as the I/O operations, the memory contention, and the load unbalancing due to the memory structure of the biogeochemistry model component.
Cited articles
Alexandrov, V., Sandven, S., Wahlin, J., and Johannessen, O. M.: The relation between sea ice thickness and freeboard in the Arctic, The Cryosphere, 4, 373–380, https://doi.org/10.5194/tc-4-373-2010, 2010. a
Barnier, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M.,
Le Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval,
C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud,
M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum
advection schemes in a global ocean circulation model at eddy-permitting
resolution, Ocean Dynam., 56, 543–567, https://doi.org/10.1007/s10236-006-0082-1,
2006. a
Béal, D., Brasseur, P., Brankart, J.-M., Ourmières, Y., and Verron, J.: Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis, Ocean Sci., 6, 247–262, https://doi.org/10.5194/os-6-247-2010, 2010. a, b
Benkiran, M., Ruggiero, G., Greiner, E., Le Traon, P.-Y., Rémy, E.,
Lellouche, J. M., Bourdallé-Badie, R., Drillet, Y., and Tchonang, B.:
Assessing the Impact of the Assimilation of SWOT Observations in a
Global High-Resolution Analysis and Forecasting System Part 1:
Methods, Front. Mar. Sci., 8, 691955,
https://doi.org/10.3389/fmars.2021.691955,
2021. a
Bertino, L., Evensen, G., and Wackernagel, H.: Sequential Data Assimilation
Techniques in Oceanography, Int. Stat. Rev., 71,
223–241, https://doi.org/10.1111/j.1751-5823.2003.tb00194.x,
2003. a, b
Blanchard-Wrigglesworth, E., Barthélemy, A., Chevallier, M., Cullather, R.,
Fučkar, N., Massonnet, F., Posey, P., Wang, W., Zhang, J., Ardilouze,
C., Bitz, C. M., Vernieres, G., Wallcraft, A., and Wang, M.: Multi-model
seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-Arctic
and regional scales, Clim. Dynam., 49, 1399–1410,
https://doi.org/10.1007/s00382-016-3388-9, 2017. a
Blockley, E. W. and Peterson, K. A.: Improving Met Office seasonal
predictions of Arctic sea ice using assimilation of CryoSat-2 thickness,
The Cryosphere, 12, 3419–3438, https://doi.org/10.5194/tc-12-3419-2018,2018. a, b
Bouillon, S., Morales Maqueda, M. Á., Legat, V., and Fichefet, T.: An
elastic–viscous–plastic sea ice model formulated on
Arakawa B and C grids, Ocean Model., 27, 174–184,
https://doi.org/10.1016/j.ocemod.2009.01.004, 2009. a
Brankart, J.-M., Testut, C.-E., Béal, D., Doron, M., Fontana, C.,
Meinvielle, M., Brasseur, P., and Verron, J.: Towards an improved description
of ocean uncertainties: effect of local anamorphic transformations on spatial
correlations, Ocean Sci., 8, 121–142, https://doi.org/10.5194/os-8-121-2012, 2012. a, b, c, d, e, f
Cardinali, C., Pezzulli, S., and Andersson, E.: Influence-matrix diagnostic of
a data assimilation system, Q. J. Roy. Meteor.
Soc., 130, 2767–2786, https://doi.org/10.1256/qj.03.205, 2004. a, b
Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in
the geosciences: An overview of methods, issues, and perspectives, WIREs
Clim. Change, 9, e535, https://doi.org/10.1002/wcc.535, 2018. a
Chapnik, B., Desroziers, G., Rabier, F., and Talagrand, O.: Diagnosis and
tuning of observational error in a quasi-operational data assimilation
setting, Q. J. Roy. Meteor. Soc., 132,
543–565, https://doi.org/10.1256/qj.04.102, 2006. a
Cheng, S., Chen, Y., Aydoğdu, A., Bertino, L., Carrassi, A., Rampal, P.,
and Jones, C. K. R. T.: Arctic sea ice data assimilation combining an
ensemble Kalman filter with a novel Lagrangian sea ice model for the
winter 2019–2020, The Cryosphere, 17, 1735–1754,
https://doi.org/10.5194/tc-17-1735-2023, 2023. a
Chevallier, M., Smith, G. C., Dupont, F., Lemieux, J.-F., Forget, G., Fujii,
Y., Hernandez, F., Msadek, R., Peterson, K. A., Storto, A., Toyoda, T.,
Valdivieso, M., Vernieres, G., Zuo, H., Balmaseda, M., Chang, Y.-S., Ferry,
N., Garric, G., Haines, K., Keeley, S., Kovach, R. M., Kuragano, T., Masina,
S., Tang, Y., Tsujino, H., and Wang, X.: Intercomparison of the Arctic sea
ice cover in global ocean–sea ice reanalyses from the ORA-IP
project, Clim. Dynam., 49, 1107–1136, https://doi.org/10.1007/s00382-016-2985-y,
2017. a
Chilès, J.-P. and Delfiner, P.: Geostatistics: Modeling Spatial
Uncertainty, Wiley, google-Books-ID: adkSAQAAIAAJ, ISBN 9780471083153, 1999. a
Ciliberti, S. A., Jansen, E., Coppini, G., Peneva, E., Azevedo, D., Causio, S.,
Stefanizzi, L., Creti', S., Lecci, R., Lima, L., Ilicak, M.,
Pinardi, N., and Palazov, A.: The Black Sea Physics Analysis and
Forecasting System within the Framework of the Copernicus Marine
Service, J. Mar. Sci. Eng., 10, 48,
https://doi.org/10.3390/jmse10010048, 2022. a
Day, J. J., Hawkins, E., and Tietsche, S.: Will Arctic sea ice thickness
initialization improve seasonal forecast skill?, Geophys. Res.
Lett., 41, 7566–7575, https://doi.org/10.1002/2014GL061694, 2014. a
Desroziers, G., Berre, L., Chapnik, B., and Poli, P.: Diagnosis of observation,
background and analysis-error statistics in observation space, Q.
J. Roy. Meteor. Society, 131, 3385–3396,
https://doi.org/10.1256/qj.05.108, 2005. a, b
Dobricic, S. and Pinardi, N.: An oceanographic three-dimensional variational
data assimilation scheme, Ocean Model., 22, 89–105,
https://doi.org/10.1016/j.ocemod.2008.01.004, 2008. a, b
Escudier, R., Clementi, E., Cipollone, A., Pistoia, J., Drudi, M., Grandi, A.,
Lyubartsev, V., Lecci, R., Aydogdu, A., Delrosso, D., Omar, M., Masina, S.,
Coppini, G., and Pinardi, N.: A High Resolution Reanalysis for the
Mediterranean Sea, Front. Earth Sci., 9, 702285,
https://doi.org/10.3389/feart.2021.702285,
2021. a, b
Fichefet, T. and Maqueda, M. A. M.: Sensitivity of a global sea ice model to
the treatment of ice thermodynamics and dynamics, J. Geophys.
Res.-Ocean., 102, 12609–12646, https://doi.org/10.1029/97JC00480, 1997. a
Fiedler, E. K., Martin, M. J., Blockley, E., Mignac, D., Fournier, N., Ridout, A., Shepherd, A., and Tilling, R.: Assimilation of sea ice thickness derived from CryoSat-2 along-track freeboard measurements into the Met Office's Forecast Ocean Assimilation Model (FOAM), The Cryosphere, 16, 61–85, https://doi.org/10.5194/tc-16-61-2022, 2022. a
Forsberg, R. and Skourup, H.: Arctic Ocean gravity, geoid and sea-ice
freeboard heights from ICESat and GRACE, Geophys. Res. Lett.,
32, L21502, https://doi.org/10.1029/2005GL023711, 2005. a
Goessling, H. F., Tietsche, S., Day, J. J., Hawkins, E., and Jung, T.:
Predictability of the Arctic sea ice edge, Geophys. Res. Lett.,
43, 1642–1650, https://doi.org/10.1002/2015GL067232, 2016. a
Grosfeld, K., Treffeisen, R., Asseng, J., Bartsch, A., Bräuer, B.,
Fritzsch, B., Gerdes, R., Hendricks, S., Hiller, W., Heygster, G., Krumpen,
T., Lemke, P., Melsheimer, C., Nicolaus, M., Ricker, R., and Weigelt, M.:
Online sea-ice knowledge and data platform, Alfred Wegener Institute for Polar and Marine Research & German
Society of Polar Research, Vol. 85, 143–155, https://doi.org/10.2312/polfor.2016.011, 2016. a, b
Hendricks, S. and Ricker, R.: Product User Guide & Algorithm
Specification: AWI CryoSat-2 Sea Ice Thickness (version 2.3),
Alfred
Wegener Institute Helmholtz Centre for Polar and Marine Research, 2020. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Huntemann, M., Heygster, G., Kaleschke, L., Krumpen, T., Mäkynen, M., and
Drusch, M.: Empirical sea ice thickness retrieval during the freeze-up period
from SMOS high incident angle observations, The Cryosphere, 8, 439–451,
https://doi.org/10.5194/tc-8-439-2014, 2014. a
Iovino, D., Selivanova, J., Masina, S., and Cipollone, A.: The Antarctic
Marginal Ice Zone and Pack Ice Area in CMEMS GREP Ensemble
Reanalysis Product, Front. Earth Sci., 10, 745274,
https://doi.org/10.3389/feart.2022.745274,
2022. a
Kaleschke, L., Maaß, N., Haas, C., Hendricks, S., Heygster, G., and Tonboe,
R. T.: A sea-ice thickness retrieval model for 1.4 GHz radiometry and
application to airborne measurements over low salinity sea-ice, The
Cryosphere, 4, 583–592, https://doi.org/10.5194/tc-4-583-2010, 2010. a, b
Krishfield, R. A., Proshutinsky, A., Tateyama, K., Williams, W. J., Carmack,
E. C., McLaughlin, F. A., and Timmermans, M.-L.: Deterioration of perennial
sea ice in the Beaufort Gyre from 2003 to 2012 and its impact on the
oceanic freshwater cycle, J. Geophys. Res.-Ocean., 119,
1271–1305, https://doi.org/10.1002/2013JC008999, 2014. a
Kurtz, N., Studinger, M., Harbeck, J., DePaul Onana, V., and Yi, D.:
IceBridge L4 Sea Ice Freeboard, Snow Depth, and Thickness,
Version 1, NASA [data set], https://doi.org/10.5067/G519SHCKWQV6, 2015. a, b
Kurtz, N. T., Farrell, S. L., Studinger, M., Galin, N., Harbeck, J. P.,
Lindsay, R., Onana, V. D., Panzer, B., and Sonntag, J. G.: Sea ice thickness,
freeboard, and snow depth products from Operation IceBridge airborne
data, The Cryosphere, 7, 1035–1056, https://doi.org/10.5194/tc-7-1035-2013, 2013. a
Kwok, R., Markus, T., Kurtz, N. T., Petty, A. A., Neumann, T. A., Farrell,
S. L., Cunningham, G. F., Hancock, D. W., Ivanoff, A., and Wimert, J. T.:
Surface Height and Sea Ice Freeboard of the Arctic Ocean From
ICESat-2: Characteristics and Early Results, J. Geophys.
Res.-Ocean., 124, 6942–6959, https://doi.org/10.1029/2019JC015486, 2019. a
Landy, J. C., Dawson, G. J., Tsamados, M., Bushuk, M., Stroeve, J. C., Howell,
S. E. L., Krumpen, T., Babb, D. G., Komarov, A. S., Heorton, H. D. B. S.,
Belter, H. J., and Aksenov, Y.: A year-round satellite sea-ice thickness
record from CryoSat-2, Nature, 609, 517–522,
https://doi.org/10.1038/s41586-022-05058-5, 2022. a
Lavergne, T., Sørensen, A. M., Kern, S., Tonboe, R., Notz, D., Aaboe, S.,
Bell, L., Dybkjær, G., Eastwood, S., Gabarro, C., Heygster, G., Killie,
M. A., Brandt Kreiner, M., Lavelle, J., Saldo, R., Sandven, S., and Pedersen,
L. T.: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice
concentration climate data records, The Cryosphere, 13, 49–78,
https://doi.org/10.5194/tc-13-49-2019, 2019. a
Laxon, S., Peacock, N., and Smith, D.: High interannual variability of sea ice
thickness in the Arctic region, Nature, 425, 947–950,
https://doi.org/10.1038/nature02050,
2003. a
Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen,
R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield,
R., Kurtz, N., Farrell, S., and Davidson, M.: CryoSat-2 estimates of
Arctic sea ice thickness and volume, Geophys. Res. Lett., 40,
732–737, https://doi.org/10.1002/grl.50193, 2013. a
Lemieux, J.-F., Beaudoin, C., Dupont, F., Roy, F., Smith, G. C., Shlyaeva, A.,
Buehner, M., Caya, A., Chen, J., Carrieres, T., Pogson, L., DeRepentigny, P.,
Plante, A., Pestieau, P., Pellerin, P., Ritchie, H., Garric, G., and Ferry,
N.: The Regional Ice Prediction System (RIPS): verification of
forecast sea ice concentration, Q. J. Roy. Meteorol.
Soc., 142, 632–643, https://doi.org/10.1002/qj.2526, 2016. a
Lima, L., Ciliberti, S. A., Aydoğdu, A., Masina, S., Escudier, R.,
Cipollone, A., Azevedo, D., Causio, S., Peneva, E., Lecci, R., Clementi, E.,
Jansen, E., Ilicak, M., Cretì, S., Stefanizzi, L., Palermo, F., and
Coppini, G.: Climate Signals in the Black Sea From a Multidecadal
Eddy-Resolving Reanalysis, Front. Mar. Sci., 8, 710973,
https://doi.org/10.3389/fmars.2021.710973,
2021. a
Madec, G. and NEMO system team: NEMO Ocean Engine Reference Manual, NEMO,
2016. a
Massonnet, F., Barthélemy, A., Worou, K., Fichefet, T., Vancoppenolle, M.,
Rousset, C., and Moreno-Chamarro, E.: On the discretization of the ice
thickness distribution in the NEMO3.6-LIM3 global ocean–sea
ice model, Geosci. Model Dev., 12, 3745–3758,
https://doi.org/10.5194/gmd-12-3745-2019, 2019. a
Ménard, R.: Error covariance estimation methods based on analysis
residuals: theoretical foundation and convergence properties derived from
simplified observation networks, Q. J. Roy.
Meteor. Soc., 142, 257–273, https://doi.org/10.1002/qj.2650, 2016. a
Mignac, D., Martin, M., Fiedler, E., Blockley, E., and Fournier, N.: Improving
the Met Office's Forecast Ocean Assimilation Model (FOAM) with
the assimilation of satellite-derived sea-ice thickness data from CryoSat-2
and SMOS in the Arctic, Q. J. Roy. Meteor.
Soc., 148, 1144–1167, https://doi.org/10.1002/qj.4252, 2022. a, b, c
Montmerle, T., Rabier, F., and Fischer, C.: Relative impact of polar-orbiting
and geostationary satellite radiances in the Aladin/France numerical
weather prediction system, Q. J. Roy. Meteor.
Soc., 133, 655–671, https://doi.org/10.1002/qj.34, 2007. a
Mu, L., Losch, M., Yang, Q., Ricker, R., Losa, S. N., and Nerger, L.:
Arctic-Wide Sea Ice Thickness Estimates From Combining
Satellite Remote Sensing Data and a Dynamic Ice-Ocean Model
with Data Assimilation During the CryoSat-2 Period, J.
Geophys. Res.-Ocean., 123, 7763–7780, https://doi.org/10.1029/2018JC014316,
2018a. a
Mu, L., Yang, Q., Losch, M., Losa, S. N., Ricker, R., Nerger, L., and Liang,
X.: Improving sea ice thickness estimates by assimilating CryoSat-2 and
SMOS sea ice thickness data simultaneously, Q. J. Roy.
Meteor. Soc., 144, 529–538, https://doi.org/10.1002/qj.3225, 2018b. a
Nguyen, A. T., Menemenlis, D., and Kwok, R.: Arctic ice-ocean simulation with
optimized model parameters: Approach and assessment, J. Geophys.
Res.-Ocean., 116, C04025, https://doi.org/10.1029/2010JC006573, 2011. a
Oke, P. R. and Sakov, P.: Representation Error of Oceanic Observations
for Data Assimilation, J. Atmos. Ocean. Technol., 25,
1004–1017, https://doi.org/10.1175/2007JTECHO558.1, 2008. a
OSISAF: EUMETSAT Product Navigator – Global Sea Ice Concentration
Climate Data Record v2.0 – Multimission, EUMETSAT [data set],
https://navigator.eumetsat.int/product/EO:EUM:DAT:MULT:OSI-450 (last access: June 2019),
2021. a
Petty, A. A., Keeney, N., Cabaj, A., Kushner, P., and Bagnardi, M.: Winter Arctic sea ice thickness from ICESat-2: upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data collection, The Cryosphere, 17, 127–156, https://doi.org/10.5194/tc-17-127-2023, 2023. a
Posey, P. G., Metzger, E. J., Wallcraft, A. J., Hebert, D. A., Allard, R. A.,
Smedstad, O. M., Phelps, M. W., Fetterer, F., Stewart, J. S., Meier, W. N.,
and Helfrich, S. R.: Improving Arctic sea ice edge forecasts by
assimilating high horizontal resolution sea ice concentration data into the
US Navy's ice forecast systems, The Cryosphere, 9, 1735–1745,
https://doi.org/10.5194/tc-9-1735-2015, 2015. a
Ricker, R., Hendricks, S., Helm, V., Skourup, H., and Davidson, M.: Sensitivity
of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform
interpretation, The Cryosphere, 8, 1607–1622, https://doi.org/10.5194/tc-8-1607-2014, 2014. a
Ricker, R., Hendricks, S., Kaleschke, L., Tian-Kunze, X., King, J., and Haas,
C.: A weekly Arctic sea-ice thickness data record from merged CryoSat-2
and SMOS satellite data, The Cryosphere, 11, 1607–1623,
https://doi.org/10.5194/tc-11-1607-2017, 2017. a, b, c
Ruggiero, G. A., Cosme, E., Brankart, J.-M., Sommer, J. L., and Ubelmann, C.:
An Efficient Way to Account for Observation Error Correlations in
the Assimilation of Data from the Future SWOT High-Resolution
Altimeter Mission, J. Atmos. Ocean. Technol., 33,
2755–2768, https://doi.org/10.1175/JTECH-D-16-0048.1, 2016. a
Simon, E. and Bertino, L.: Application of the Gaussian anamorphosis to
assimilation in a 3-D coupled physical-ecosystem model of the North
Atlantic with the EnKF: a twin experiment, Ocean Sci., 5, 495–510,
https://doi.org/10.5194/os-5-495-2009, 2009. a, b
Simon, E. and Bertino, L.: Gaussian anamorphosis extension of the DEnKF for
combined state parameter estimation: Application to a 1D ocean ecosystem
model, J. Mar. Syst., 89, 1–18,
https://doi.org/10.1016/j.jmarsys.2011.07.007, 2012. a
Storto, A. and Masina, S.: C-GLORSv5: an improved multipurpose global ocean
eddy-permitting physical reanalysis, Earth Syst. Sci. Data, 8, 679–696,
https://doi.org/10.5194/essd-8-679-2016, 2016. a, b, c
Storto, A. and Thomas Tveter, F.: Assimilating humidity pseudo-observations
derived from the cloud profiling radar aboard CloudSat in ALADIN
3D-Var, Meteorol. Appl., 16, 461–479, https://doi.org/10.1002/met.144, 2009. a
Storto, A., Dobricic, S., Masina, S., and Di Pietro, P.: Assimilating
Along-Track Altimetric Observations through Local Hydrostatic
Adjustment in a Global Ocean Variational Assimilation System,
Mon. Weather Rev., 139, 738–754, https://doi.org/10.1175/2010MWR3350.1, 2010. a, b, c
Storto, A., Masina, S., Simoncelli, S., Iovino, D., Cipollone, A., Drevillon,
M., Drillet, Y., von Schuckman, K., Parent, L., Garric, G., Greiner, E.,
Desportes, C., Zuo, H., Balmaseda, M. A., and Peterson, K. A.: The added
value of the multi-system spread information for ocean heat content and
steric sea level investigations in the CMEMS GREP ensemble reanalysis
product, Clim. Dynam., 53, 287–312, https://doi.org/10.1007/s00382-018-4585-5,
2019a. a
Storto, A., Oddo, P., Cozzani, E., and Coelho, E. F.: Introducing
Along-Track Error Correlations for Altimetry Data in a Regional
Ocean Prediction System, J. Atmos. Ocean. Technol.,
36, 1657–1674, https://doi.org/10.1175/JTECH-D-18-0213.1, 2019b. a
Thorndike, A. S., Rothrock, D. A., Maykut, G. A., and Colony, R.: The thickness
distribution of sea ice, J. Geophys. Res., 80,
4501–4513, https://doi.org/10.1029/JC080i033p04501, 1975. a
Tian-Kunze, X., Kaleschke, L., Maaß, N., Mäkynen, M., Serra, N.,
Drusch, M., and Krumpen, T.: SMOS-derived thin sea ice thickness: algorithm
baseline, product specifications and initial verification, The Cryosphere, 8,
997–1018, https://doi.org/10.5194/tc-8-997-2014, 2014. a
Tilling, R. L., Ridout, A., and Shepherd, A.: Near-real-time Arctic sea ice
thickness and volume from CryoSat-2, The Cryosphere, 10, 2003–2012,
https://doi.org/10.5194/tc-10-2003-2016, 2016. a
Uotila, P., Iovino, D., Vancoppenolle, M., Lensu, M., and Rousset, C.:
Comparing sea ice, hydrography and circulation between NEMO3.6 LIM3 and
LIM2, Geosci. Model Dev., 10, 1009–1031,
https://doi.org/10.5194/gmd-10-1009-2017, 2017. a
Uotila, P., Goosse, H., Haines, K., Chevallier, M., Barthélemy, A.,
Bricaud, C., Carton, J., Fučkar, N., Garric, G., Iovino, D., Kauker, F.,
Korhonen, M., Lien, V. S., Marnela, M., Massonnet, F., Mignac, D., Peterson,
K. A., Sadikni, R., Shi, L., Tietsche, S., Toyoda, T., Xie, J., and Zhang,
Z.: An assessment of ten ocean reanalyses in the polar regions, Clim.
Dynam., 52, 1613–1650, https://doi.org/10.1007/s00382-018-4242-z, 2019. a
Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin,
N. N., Aleksandrov, Y. I., and Colony, R.: Snow Depth on Arctic Sea
Ice, J. Clim., 12, 1814–1829,
https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2, 1999. a
Wingham, D. J., Francis, C. R., Baker, S., Bouzinac, C., Brockley, D., Cullen,
R., de Chateau-Thierry, P., Laxon, S. W., Mallow, U., Mavrocordatos, C.,
Phalippou, L., Ratier, G., Rey, L., Rostan, F., Viau, P., and Wallis, D. W.:
CryoSat: A mission to determine the fluctuations in
Earth's land and marine ice fields, Adv. Space
Res., 37, 841–871, https://doi.org/10.1016/j.asr.2005.07.027, 2006. a
Xie, J., Counillon, F., Bertino, L., Tian-Kunze, X., and Kaleschke, L.:
Benefits of assimilating thin sea ice thickness from SMOS into the TOPAZ
system, The Cryosphere, 10, 2745–2761, https://doi.org/10.5194/tc-10-2745-2016, 2016. a, b, c
Yang, Q., Losa, S. N., Losch, M., Tian-Kunze, X., Nerger, L., Liu, J.,
Kaleschke, L., and Zhang, Z.: Assimilating SMOS sea ice thickness into a
coupled ice-ocean model using a local SEIK filter, J. Geophys.
Res.-Ocean., 119, 6680–6692, https://doi.org/10.1002/2014JC009963, 2014.
a
Zhang, J. and Rothrock, D. A.: Modeling Global Sea Ice with a Thickness
and Enthalpy Distribution Model in Generalized Curvilinear
Coordinates, Mon. Weather Rev., 131, 845–861,
https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2,, 2003. a
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M.: The
ECMWF operational ensemble reanalysis–analysis system for ocean
and sea ice: a description of the system and assessment, Ocean Sci., 15,
779–808, https://doi.org/10.5194/os-15-779-2019, 2019. a, b
Zygmuntowska, M., Rampal, P., Ivanova, N., and Smedsrud, L. H.: Uncertainties
in Arctic sea ice thickness and volume: new estimates and implications for
trends, The Cryosphere, 8, 705–720, https://doi.org/10.5194/tc-8-705-2014, 2014. a, b, c
Short summary
Sea-ice volume is characterized by low predictability compared to the sea ice area or the extent. A joint initialization of the thickness and concentration using satellite data could improve the predictive power, although it is still absent in the present global analysis–reanalysis systems. This study shows a scheme to correct the two features together that can be easily extended to include ocean variables. The impact of such a joint initialization is shown and compared among different set-ups.
Sea-ice volume is characterized by low predictability compared to the sea ice area or the...