Articles | Volume 17, issue 3
https://doi.org/10.5194/os-17-699-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/os-17-699-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling of discharges from Baltic Sea shipping
Jukka-Pekka Jalkanen
CORRESPONDING AUTHOR
Atmospheric Composition, Finnish Meteorological Institute, Erik
Palmen's Square 1, 00560 Helsinki, Finland
Lasse Johansson
Atmospheric Composition, Finnish Meteorological Institute, Erik
Palmen's Square 1, 00560 Helsinki, Finland
Magda Wilewska-Bien
Mechanics and Maritime Sciences, Chalmers University of Technology,
Campus Lindholmen, 41296 Gothenburg, Sweden
Lena Granhag
Mechanics and Maritime Sciences, Chalmers University of Technology,
Campus Lindholmen, 41296 Gothenburg, Sweden
Erik Ytreberg
Mechanics and Maritime Sciences, Chalmers University of Technology,
Campus Lindholmen, 41296 Gothenburg, Sweden
K. Martin Eriksson
Mechanics and Maritime Sciences, Chalmers University of Technology,
Campus Lindholmen, 41296 Gothenburg, Sweden
current address: Gothenburg Centre for Sustainable Development
(GMV), Ascherbergsgatan 44, 41296 Gothenburg, Sweden
Daniel Yngsell
Mechanics and Maritime Sciences, Chalmers University of Technology,
Campus Lindholmen, 41296 Gothenburg, Sweden
current address: The County Administrative Board of
Västernorrland, 87186 Härnösand, Sweden
Ida-Maja Hassellöv
Mechanics and Maritime Sciences, Chalmers University of Technology,
Campus Lindholmen, 41296 Gothenburg, Sweden
Kerstin Magnusson
IVL Swedish Environmental Research Institute, Lovén Center of
Marine Sciences, Kristineberg, 45178 Fiskebäckskil, Sweden
Urmas Raudsepp
Department of Marine Systems, Tallinn Technical University, Akadeemia
Tee 15A, 12618 Tallinn, Estonia
Ilja Maljutenko
Department of Marine Systems, Tallinn Technical University, Akadeemia
Tee 15A, 12618 Tallinn, Estonia
Hulda Winnes
IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 41133 Gothenburg, Sweden
current address: Sjöfartsverket, Miljö och
Hållbarhet, Östra Promenaden 7, 60228 Norrköping, Sweden
Jana Moldanova
IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 41133 Gothenburg, Sweden
Related authors
Androniki Maragkidou, Tiia Grönholm, Laura Rautiainen, Juha Nikmo, Jukka-Pekka Jalkanen, Timo Mäkelä, Timo Anttila, Lauri Laakso, and Jaakko Kukkonen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1703, https://doi.org/10.5194/egusphere-2024-1703, 2024
Short summary
Short summary
The Baltic Sea's designation as a Sulphur Emission Control Area in 2006, with subsequent regulations, significantly reduced sulphur emissions from shipping. Our study analyzed air quality data from 2003 to 2020 at Utö island and employed modelling, showing a continuous decrease in SO2 concentrations since 2003 and evidencing, thus, the effectiveness of such regulations in improving air quality. It also underscored the importance of long-term, high-resolution monitoring at remote marine sites.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Antonin Soulie, Claire Granier, Sabine Darras, Nicolas Zilbermann, Thierno Doumbia, Marc Guevara, Jukka-Pekka Jalkanen, Sekou Keita, Cathy Liousse, Monica Crippa, Diego Guizzardi, Rachel Hoesly, and Steven J. Smith
Earth Syst. Sci. Data, 16, 2261–2279, https://doi.org/10.5194/essd-16-2261-2024, https://doi.org/10.5194/essd-16-2261-2024, 2024
Short summary
Short summary
Anthropogenic emissions are the result of transportation, power generation, industrial, residential and commercial activities as well as waste treatment and agriculture practices. This work describes the new CAMS-GLOB-ANT gridded inventory of 2000–2023 anthropogenic emissions of air pollutants and greenhouse gases. The methodology to generate the emissions is explained and the datasets are analysed and compared with publicly available global and regional inventories for selected world regions.
Heidi Hellén, Rostislav Kouznetsov, Kaisa Kraft, Jukka Seppälä, Mika Vestenius, Jukka-Pekka Jalkanen, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 24, 4717–4731, https://doi.org/10.5194/acp-24-4717-2024, https://doi.org/10.5194/acp-24-4717-2024, 2024
Short summary
Short summary
Mixing ratios of C2-C5 NMHCs and methanethiol were measured on an island in the Baltic Sea using an in situ gas chromatograph. Shipping emissions were found to be an important source of ethene, ethyne, propene, and benzene. High summertime mixing ratios of methanethiol and dependence of mixing ratios on seawater temperature and height indicated the biogenic origin to possibly be phytoplankton or macroalgae. These emissions may have a strong impact on SO2 production and new particle formation.
Ville-Veikko Paunu, Niko Karvosenoja, David Segersson, Susana López-Aparicio, Ole-Kenneth Nielsen, Marlene Schmidt Plejdrup, Throstur Thorsteinsson, Dam Thanh Vo, Jeroen Kuenen, Hugo Denier van der Gon, Jukka-Pekka Jalkanen, Jørgen Brandt, and Camilla Geels
Earth Syst. Sci. Data, 16, 1453–1474, https://doi.org/10.5194/essd-16-1453-2024, https://doi.org/10.5194/essd-16-1453-2024, 2024
Short summary
Short summary
Air pollution is an important cause of adverse health effects, even in Nordic countries. To assess their health impacts, emission inventories with high spatial resolution are needed. We studied how national data and methods for the spatial distribution of the emissions compare to a European level inventory. For road transport the methods are well established, but for machinery and off-road emissions the current recommendations for the spatial distribution of these emissions should be improved.
Peter Manshausen, Duncan Watson-Parris, Matthew W. Christensen, Jukka-Pekka Jalkanen, and Philip Stier
Atmos. Chem. Phys., 23, 12545–12555, https://doi.org/10.5194/acp-23-12545-2023, https://doi.org/10.5194/acp-23-12545-2023, 2023
Short summary
Short summary
Aerosol from burning fuel changes cloud properties, e.g., the number of droplets and the content of water. Here, we study how clouds respond to different amounts of shipping aerosol. Droplet numbers increase linearly with increasing aerosol over a broad range until they stop increasing, while the amount of liquid water always increases, independently of emission amount. These changes in cloud properties can make them reflect more or less sunlight, which is important for the earth's climate.
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Sara Jutterström, Jana Moldanova, Elisa Majamäki, and Jukka-Pekka Jalkanen
Atmos. Chem. Phys., 23, 10163–10189, https://doi.org/10.5194/acp-23-10163-2023, https://doi.org/10.5194/acp-23-10163-2023, 2023
Short summary
Short summary
The Mediterranean Sea is a heavily trafficked shipping area, and air quality monitoring stations in numerous cities along the Mediterranean coast have detected high levels of air pollutants originating from shipping emissions. The current study investigates how existing restrictions on shipping-related emissions to the atmosphere ensure compliance with legislation. Focus was laid on fine particles and particle species, which were simulated with five different chemical transport models.
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Jana Moldanova, Sara Jutterström, Jukka-Pekka Jalkanen, and Elisa Majamäki
Atmos. Chem. Phys., 23, 1825–1862, https://doi.org/10.5194/acp-23-1825-2023, https://doi.org/10.5194/acp-23-1825-2023, 2023
Short summary
Short summary
Potential ship impact on air pollution in the Mediterranean Sea was simulated with five chemistry transport models. An evaluation of the results for NO2 and O3 air concentrations and dry deposition is presented. Emission data, modeled year and domain were the same. Model run outputs were compared to measurements from background stations. We focused on comparing model outputs regarding the concentration of regulatory pollutants and the relative ship impact on total air pollution concentrations.
Marc Guevara, Hervé Petetin, Oriol Jorba, Hugo Denier van der Gon, Jeroen Kuenen, Ingrid Super, Jukka-Pekka Jalkanen, Elisa Majamäki, Lasse Johansson, Vincent-Henri Peuch, and Carlos Pérez García-Pando
Earth Syst. Sci. Data, 14, 2521–2552, https://doi.org/10.5194/essd-14-2521-2022, https://doi.org/10.5194/essd-14-2521-2022, 2022
Short summary
Short summary
To control the spread of the COVID-19 disease, European governments implemented mobility restriction measures that resulted in an unprecedented drop in anthropogenic emissions. This work presents a dataset of emission adjustment factors that allows quantifying changes in 2020 European primary emissions per country and pollutant sector at the daily scale. The resulting dataset can be used as input in modelling studies aiming at quantifying the impact of COVID-19 on air quality levels.
Ranjeet S. Sokhi, Nicolas Moussiopoulos, Alexander Baklanov, John Bartzis, Isabelle Coll, Sandro Finardi, Rainer Friedrich, Camilla Geels, Tiia Grönholm, Tomas Halenka, Matthias Ketzel, Androniki Maragkidou, Volker Matthias, Jana Moldanova, Leonidas Ntziachristos, Klaus Schäfer, Peter Suppan, George Tsegas, Greg Carmichael, Vicente Franco, Steve Hanna, Jukka-Pekka Jalkanen, Guus J. M. Velders, and Jaakko Kukkonen
Atmos. Chem. Phys., 22, 4615–4703, https://doi.org/10.5194/acp-22-4615-2022, https://doi.org/10.5194/acp-22-4615-2022, 2022
Short summary
Short summary
This review of air quality research focuses on developments over the past decade. The article considers current and future challenges that are important from air quality research and policy perspectives and highlights emerging prominent gaps of knowledge. The review also examines how air pollution management needs to adapt to new challenges and makes recommendations to guide the direction for future air quality research within the wider community and to provide support for policy.
Jeroen Kuenen, Stijn Dellaert, Antoon Visschedijk, Jukka-Pekka Jalkanen, Ingrid Super, and Hugo Denier van der Gon
Earth Syst. Sci. Data, 14, 491–515, https://doi.org/10.5194/essd-14-491-2022, https://doi.org/10.5194/essd-14-491-2022, 2022
Short summary
Short summary
This paper presents an 18-year time series for anthropogenic emissions for the main air pollutants in Europe, distinguishing 15 main source categories. It provides a complete overview of emissions to air and is designed to support air quality modelling. The data build where possible on official country total emissions used in the policy processes, but where necessary alternative data were used. The emission data are spatially distributed at high resolution (~ 6 km x 6 km) in a consistent way.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Jari Walden, Liisa Pirjola, Tuomas Laurila, Juha Hatakka, Heidi Pettersson, Tuomas Walden, Jukka-Pekka Jalkanen, Harri Nordlund, Toivo Truuts, Miika Meretoja, and Kimmo K. Kahma
Atmos. Chem. Phys., 21, 18175–18194, https://doi.org/10.5194/acp-21-18175-2021, https://doi.org/10.5194/acp-21-18175-2021, 2021
Short summary
Short summary
Ship emissions play an important role in the deposition of gaseous compounds and nanoparticles (Ntot), affecting climate, human health (especially in coastal areas), and eutrophication. Micrometeorological methods showed that ship emissions were mainly responsible for the deposition of Ntot, whereas they only accounted for a minor proportion of CO2 deposition. An uncertainty analysis applied to the fluxes and fuel sulfur content results demonstrated the reliability of the results.
Camilla Geels, Morten Winther, Camilla Andersson, Jukka-Pekka Jalkanen, Jørgen Brandt, Lise M. Frohn, Ulas Im, Wing Leung, and Jesper H. Christensen
Atmos. Chem. Phys., 21, 12495–12519, https://doi.org/10.5194/acp-21-12495-2021, https://doi.org/10.5194/acp-21-12495-2021, 2021
Short summary
Short summary
In this study, we set up new shipping emissions scenarios and use two chemistry transport models and a health assessment model to assess the development of air quality and related health impacts in the Nordic region. Shipping alone is associated with about 850 premature deaths during present-day conditions, decreasing to approximately 550–600 cases in the 2050 scenarios.
Sami D. Seppälä, Joel Kuula, Antti-Pekka Hyvärinen, Sanna Saarikoski, Topi Rönkkö, Jorma Keskinen, Jukka-Pekka Jalkanen, and Hilkka Timonen
Atmos. Chem. Phys., 21, 3215–3234, https://doi.org/10.5194/acp-21-3215-2021, https://doi.org/10.5194/acp-21-3215-2021, 2021
Short summary
Short summary
The effects of fuel sulfur content restrictions implemented by the International Maritime Organization in the Baltic Sea (in July 2010 and January 2015) on the particle properties of ship exhaust plumes and ambient aerosol were studied. The restrictions reduced the particle number concentrations and median particle size in plumes and number concentrations in ambient aerosol. These changes may improve human health in coastal areas and decrease the cooling effect of exhaust emissions from ships.
Jan Eiof Jonson, Michael Gauss, Michael Schulz, Jukka-Pekka Jalkanen, and Hilde Fagerli
Atmos. Chem. Phys., 20, 11399–11422, https://doi.org/10.5194/acp-20-11399-2020, https://doi.org/10.5194/acp-20-11399-2020, 2020
Short summary
Short summary
We have calculated the effects of air pollution in Europe from shipping on levels of PM2.5 and ozone and depositions of oxidised nitrogen and sulfur from individual sea areas and from all global shipping. Model results are shown for Europe as a whole but also focusing on select, mainly coastal, countries. Calculations are made using 2017 emissions supplemented by calculations reducing sulfur emissions from ships by about 80 % following the implementation of the 2020 global sulfur cap.
Lasse Johansson, Erik Ytreberg, Jukka-Pekka Jalkanen, Erik Fridell, K. Martin Eriksson, Maria Lagerström, Ilja Maljutenko, Urmas Raudsepp, Vivian Fischer, and Eva Roth
Ocean Sci., 16, 1143–1163, https://doi.org/10.5194/os-16-1143-2020, https://doi.org/10.5194/os-16-1143-2020, 2020
Short summary
Short summary
Very little is currently known about the activities and emissions of private leisure boats. To change this, a new model was created (BEAM). The model was used for the Baltic Sea to estimate leisure boat emissions, also considering antifouling paint leach. When compared to commercial shipping, the modeled leisure boat emissions were seen to be surprisingly large for some pollutant species, and these emissions were heavily concentrated on coastal inhabited areas during summer and early autumn.
Rafael A. O. Nunes, Maria C. M. Alvim-Ferraz, Fernando G. Martins, Fátima Calderay-Cayetano, Vanessa Durán-Grados, Juan Moreno-Gutiérrez, Jukka-Pekka Jalkanen, Hanna Hannuniemi, and Sofia I. V. Sousa
Atmos. Chem. Phys., 20, 9473–9489, https://doi.org/10.5194/acp-20-9473-2020, https://doi.org/10.5194/acp-20-9473-2020, 2020
Short summary
Short summary
The central position of the Iberian Peninsula with ship traffic between the Americas, Africa, and Europe, combined with the known adverse effects of this sector on air quality, emphasises the relevance of a more detailed study of these impacts in this region. Results showed increased levels of SO2 and NO2 near port areas, as well as of O3, sulfate, PM2.5, and PM10 over the Iberian Peninsula coastline due to shipping emissions. To study mitigation measures, application is crucial.
Lin Tang, Martin O. P. Ramacher, Jana Moldanová, Volker Matthias, Matthias Karl, Lasse Johansson, Jukka-Pekka Jalkanen, Katarina Yaramenka, Armin Aulinger, and Malin Gustafsson
Atmos. Chem. Phys., 20, 7509–7530, https://doi.org/10.5194/acp-20-7509-2020, https://doi.org/10.5194/acp-20-7509-2020, 2020
Short summary
Short summary
The effects of shipping emissions on air quality and health in the harbour city of Gothenburg were simulated for 2012 with coupled regional and city-scale chemistry transport models. The results show that contributions of shipping to exposure and health impacts from particulate matter and NO2 are significant and that shipping-related exposure to PM is dominated by emissions from regional shipping outside the city domain and is larger than exposure related to emissions from local road traffic.
Jan Eiof Jonson, Michael Gauss, Jukka-Pekka Jalkanen, and Lasse Johansson
Atmos. Chem. Phys., 19, 13469–13487, https://doi.org/10.5194/acp-19-13469-2019, https://doi.org/10.5194/acp-19-13469-2019, 2019
Short summary
Short summary
Calculations have been made with the regional-scale EMEP chemical transport model covering Europe and the sea areas surrounding Europe, including much of the North Atlantic. The main focus is on the effects on air pollution as well as depositions of sulfur and nitrogen following the implementation of stricter sulfur emission regulations from 1 January 2015 for ships operating in the Baltic Sea. We also include a study on the effects of future (2030) emissions changes.
Martin Otto Paul Ramacher, Matthias Karl, Johannes Bieser, Jukka-Pekka Jalkanen, and Lasse Johansson
Atmos. Chem. Phys., 19, 9153–9179, https://doi.org/10.5194/acp-19-9153-2019, https://doi.org/10.5194/acp-19-9153-2019, 2019
Short summary
Short summary
We simulated the impact of NOx shipping emissions on air quality and exposure in the Baltic Sea harbour cities Rostock (Germany), Riga (Latvia) and Gdańsk–Gdynia (Poland) for 2012. We found that local shipping affects total NO2, with contributions of 22 %, 11 % and 16 % in Rostock, Riga and Gdańsk–Gdynia. Exposure to NO2 from all emission sources was highest at home addresses (54 %–59 %). Emissions from shipping have a high impact on NO2 exposure in the port area (50 %–80 %).
Matthias Karl, Jan Eiof Jonson, Andreas Uppstu, Armin Aulinger, Marje Prank, Mikhail Sofiev, Jukka-Pekka Jalkanen, Lasse Johansson, Markus Quante, and Volker Matthias
Atmos. Chem. Phys., 19, 7019–7053, https://doi.org/10.5194/acp-19-7019-2019, https://doi.org/10.5194/acp-19-7019-2019, 2019
Short summary
Short summary
The effect of ship emissions on the regional air quality in the Baltic Sea region was investigated with three regional chemistry transport model systems. The ship influence on air quality is shown to depend on the boundary conditions, meteorological data and aerosol formation and deposition schemes that are used in these models. The study provides a reliable approach for the evaluation of policy options regarding emission regulations for ship traffic in the Baltic Sea.
Matthias Karl, Johannes Bieser, Beate Geyer, Volker Matthias, Jukka-Pekka Jalkanen, Lasse Johansson, and Erik Fridell
Atmos. Chem. Phys., 19, 1721–1752, https://doi.org/10.5194/acp-19-1721-2019, https://doi.org/10.5194/acp-19-1721-2019, 2019
Short summary
Short summary
Air emissions of nitrogen oxides from ship traffic in the Baltic Sea are a health concern in coastal areas of the Baltic Sea region. We find that the introduction of the nitrogen emission control area (NECA) is critical for reducing ship emissions of nitrogen oxides to levels that are low enough to sustainably dampen ozone production. The decline of the ship-related nitrogen deposition to the Baltic Sea between 2012 and 2040 varies between 46 % and 78 % in different regulation scenarios.
Jukka-Pekka Jalkanen, Lasse Johansson, Mattias Liefvendahl, Rickard Bensow, Peter Sigray, Martin Östberg, Ilkka Karasalo, Mathias Andersson, Heikki Peltonen, and Jukka Pajala
Ocean Sci., 14, 1373–1383, https://doi.org/10.5194/os-14-1373-2018, https://doi.org/10.5194/os-14-1373-2018, 2018
Short summary
Short summary
This paper presents the implementation of an underwater noise emission module in the Ship Traffic Emission Assessment Model. This model is based on real shipping activity, as described by the vessel navigation systems, and combines it with technical descriptions of each ship. The methodology described facilitates the expression of underwater noise as emission maps, which describe the energy emitted to the water. This enables regular reporting of shipping noise and facilitates further research.
Louis Marelle, Jennie L. Thomas, Jean-Christophe Raut, Kathy S. Law, Jukka-Pekka Jalkanen, Lasse Johansson, Anke Roiger, Hans Schlager, Jin Kim, Anja Reiter, and Bernadett Weinzierl
Atmos. Chem. Phys., 16, 2359–2379, https://doi.org/10.5194/acp-16-2359-2016, https://doi.org/10.5194/acp-16-2359-2016, 2016
J.-P. Jalkanen, L. Johansson, and J. Kukkonen
Atmos. Chem. Phys., 16, 71–84, https://doi.org/10.5194/acp-16-71-2016, https://doi.org/10.5194/acp-16-71-2016, 2016
Short summary
Short summary
This manuscript describes the emissions from shipping in European sea areas. The work is based on automatic position reports (AIS) sent by ships and reflects realistic activity patterns of ships. The work demonstrates that it is feasible to construct full bottom-up emission inventories based on large-volume activity data sets.
J. Beecken, J. Mellqvist, K. Salo, J. Ekholm, J.-P. Jalkanen, L. Johansson, V. Litvinenko, K. Volodin, and D. A. Frank-Kamenetsky
Atmos. Chem. Phys., 15, 5229–5241, https://doi.org/10.5194/acp-15-5229-2015, https://doi.org/10.5194/acp-15-5229-2015, 2015
Short summary
Short summary
Measurements of SO2, NOx and particle emission factors of more than 400 individual ship passages in the Gulf of Finland are presented and discussed. The measurements were conducted during two campaigns in the years 2011 and 2012 from ground-based and helicopter-based platforms. It was found that a significant number of ships use fuel oil with a fuel sulfur content below the limit of 1%.
Additionally, the results of modeled data for the same ships were compared to the measurements of this study.
J. E. Jonson, J. P. Jalkanen, L. Johansson, M. Gauss, and H. A. C. Denier van der Gon
Atmos. Chem. Phys., 15, 783–798, https://doi.org/10.5194/acp-15-783-2015, https://doi.org/10.5194/acp-15-783-2015, 2015
Short summary
Short summary
In order to assess the effects of ship emissions in and around the
Baltic Sea and the North Sea, regional model calculations are made
with the EMEP air pollution model. Ship emissions are based on
accurate ship positioning data. The effects on depositions and air
pollution and the resulting number of years of life lost (YOLLs)
are calculated by comparing model calculations with and without
ship emissions, with ship emissions before and after 2010, and for future
projections.
J. Soares, A. Kousa, J. Kukkonen, L. Matilainen, L. Kangas, M. Kauhaniemi, K. Riikonen, J.-P. Jalkanen, T. Rasila, O. Hänninen, T. Koskentalo, M. Aarnio, C. Hendriks, and A. Karppinen
Geosci. Model Dev., 7, 1855–1872, https://doi.org/10.5194/gmd-7-1855-2014, https://doi.org/10.5194/gmd-7-1855-2014, 2014
J. M. Balzani Lööv, B. Alfoldy, L. F. L. Gast, J. Hjorth, F. Lagler, J. Mellqvist, J. Beecken, N. Berg, J. Duyzer, H. Westrate, D. P. J. Swart, A. J. C. Berkhout, J.-P. Jalkanen, A. J. Prata, G. R. van der Hoff, and A. Borowiak
Atmos. Meas. Tech., 7, 2597–2613, https://doi.org/10.5194/amt-7-2597-2014, https://doi.org/10.5194/amt-7-2597-2014, 2014
I. Ialongo, J. Hakkarainen, N. Hyttinen, J.-P. Jalkanen, L. Johansson, K. F. Boersma, N. Krotkov, and J. Tamminen
Atmos. Chem. Phys., 14, 7795–7805, https://doi.org/10.5194/acp-14-7795-2014, https://doi.org/10.5194/acp-14-7795-2014, 2014
J. Beecken, J. Mellqvist, K. Salo, J. Ekholm, and J.-P. Jalkanen
Atmos. Meas. Tech., 7, 1957–1968, https://doi.org/10.5194/amt-7-1957-2014, https://doi.org/10.5194/amt-7-1957-2014, 2014
L. Pirjola, A. Pajunoja, J. Walden, J.-P. Jalkanen, T. Rönkkö, A. Kousa, and T. Koskentalo
Atmos. Meas. Tech., 7, 149–161, https://doi.org/10.5194/amt-7-149-2014, https://doi.org/10.5194/amt-7-149-2014, 2014
L. Johansson, J.-P. Jalkanen, J. Kalli, and J. Kukkonen
Atmos. Chem. Phys., 13, 11375–11389, https://doi.org/10.5194/acp-13-11375-2013, https://doi.org/10.5194/acp-13-11375-2013, 2013
Amirhossein Barzandeh, Marko Rus, Matjaž Ličer, Ilja Maljutenko, Jüri Elken, Priidik Lagemaa, and Rivo Uiboupin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3691, https://doi.org/10.5194/egusphere-2024-3691, 2024
Short summary
Short summary
We evaluated a deep-learning model, HIDRA2, for predicting sea levels along the Estonian coast and compared it to traditional numerical models. HIDRA2 performed better overall, offering faster forecasts and valuable uncertainty estimates using ensemble predictions.
Jüri Elken, Ilja Maljutenko, Priidik Lagemaa, Rivo Uiboupin, and Urmas Raudsepp
State Planet, 4-osr8, 9, https://doi.org/10.5194/sp-4-osr8-9-2024, https://doi.org/10.5194/sp-4-osr8-9-2024, 2024
Short summary
Short summary
Baltic deep water is generally warmer than surface water during winter when district heating is required. Depending on the location, depth, and oceanographic situation, bottom water of Tallinn Bay can be used as an energy source for seawater heat pumps until the end of February, covering the major time interval when heating is needed. Episodically, there are colder-water events when seawater heat extraction has to be complemented by other sources of heating energy.
Anja Lindenthal, Claudia Hinrichs, Simon Jandt-Scheelke, Tim Kruschke, Priidik Lagemaa, Eefke M. van der Lee, Ilja Maljutenko, Helen E. Morrison, Tabea R. Panteleit, and Urmas Raudsepp
State Planet, 4-osr8, 16, https://doi.org/10.5194/sp-4-osr8-16-2024, https://doi.org/10.5194/sp-4-osr8-16-2024, 2024
Short summary
Short summary
In 2022, large parts of the Baltic Sea experienced the third-warmest to warmest summer and autumn temperatures since 1997 and several marine heatwaves (MHWs). Using remote sensing, reanalysis, and in situ data, this study characterizes regional differences in MHW properties in the Baltic Sea in 2022. Furthermore, it presents an analysis of long-term trends and the relationship between atmospheric warming and MHW occurrences, including their propagation into deeper layers.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Urmas Raudsepp, Ilja Maljutenko, Priidik Lagemaa, and Karina von Schuckmann
State Planet Discuss., https://doi.org/10.5194/sp-2024-19, https://doi.org/10.5194/sp-2024-19, 2024
Preprint under review for SP
Short summary
Short summary
Over the last three decades, the Baltic Sea has experienced rising temperature and salinity, reflecting broader atmospheric warming. Heat content fluctuations are driven by subsurface temperature changes in the upper 100 meters, including the thermocline and halocline, influenced by air temperature, evaporation, and wind stress. Freshwater content changes mainly result from salinity shifts in the halocline, with saline water inflow, precipitation, and wind stress as key factors.
Androniki Maragkidou, Tiia Grönholm, Laura Rautiainen, Juha Nikmo, Jukka-Pekka Jalkanen, Timo Mäkelä, Timo Anttila, Lauri Laakso, and Jaakko Kukkonen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1703, https://doi.org/10.5194/egusphere-2024-1703, 2024
Short summary
Short summary
The Baltic Sea's designation as a Sulphur Emission Control Area in 2006, with subsequent regulations, significantly reduced sulphur emissions from shipping. Our study analyzed air quality data from 2003 to 2020 at Utö island and employed modelling, showing a continuous decrease in SO2 concentrations since 2003 and evidencing, thus, the effectiveness of such regulations in improving air quality. It also underscored the importance of long-term, high-resolution monitoring at remote marine sites.
Shakti Singh, Ilja Maljutenko, and Rivo Uiboupin
EGUsphere, https://doi.org/10.5194/egusphere-2024-1701, https://doi.org/10.5194/egusphere-2024-1701, 2024
Short summary
Short summary
The sea ice statistics study highlights the bias in model estimations compared to satellite data and provides a simple approach to minimise that. During the study period, the model estimates sea ice forming slightly earlier but aligns well with the satellite data for ice season's end. Rapid decrease in the sea ice parameters is observed across the Baltic Sea, especially the ice thickness in the Bothnian Bay sub-basin. These statistics could be crucial for regional adaptation strategies.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024, https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Short summary
The HiDEM code has been developed for analyzing the fracture and fragmentation of brittle materials and has been extensively applied to glacier calving. Here, we report on the adaptation of the code to sea-ice dynamics and breakup. The code demonstrates the capability to simulate sea-ice dynamics on a 100 km scale with an unprecedented resolution. We argue that codes of this type may become useful for improving forecasts of sea-ice dynamics.
Antonin Soulie, Claire Granier, Sabine Darras, Nicolas Zilbermann, Thierno Doumbia, Marc Guevara, Jukka-Pekka Jalkanen, Sekou Keita, Cathy Liousse, Monica Crippa, Diego Guizzardi, Rachel Hoesly, and Steven J. Smith
Earth Syst. Sci. Data, 16, 2261–2279, https://doi.org/10.5194/essd-16-2261-2024, https://doi.org/10.5194/essd-16-2261-2024, 2024
Short summary
Short summary
Anthropogenic emissions are the result of transportation, power generation, industrial, residential and commercial activities as well as waste treatment and agriculture practices. This work describes the new CAMS-GLOB-ANT gridded inventory of 2000–2023 anthropogenic emissions of air pollutants and greenhouse gases. The methodology to generate the emissions is explained and the datasets are analysed and compared with publicly available global and regional inventories for selected world regions.
Heidi Hellén, Rostislav Kouznetsov, Kaisa Kraft, Jukka Seppälä, Mika Vestenius, Jukka-Pekka Jalkanen, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 24, 4717–4731, https://doi.org/10.5194/acp-24-4717-2024, https://doi.org/10.5194/acp-24-4717-2024, 2024
Short summary
Short summary
Mixing ratios of C2-C5 NMHCs and methanethiol were measured on an island in the Baltic Sea using an in situ gas chromatograph. Shipping emissions were found to be an important source of ethene, ethyne, propene, and benzene. High summertime mixing ratios of methanethiol and dependence of mixing ratios on seawater temperature and height indicated the biogenic origin to possibly be phytoplankton or macroalgae. These emissions may have a strong impact on SO2 production and new particle formation.
Ville-Veikko Paunu, Niko Karvosenoja, David Segersson, Susana López-Aparicio, Ole-Kenneth Nielsen, Marlene Schmidt Plejdrup, Throstur Thorsteinsson, Dam Thanh Vo, Jeroen Kuenen, Hugo Denier van der Gon, Jukka-Pekka Jalkanen, Jørgen Brandt, and Camilla Geels
Earth Syst. Sci. Data, 16, 1453–1474, https://doi.org/10.5194/essd-16-1453-2024, https://doi.org/10.5194/essd-16-1453-2024, 2024
Short summary
Short summary
Air pollution is an important cause of adverse health effects, even in Nordic countries. To assess their health impacts, emission inventories with high spatial resolution are needed. We studied how national data and methods for the spatial distribution of the emissions compare to a European level inventory. For road transport the methods are well established, but for machinery and off-road emissions the current recommendations for the spatial distribution of these emissions should be improved.
Peter Manshausen, Duncan Watson-Parris, Matthew W. Christensen, Jukka-Pekka Jalkanen, and Philip Stier
Atmos. Chem. Phys., 23, 12545–12555, https://doi.org/10.5194/acp-23-12545-2023, https://doi.org/10.5194/acp-23-12545-2023, 2023
Short summary
Short summary
Aerosol from burning fuel changes cloud properties, e.g., the number of droplets and the content of water. Here, we study how clouds respond to different amounts of shipping aerosol. Droplet numbers increase linearly with increasing aerosol over a broad range until they stop increasing, while the amount of liquid water always increases, independently of emission amount. These changes in cloud properties can make them reflect more or less sunlight, which is important for the earth's climate.
Urmas Raudsepp, Ilja Maljutenko, Amirhossein Barzandeh, Rivo Uiboupin, and Priidik Lagemaa
State Planet, 1-osr7, 7, https://doi.org/10.5194/sp-1-osr7-7-2023, https://doi.org/10.5194/sp-1-osr7-7-2023, 2023
Short summary
Short summary
The freshwater content in the Baltic Sea has wide sub-regional variability characterized by the local climate dynamics. The total freshwater content trend is negative due to the recent increased inflows of saltwater, but there are also regions where the increase in runoff and decrease in ice content have led to an increase in the freshwater content.
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Sara Jutterström, Jana Moldanova, Elisa Majamäki, and Jukka-Pekka Jalkanen
Atmos. Chem. Phys., 23, 10163–10189, https://doi.org/10.5194/acp-23-10163-2023, https://doi.org/10.5194/acp-23-10163-2023, 2023
Short summary
Short summary
The Mediterranean Sea is a heavily trafficked shipping area, and air quality monitoring stations in numerous cities along the Mediterranean coast have detected high levels of air pollutants originating from shipping emissions. The current study investigates how existing restrictions on shipping-related emissions to the atmosphere ensure compliance with legislation. Focus was laid on fine particles and particle species, which were simulated with five different chemical transport models.
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Jana Moldanova, Sara Jutterström, Jukka-Pekka Jalkanen, and Elisa Majamäki
Atmos. Chem. Phys., 23, 1825–1862, https://doi.org/10.5194/acp-23-1825-2023, https://doi.org/10.5194/acp-23-1825-2023, 2023
Short summary
Short summary
Potential ship impact on air pollution in the Mediterranean Sea was simulated with five chemistry transport models. An evaluation of the results for NO2 and O3 air concentrations and dry deposition is presented. Emission data, modeled year and domain were the same. Model run outputs were compared to measurements from background stations. We focused on comparing model outputs regarding the concentration of regulatory pollutants and the relative ship impact on total air pollution concentrations.
Marc Guevara, Hervé Petetin, Oriol Jorba, Hugo Denier van der Gon, Jeroen Kuenen, Ingrid Super, Jukka-Pekka Jalkanen, Elisa Majamäki, Lasse Johansson, Vincent-Henri Peuch, and Carlos Pérez García-Pando
Earth Syst. Sci. Data, 14, 2521–2552, https://doi.org/10.5194/essd-14-2521-2022, https://doi.org/10.5194/essd-14-2521-2022, 2022
Short summary
Short summary
To control the spread of the COVID-19 disease, European governments implemented mobility restriction measures that resulted in an unprecedented drop in anthropogenic emissions. This work presents a dataset of emission adjustment factors that allows quantifying changes in 2020 European primary emissions per country and pollutant sector at the daily scale. The resulting dataset can be used as input in modelling studies aiming at quantifying the impact of COVID-19 on air quality levels.
Joel Kuula, Hilkka Timonen, Jarkko V. Niemi, Hanna E. Manninen, Topi Rönkkö, Tareq Hussein, Pak Lun Fung, Sasu Tarkoma, Mikko Laakso, Erkka Saukko, Aino Ovaska, Markku Kulmala, Ari Karppinen, Lasse Johansson, and Tuukka Petäjä
Atmos. Chem. Phys., 22, 4801–4808, https://doi.org/10.5194/acp-22-4801-2022, https://doi.org/10.5194/acp-22-4801-2022, 2022
Short summary
Short summary
Modern and up-to-date policies and air quality management strategies are instrumental in tackling global air pollution. As the European Union is preparing to revise Ambient Air Quality Directive 2008/50/EC, this paper initiates discussion on selected features of the directive that we believe would benefit from a reassessment. The scientific community has the most recent and deepest understanding of air pollution; thus, its contribution is essential.
Ranjeet S. Sokhi, Nicolas Moussiopoulos, Alexander Baklanov, John Bartzis, Isabelle Coll, Sandro Finardi, Rainer Friedrich, Camilla Geels, Tiia Grönholm, Tomas Halenka, Matthias Ketzel, Androniki Maragkidou, Volker Matthias, Jana Moldanova, Leonidas Ntziachristos, Klaus Schäfer, Peter Suppan, George Tsegas, Greg Carmichael, Vicente Franco, Steve Hanna, Jukka-Pekka Jalkanen, Guus J. M. Velders, and Jaakko Kukkonen
Atmos. Chem. Phys., 22, 4615–4703, https://doi.org/10.5194/acp-22-4615-2022, https://doi.org/10.5194/acp-22-4615-2022, 2022
Short summary
Short summary
This review of air quality research focuses on developments over the past decade. The article considers current and future challenges that are important from air quality research and policy perspectives and highlights emerging prominent gaps of knowledge. The review also examines how air pollution management needs to adapt to new challenges and makes recommendations to guide the direction for future air quality research within the wider community and to provide support for policy.
Jeroen Kuenen, Stijn Dellaert, Antoon Visschedijk, Jukka-Pekka Jalkanen, Ingrid Super, and Hugo Denier van der Gon
Earth Syst. Sci. Data, 14, 491–515, https://doi.org/10.5194/essd-14-491-2022, https://doi.org/10.5194/essd-14-491-2022, 2022
Short summary
Short summary
This paper presents an 18-year time series for anthropogenic emissions for the main air pollutants in Europe, distinguishing 15 main source categories. It provides a complete overview of emissions to air and is designed to support air quality modelling. The data build where possible on official country total emissions used in the policy processes, but where necessary alternative data were used. The emission data are spatially distributed at high resolution (~ 6 km x 6 km) in a consistent way.
Johannes Passig, Julian Schade, Robert Irsig, Thomas Kröger-Badge, Hendryk Czech, Thomas Adam, Henrik Fallgren, Jana Moldanova, Martin Sklorz, Thorsten Streibel, and Ralf Zimmermann
Atmos. Chem. Phys., 22, 1495–1514, https://doi.org/10.5194/acp-22-1495-2022, https://doi.org/10.5194/acp-22-1495-2022, 2022
Short summary
Short summary
The single-particle distribution of health-relevant polycyclic aromatic hydrocarbons (PAHs) was studied at the Swedish coast in autumn. We found PAHs bound to long-range transported particles from eastern and central Europe and also from ship emissions and local sources. This is the first field study using a new technology revealing single-particle data from both inorganic components and PAHs. We discuss PAH profiles that are indicative of several sources and atmospheric aging processes.
Urmas Raudsepp and Ilja Maljutenko
Geosci. Model Dev., 15, 535–551, https://doi.org/10.5194/gmd-15-535-2022, https://doi.org/10.5194/gmd-15-535-2022, 2022
Short summary
Short summary
A model's ability to reproduce the state of a simulated object is always a subject of discussion. A new method for the multivariate assessment of numerical model skills uses the K-means algorithm for clustering model errors. All available data that fall into the model domain and simulation period are incorporated into the skill assessment. The clustered errors are used for spatial and temporal analysis of the model accuracy. The method can be applied to different types of geoscientific models.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Jari Walden, Liisa Pirjola, Tuomas Laurila, Juha Hatakka, Heidi Pettersson, Tuomas Walden, Jukka-Pekka Jalkanen, Harri Nordlund, Toivo Truuts, Miika Meretoja, and Kimmo K. Kahma
Atmos. Chem. Phys., 21, 18175–18194, https://doi.org/10.5194/acp-21-18175-2021, https://doi.org/10.5194/acp-21-18175-2021, 2021
Short summary
Short summary
Ship emissions play an important role in the deposition of gaseous compounds and nanoparticles (Ntot), affecting climate, human health (especially in coastal areas), and eutrophication. Micrometeorological methods showed that ship emissions were mainly responsible for the deposition of Ntot, whereas they only accounted for a minor proportion of CO2 deposition. An uncertainty analysis applied to the fluxes and fuel sulfur content results demonstrated the reliability of the results.
Sara Jutterström, Filip Moldan, Jana Moldanová, Matthias Karl, Volker Matthias, and Maximilian Posch
Atmos. Chem. Phys., 21, 15827–15845, https://doi.org/10.5194/acp-21-15827-2021, https://doi.org/10.5194/acp-21-15827-2021, 2021
Short summary
Short summary
For the Baltic Sea countries, shipping emissions are an important source of air pollution. This study investigates the contribution of shipping emissions to the acidification and eutrophication of soils and freshwater within the airshed of the Baltic Sea in the years 2012 and 2040. The implementation of emission control areas and improving energy efficiency significantly reduces the negative impact on ecosystems expressed as a decrease in the exceedance of critical loads for sulfur and nitrogen.
Amanda T. Nylund, Lars Arneborg, Anders Tengberg, Ulf Mallast, and Ida-Maja Hassellöv
Ocean Sci., 17, 1285–1302, https://doi.org/10.5194/os-17-1285-2021, https://doi.org/10.5194/os-17-1285-2021, 2021
Short summary
Short summary
Acoustic and satellite observations of turbulent ship wakes show that ships can mix the water column down to 30 m depth and that a temperature signature of the wake can last for tens of kilometres after ship passage. Turbulent wakes deeper than 12 m were frequently detected, which is deeper than previously reported. The observed extent of turbulent ship wakes implies that in areas with intensive ship traffic, ship mixing should be considered when assessing environmental impacts from shipping.
Tuomas Kärnä, Patrik Ljungemyr, Saeed Falahat, Ida Ringgaard, Lars Axell, Vasily Korabel, Jens Murawski, Ilja Maljutenko, Anja Lindenthal, Simon Jandt-Scheelke, Svetlana Verjovkina, Ina Lorkowski, Priidik Lagemaa, Jun She, Laura Tuomi, Adam Nord, and Vibeke Huess
Geosci. Model Dev., 14, 5731–5749, https://doi.org/10.5194/gmd-14-5731-2021, https://doi.org/10.5194/gmd-14-5731-2021, 2021
Short summary
Short summary
We present Nemo-Nordic 2.0, a novel operational marine model for the Baltic Sea. The model covers the Baltic Sea and the North Sea with approximately 1 nmi resolution. We validate the model's performance against sea level, water temperature, and salinity observations, as well as sea ice charts. The skill analysis demonstrates that Nemo-Nordic 2.0 can reproduce the hydrographic features of the Baltic Sea.
Camilla Geels, Morten Winther, Camilla Andersson, Jukka-Pekka Jalkanen, Jørgen Brandt, Lise M. Frohn, Ulas Im, Wing Leung, and Jesper H. Christensen
Atmos. Chem. Phys., 21, 12495–12519, https://doi.org/10.5194/acp-21-12495-2021, https://doi.org/10.5194/acp-21-12495-2021, 2021
Short summary
Short summary
In this study, we set up new shipping emissions scenarios and use two chemistry transport models and a health assessment model to assess the development of air quality and related health impacts in the Nordic region. Shipping alone is associated with about 850 premature deaths during present-day conditions, decreasing to approximately 550–600 cases in the 2050 scenarios.
Sami D. Seppälä, Joel Kuula, Antti-Pekka Hyvärinen, Sanna Saarikoski, Topi Rönkkö, Jorma Keskinen, Jukka-Pekka Jalkanen, and Hilkka Timonen
Atmos. Chem. Phys., 21, 3215–3234, https://doi.org/10.5194/acp-21-3215-2021, https://doi.org/10.5194/acp-21-3215-2021, 2021
Short summary
Short summary
The effects of fuel sulfur content restrictions implemented by the International Maritime Organization in the Baltic Sea (in July 2010 and January 2015) on the particle properties of ship exhaust plumes and ambient aerosol were studied. The restrictions reduced the particle number concentrations and median particle size in plumes and number concentrations in ambient aerosol. These changes may improve human health in coastal areas and decrease the cooling effect of exhaust emissions from ships.
Walter Schmidt, Ari-Matti Harri, Timo Nousiainen, Harri Hohti, Lasse Johansson, Olli Ojanperä, Erkki Viitala, Jarkko Niemi, Jani Turpeinen, Erkka Saukko, Topi Rönkkö, and Pekka Lahti
Geosci. Instrum. Method. Data Syst., 9, 397–406, https://doi.org/10.5194/gi-9-397-2020, https://doi.org/10.5194/gi-9-397-2020, 2020
Short summary
Short summary
Combining short-time forecast models, standardized interfaces to a wide range of environment detectors and a flexible user access interface, CITYZER provides decision-making authorities and private citizens with reliable information about the near-future development of critical environmental parameters like air quality and rain. The system can be easily adapted to different areas or different parameters. Alarms for critical situations can be set and used to support authority decisions.
Jan Eiof Jonson, Michael Gauss, Michael Schulz, Jukka-Pekka Jalkanen, and Hilde Fagerli
Atmos. Chem. Phys., 20, 11399–11422, https://doi.org/10.5194/acp-20-11399-2020, https://doi.org/10.5194/acp-20-11399-2020, 2020
Short summary
Short summary
We have calculated the effects of air pollution in Europe from shipping on levels of PM2.5 and ozone and depositions of oxidised nitrogen and sulfur from individual sea areas and from all global shipping. Model results are shown for Europe as a whole but also focusing on select, mainly coastal, countries. Calculations are made using 2017 emissions supplemented by calculations reducing sulfur emissions from ships by about 80 % following the implementation of the 2020 global sulfur cap.
Lasse Johansson, Erik Ytreberg, Jukka-Pekka Jalkanen, Erik Fridell, K. Martin Eriksson, Maria Lagerström, Ilja Maljutenko, Urmas Raudsepp, Vivian Fischer, and Eva Roth
Ocean Sci., 16, 1143–1163, https://doi.org/10.5194/os-16-1143-2020, https://doi.org/10.5194/os-16-1143-2020, 2020
Short summary
Short summary
Very little is currently known about the activities and emissions of private leisure boats. To change this, a new model was created (BEAM). The model was used for the Baltic Sea to estimate leisure boat emissions, also considering antifouling paint leach. When compared to commercial shipping, the modeled leisure boat emissions were seen to be surprisingly large for some pollutant species, and these emissions were heavily concentrated on coastal inhabited areas during summer and early autumn.
Martin O. P. Ramacher, Lin Tang, Jana Moldanová, Volker Matthias, Matthias Karl, Erik Fridell, and Lasse Johansson
Atmos. Chem. Phys., 20, 10667–10686, https://doi.org/10.5194/acp-20-10667-2020, https://doi.org/10.5194/acp-20-10667-2020, 2020
Short summary
Short summary
The effects of shipping emissions on air quality and health in the harbour city of Gothenburg were simulated for different scenarios for the year 2040 with coupled regional and city-scale chemistry transport models to evaluate the impact of regional emission regulations and onshore electricity for ships at berth. The results show that contributions of shipping to exposure and associated health impacts from particulate matter and NO2 decrease significantly compared to 2012 in all scenarios.
Rafael A. O. Nunes, Maria C. M. Alvim-Ferraz, Fernando G. Martins, Fátima Calderay-Cayetano, Vanessa Durán-Grados, Juan Moreno-Gutiérrez, Jukka-Pekka Jalkanen, Hanna Hannuniemi, and Sofia I. V. Sousa
Atmos. Chem. Phys., 20, 9473–9489, https://doi.org/10.5194/acp-20-9473-2020, https://doi.org/10.5194/acp-20-9473-2020, 2020
Short summary
Short summary
The central position of the Iberian Peninsula with ship traffic between the Americas, Africa, and Europe, combined with the known adverse effects of this sector on air quality, emphasises the relevance of a more detailed study of these impacts in this region. Results showed increased levels of SO2 and NO2 near port areas, as well as of O3, sulfate, PM2.5, and PM10 over the Iberian Peninsula coastline due to shipping emissions. To study mitigation measures, application is crucial.
Lin Tang, Martin O. P. Ramacher, Jana Moldanová, Volker Matthias, Matthias Karl, Lasse Johansson, Jukka-Pekka Jalkanen, Katarina Yaramenka, Armin Aulinger, and Malin Gustafsson
Atmos. Chem. Phys., 20, 7509–7530, https://doi.org/10.5194/acp-20-7509-2020, https://doi.org/10.5194/acp-20-7509-2020, 2020
Short summary
Short summary
The effects of shipping emissions on air quality and health in the harbour city of Gothenburg were simulated for 2012 with coupled regional and city-scale chemistry transport models. The results show that contributions of shipping to exposure and health impacts from particulate matter and NO2 are significant and that shipping-related exposure to PM is dominated by emissions from regional shipping outside the city domain and is larger than exposure related to emissions from local road traffic.
Johannes Passig, Julian Schade, Ellen Iva Rosewig, Robert Irsig, Thomas Kröger-Badge, Hendryk Czech, Martin Sklorz, Thorsten Streibel, Lei Li, Xue Li, Zhen Zhou, Henrik Fallgren, Jana Moldanova, and Ralf Zimmermann
Atmos. Chem. Phys., 20, 7139–7152, https://doi.org/10.5194/acp-20-7139-2020, https://doi.org/10.5194/acp-20-7139-2020, 2020
Short summary
Short summary
Particle-bound metals in both natural dusts and polluted air can induce severe health effects. They are also transported by the wind into the oceans; provide micronutrients; and thus modulate biodiversity, fisheries, and climate. We show a way to more efficiently detect metals in individual particles while preserving source information. Our detection scheme is less dependent on the particle type and atmospheric changes and is thus valuable to the study of biogechemical cycles and air pollution.
Jan Eiof Jonson, Michael Gauss, Jukka-Pekka Jalkanen, and Lasse Johansson
Atmos. Chem. Phys., 19, 13469–13487, https://doi.org/10.5194/acp-19-13469-2019, https://doi.org/10.5194/acp-19-13469-2019, 2019
Short summary
Short summary
Calculations have been made with the regional-scale EMEP chemical transport model covering Europe and the sea areas surrounding Europe, including much of the North Atlantic. The main focus is on the effects on air pollution as well as depositions of sulfur and nitrogen following the implementation of stricter sulfur emission regulations from 1 January 2015 for ships operating in the Baltic Sea. We also include a study on the effects of future (2030) emissions changes.
Martin Otto Paul Ramacher, Matthias Karl, Johannes Bieser, Jukka-Pekka Jalkanen, and Lasse Johansson
Atmos. Chem. Phys., 19, 9153–9179, https://doi.org/10.5194/acp-19-9153-2019, https://doi.org/10.5194/acp-19-9153-2019, 2019
Short summary
Short summary
We simulated the impact of NOx shipping emissions on air quality and exposure in the Baltic Sea harbour cities Rostock (Germany), Riga (Latvia) and Gdańsk–Gdynia (Poland) for 2012. We found that local shipping affects total NO2, with contributions of 22 %, 11 % and 16 % in Rostock, Riga and Gdańsk–Gdynia. Exposure to NO2 from all emission sources was highest at home addresses (54 %–59 %). Emissions from shipping have a high impact on NO2 exposure in the port area (50 %–80 %).
Matthias Karl, Jan Eiof Jonson, Andreas Uppstu, Armin Aulinger, Marje Prank, Mikhail Sofiev, Jukka-Pekka Jalkanen, Lasse Johansson, Markus Quante, and Volker Matthias
Atmos. Chem. Phys., 19, 7019–7053, https://doi.org/10.5194/acp-19-7019-2019, https://doi.org/10.5194/acp-19-7019-2019, 2019
Short summary
Short summary
The effect of ship emissions on the regional air quality in the Baltic Sea region was investigated with three regional chemistry transport model systems. The ship influence on air quality is shown to depend on the boundary conditions, meteorological data and aerosol formation and deposition schemes that are used in these models. The study provides a reliable approach for the evaluation of policy options regarding emission regulations for ship traffic in the Baltic Sea.
Matthias Karl, Johannes Bieser, Beate Geyer, Volker Matthias, Jukka-Pekka Jalkanen, Lasse Johansson, and Erik Fridell
Atmos. Chem. Phys., 19, 1721–1752, https://doi.org/10.5194/acp-19-1721-2019, https://doi.org/10.5194/acp-19-1721-2019, 2019
Short summary
Short summary
Air emissions of nitrogen oxides from ship traffic in the Baltic Sea are a health concern in coastal areas of the Baltic Sea region. We find that the introduction of the nitrogen emission control area (NECA) is critical for reducing ship emissions of nitrogen oxides to levels that are low enough to sustainably dampen ozone production. The decline of the ship-related nitrogen deposition to the Baltic Sea between 2012 and 2040 varies between 46 % and 78 % in different regulation scenarios.
Jukka-Pekka Jalkanen, Lasse Johansson, Mattias Liefvendahl, Rickard Bensow, Peter Sigray, Martin Östberg, Ilkka Karasalo, Mathias Andersson, Heikki Peltonen, and Jukka Pajala
Ocean Sci., 14, 1373–1383, https://doi.org/10.5194/os-14-1373-2018, https://doi.org/10.5194/os-14-1373-2018, 2018
Short summary
Short summary
This paper presents the implementation of an underwater noise emission module in the Ship Traffic Emission Assessment Model. This model is based on real shipping activity, as described by the vessel navigation systems, and combines it with technical descriptions of each ship. The methodology described facilitates the expression of underwater noise as emission maps, which describe the energy emitted to the water. This enables regular reporting of shipping noise and facilitates further research.
Edith Soosaar, Ilja Maljutenko, Rivo Uiboupin, Maris Skudra, and Urmas Raudsepp
Ocean Sci., 12, 417–432, https://doi.org/10.5194/os-12-417-2016, https://doi.org/10.5194/os-12-417-2016, 2016
Short summary
Short summary
Remote sensing imagery and numerical model study of river bulge evolution and dynamics in a non-tidal sea showed an anti-cyclonically rotating bulge during the studied low wind period in the Gulf of Riga. In about 7–8 days the bulge grew up to 20 km in diameter, before being diluted. Both model and satellite images showed river water mainly contained in the bulge. The study shows significant effects of the wind in the evolution of the river bulge, even if the wind speed was moderate (3–4 m s−1).
Louis Marelle, Jennie L. Thomas, Jean-Christophe Raut, Kathy S. Law, Jukka-Pekka Jalkanen, Lasse Johansson, Anke Roiger, Hans Schlager, Jin Kim, Anja Reiter, and Bernadett Weinzierl
Atmos. Chem. Phys., 16, 2359–2379, https://doi.org/10.5194/acp-16-2359-2016, https://doi.org/10.5194/acp-16-2359-2016, 2016
J.-P. Jalkanen, L. Johansson, and J. Kukkonen
Atmos. Chem. Phys., 16, 71–84, https://doi.org/10.5194/acp-16-71-2016, https://doi.org/10.5194/acp-16-71-2016, 2016
Short summary
Short summary
This manuscript describes the emissions from shipping in European sea areas. The work is based on automatic position reports (AIS) sent by ships and reflects realistic activity patterns of ships. The work demonstrates that it is feasible to construct full bottom-up emission inventories based on large-volume activity data sets.
J. Beecken, J. Mellqvist, K. Salo, J. Ekholm, J.-P. Jalkanen, L. Johansson, V. Litvinenko, K. Volodin, and D. A. Frank-Kamenetsky
Atmos. Chem. Phys., 15, 5229–5241, https://doi.org/10.5194/acp-15-5229-2015, https://doi.org/10.5194/acp-15-5229-2015, 2015
Short summary
Short summary
Measurements of SO2, NOx and particle emission factors of more than 400 individual ship passages in the Gulf of Finland are presented and discussed. The measurements were conducted during two campaigns in the years 2011 and 2012 from ground-based and helicopter-based platforms. It was found that a significant number of ships use fuel oil with a fuel sulfur content below the limit of 1%.
Additionally, the results of modeled data for the same ships were compared to the measurements of this study.
J. E. Jonson, J. P. Jalkanen, L. Johansson, M. Gauss, and H. A. C. Denier van der Gon
Atmos. Chem. Phys., 15, 783–798, https://doi.org/10.5194/acp-15-783-2015, https://doi.org/10.5194/acp-15-783-2015, 2015
Short summary
Short summary
In order to assess the effects of ship emissions in and around the
Baltic Sea and the North Sea, regional model calculations are made
with the EMEP air pollution model. Ship emissions are based on
accurate ship positioning data. The effects on depositions and air
pollution and the resulting number of years of life lost (YOLLs)
are calculated by comparing model calculations with and without
ship emissions, with ship emissions before and after 2010, and for future
projections.
J. Soares, A. Kousa, J. Kukkonen, L. Matilainen, L. Kangas, M. Kauhaniemi, K. Riikonen, J.-P. Jalkanen, T. Rasila, O. Hänninen, T. Koskentalo, M. Aarnio, C. Hendriks, and A. Karppinen
Geosci. Model Dev., 7, 1855–1872, https://doi.org/10.5194/gmd-7-1855-2014, https://doi.org/10.5194/gmd-7-1855-2014, 2014
J. M. Balzani Lööv, B. Alfoldy, L. F. L. Gast, J. Hjorth, F. Lagler, J. Mellqvist, J. Beecken, N. Berg, J. Duyzer, H. Westrate, D. P. J. Swart, A. J. C. Berkhout, J.-P. Jalkanen, A. J. Prata, G. R. van der Hoff, and A. Borowiak
Atmos. Meas. Tech., 7, 2597–2613, https://doi.org/10.5194/amt-7-2597-2014, https://doi.org/10.5194/amt-7-2597-2014, 2014
I. Ialongo, J. Hakkarainen, N. Hyttinen, J.-P. Jalkanen, L. Johansson, K. F. Boersma, N. Krotkov, and J. Tamminen
Atmos. Chem. Phys., 14, 7795–7805, https://doi.org/10.5194/acp-14-7795-2014, https://doi.org/10.5194/acp-14-7795-2014, 2014
J. Beecken, J. Mellqvist, K. Salo, J. Ekholm, and J.-P. Jalkanen
Atmos. Meas. Tech., 7, 1957–1968, https://doi.org/10.5194/amt-7-1957-2014, https://doi.org/10.5194/amt-7-1957-2014, 2014
L. Pirjola, A. Pajunoja, J. Walden, J.-P. Jalkanen, T. Rönkkö, A. Kousa, and T. Koskentalo
Atmos. Meas. Tech., 7, 149–161, https://doi.org/10.5194/amt-7-149-2014, https://doi.org/10.5194/amt-7-149-2014, 2014
J. Moldanová, E. Fridell, H. Winnes, S. Holmin-Fridell, J. Boman, A. Jedynska, V. Tishkova, B. Demirdjian, S. Joulie, H. Bladt, N. P. Ivleva, and R. Niessner
Atmos. Meas. Tech., 6, 3577–3596, https://doi.org/10.5194/amt-6-3577-2013, https://doi.org/10.5194/amt-6-3577-2013, 2013
L. Johansson, J.-P. Jalkanen, J. Kalli, and J. Kukkonen
Atmos. Chem. Phys., 13, 11375–11389, https://doi.org/10.5194/acp-13-11375-2013, https://doi.org/10.5194/acp-13-11375-2013, 2013
Cited articles
ABS: ABS Advisory on Exhaust Gas Scrubber Systems, available at:
https://ww2.eagle.org/content/dam/eagle/advisories-and-debriefs/exhaust-gas-scrubber-systems-advisory.pdf (last access: 10 May 2021),
2018.
ADEC: Alaska Department of Cruise Ship Initiative Part 2 Report, Juneau, AK,
USA, available at:
https://dec.alaska.gov/media/18375/acsireport2.pdf (last access: 10 May 2021), 2000.
ADEC: Assessment of cruise ship and ferry wastewater impacts in Alaska, available at:
https://dec.alaska.gov/media/10148/cpvec-assesment2004.pdf (last access: 10 May 2021), 2004.
ADEC: 2005 Small Ship Wastewater Sampling Results, Juneau, AK, USA, available at:
https://dec.alaska.gov/media/18190/2005-smallship-wwsampling-final.pdf (last access: 10 May 2021),
2005.
ADEC: 2006 Small Ship Wastewater Sampling Results, available at:
https://dec.alaska.gov/media/18387/2006-smallship-ww.pdf (last access: 10 May 2021), 2006.
ADEC: 2007 Small Ship Wastewater Sampling Results, Juneau, AK, USA, available at:
https://dec.alaska.gov/media/18358/2007-small-ship-ww.pdf (last access: 10 May 2021),
2007.
ADEC: 2008 Small Passenger Vessel Wastewater Sampling Results, available at: https://dec.alaska.gov/media/18360/2008-smallship-ww-sampling.pdf (last access: 10 May 2021), 2010.
ADEC: 2009 Small Commercial Passenger Vessel and Ferry Wastewater Sampling Results, available at: https://dec.alaska.gov/media/18203/2009-small-ship-ww.pdf (last access: 10 May 2021), 2011a.
ADEC: Large Cruise Ship 2010 Wastewater Sampling Results, available at: https://dec.alaska.gov/media/18212/2010-large-ship-wwsampling-report.pdf (last access: 10 May 2021), 2011b.
ADEC: Alaska DEC 2011 Small Commercial Passenger Vessel and Ferry Wastewater
Sampling Results, Juneau, AK, USA, available at:
https://dec.alaska.gov/media/18389/2010-small-ship-ww.pdf (last access: 10 May 2021),
2013.
Albert, R. and Danesi, R.: Oily Bilgewater Separators, US EPA reports EPA
800-R-11-007, Washington DC, USA, available at:
https://www3.epa.gov/npdes/pubs/vgp_bilge.pdf (last access: 10 May 2021), 2011.
Alzieu, C.: Environmental problems caused by TBT in France: Assessment,
regulations, prospects, Mar. Environ. Res., 32, 7–17,
https://doi.org/10.1016/0141-1136(91)90029-8, 1991.
Alzieu, C., Sanjuan, J., Deltreil, J. P., and Borel, M.: Tin conatamination
in Arcachon Bay: Effects on oyster shell anomalies, Mar. Pollut. Bull., 17,
494–498, 1986.
Ambrosson, J.: MAM-PEC-scenarier för Sveriges östkust och
västkust, Swedish Chemical Agency Report #240-832-08, Sundbyberg,
Sweden, 2008.
Barregard, L., Moln, P., Jonson, J. E., and Stockfelt, L.: Impact on
Population Health of Baltic Shipping Emissions, Int. J. Environ. Res. Public
Health, 16, 1–11, https://doi.org/10.3390/ijerph16111954, 2019.
Beecken, J., Mellqvist, J., Salo, K., Ekholm, J., and Jalkanen, J.-P.: Airborne emission measurements of SO2, NOx and particles from individual ships using a sniffer technique, Atmos. Meas. Tech., 7, 1957–1968, https://doi.org/10.5194/amt-7-1957-2014, 2014.
Beecken, J., Mellqvist, J., Salo, K., Ekholm, J., Jalkanen, J.-P., Johansson, L., Litvinenko, V., Volodin, K., and Frank-Kamenetsky, D. A.: Emission factors of SO2, NOx and particles from ships in Neva Bay from ground-based and helicopter-borne measurements and AIS-based modeling, Atmos. Chem. Phys., 15, 5229–5241, https://doi.org/10.5194/acp-15-5229-2015, 2015.
Beldowski, J., Löffler, A., Schneider, B., and Joensuu, L.: Distribution
and biogeochemical control of total CO2 and total alkalinity in the Baltic
Sea, J. Mar. Syst., 81, 252–259, https://doi.org/10.1016/j.jmarsys.2009.12.020,
2010.
Amara, I., Miled, W., Ben Slama, R., and Ladhari, N.: Antifouling processes and toxicity effects of antifouling paints on marine environment, A review, Environ. Toxicol. Pharmacol., 57, 115–130, https://doi.org/10.1016/j.etap.2017.12.001, 2018.
Brandt, J., Silver, J. D., Christensen, J. H., Andersen, M. S.,
Bønløkke, J. H., Sigsgaard, T., Geels, C., Gross, A., Hansen, A. B.,
Hansen, K. M., Hedegaard, G. B., Kaas, E., and Frohn, L. M.: Assessment of
past, present and future health-cost externalities of air pollution in
Europe and the contribution from international ship traffic using the EVA
model system, Atmos. Chem. Phys., 13, 7747–7764,
https://doi.org/10.5194/acp-13-7747-2013, 2013.
Burgard, D. A. and Bria, C. R. M.: Bridge-based sensing of NOx and SO2
emissions from ocean-going ships, Atmos. Environ., 136, 54–60,
https://doi.org/10.1016/j.atmosenv.2016.04.014, 2016.
Champ, M. A.: Economic and environmental impacts on ports and harbors from
the convention to ban harmful marine anti-fouling systems, Mar. Pollut.
Bull., 46, 935–940, 2003.
Copeland, C.: Cruise ship pollution: Background, laws and regulations, and key issues, Congressional Research Service, available at: https://www.everycrsreport.com/files/20081117_RL32450_f22a255394f5f11031cc49692c9f4bf8aeba72f0.pdf (last access: 10 May 2021), 2008.
Corbett, J. J., Winebrake, J. J., Green, E. H., Kasibhatla, P., Eyring, V.,
and Lauer, A.: Mortality from ship emissions: A global assessment, Environ.
Sci. Technol., 41, 8512–8518, https://doi.org/10.1021/es071686z, 2007.
David, M. and Gollasch, S.: Global Maritime Transport and Ballast Water Management – Issues and Solutions, Springer Science + Business Media, Dordrecht, Germany, 2015, ISBN 978-94-017-9366-7, 2015.
Endres, S., Maes, F., Hopkins, F., Houghton, K., Mårtensson, E. M.,
Oeffner, J., Quack, B., Singh, P., and Turner, D.: A New Perspective at the
Ship-Air-Sea-Interface: The Environmental Impacts of Exhaust Gas Scrubber
Discharge, Front. Mar. Sci., 5, 139, https://doi.org/10.3389/fmars.2018.00139,
2018.
Etkin, D. S.: Worldwide analysis of in-port vessel operational lubricant
discharges and leakages, Proc. 33rd AMOP Tech. Semin. Environ. Contam.
Response, 1, 529–553, 2010.
European Commission: Report on implementation and compliance with the
sulphur standards for marine fuels set out in Directive (EU) 2016/802
relating to a reduction in the sulphur content of certain liquid fuels, 17,
available at:
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018DC0188&from=en (last access: 10 May 2021),
2018.
Faber, J., Singh, A., Ahdour, S., 't Hoen, M., Nelissen, D., Steiner, P.,
Rivera, S., Raucci, C., Smith, T. W. P., Muraoka, E., Ruderman, Y.,
Khomutov, I., and Hanayama, S.: Assessment of Fuel Oil Availability,
available at: https://cedelft.eu/wp-content/uploads/ (last access: 10 May 2021),
2016.
Furstenberg, S., Mohn, H., and Sverud, T.: Study on discharge factors for
legal operational discharges to sea from vessels in Norwegian waters, DNV
report NO. 2009-0284, Hovik, Norway, 2009.
Gutierrez, C.: List of copper-based antifoulant paints by leach rate
category, Sacramento, California, available at:
https://www.waterboards.ca.gov/sandiego/ (last access: 10 May 2021), 2015.
Habereder, T., Moore, D., and Lang, M.: Lubricant Additives Chemistry and
Applications, edited by: Rudnick, L. R., Taylor and Francis, Boca Raton,
FL, USA, 2009.
Hassellöv, I. M., Turner, D. R., Lauer, A., and Corbett, J. J.: Shipping
contributes to ocean acidification, Geophys. Res. Lett., 40, 2731–2736,
https://doi.org/10.1002/grl.50521, 2013.
HELCOM: Fifth Baltic Sea Pollution Load Compilation (PLC-5) - Balt. Sea Environ. Proc. No. 128, edited by: Knuuttila, S., Scendsen, L., Staaf, H., Kotilainen, P., Boutrup, S., Pyhälä, M., and Duekin, M. Baltic Marine Environment Protection Commission (Helsinki Commission), available at: https://helcom.fi/wp-content/uploads/2019/08/BSEP128.pdf (last access: 10 May 2021), 2011.
HELCOM: Baltic Sea Sewage Port Reception Facilities, revised 2nd edition, edited by: Backer, H., Frias, M., and Nicolas, F., Baltic Marine Environment Protection Commission (Helsinki Commission), available at: https://helcom.fi/wp-content/uploads/ (last access: 10 May 2021), 2014a.
HELCOM: HELCOM Guide to Alien Species and Ballast Water Management in the
Baltic Sea, Helsinki, available at:
https://helcom.fi/wp-content/uploads/ (last access: 10 May 2021),
2014b.
HELCOM: HELCOM Annual report on discharges observed during aerial
surveillance in the Baltic Sea, 2017, Helsinki, available at:
https://helcom.fi/wp-content/uploads/2020/01/HELCOM-Aerial-Surveillance-Report-2018.pdf (last access: 10 May 2021),
2018a.
HELCOM: HELCOM Assessment on maritime activities in the Baltic Sea 2018,
Helsinki, available at:
http://www.helcom.fi/Lists/Publications/BSEP152.pdf (last access: 10 May 2021), 2018b.
Hollenbach, K. U.: Estimating resistance and propulsion for singlescrew and
twin screw ships, Sh. Technol. Res., 45, 72–76, 1998.
Hufnagl, M., Liebezeit, G., and Behrends, B.: Effects of Sea Water Scrubbing
Final report, Wilhelmshaven, Germany, available at:
https://www.egcsa.com/wp-content/uploads/BP_Final_Report_rev.pdf (last access: 10 May 2021), 2005.
Huhta, H. K., Rytkönen, J., and Sassi, J.: Estimated nutrient load from
waste waters originating from ships in the Baltic Sea area, VTT Research notes 2370, Technical Research Centre of Finland, Espoo, Finland 2007, ISBN 978-951-38-6899-4, available at:
https://www.vttresearch.com/sites/default/files/pdf/tiedotteet/2007/T2370.pdf (last access: 10 May 2021), 2007.
IHS_Global: SeaWeb database of the global ship fleet, IHS Markit Global Headquarters, London, United Kingdom, 2016.
IMO: AFS 2001 – (A-2) – Final Act Of The International Conference On The
Control Of Harmful Anti-Fouling System For Ships, International Maritime
Organisation, London, UK, 2001.
IMO: INTERNATIONAL CONVENTION FOR THE CONTROL AND MANAGEMENT OF SHIPS' BALLAST WATER AND SEDIMENTS, 2004. Consolidated text of the International Convention for the Control and Management of Ships’ Ballast Water and Sediments, 2004 and the 2018 amendments adopted by the Marine Environment Protection Committee through resolutions MEPC.296(72), MEPC.297(72) and MEPC.299(72)), International Maritime Organization, 2018.
IMO: Recommendations on Standards for the Discharge of Sewage from Ships, available at:
https://wwwcdn.imo.org/localresources/en/ (last access: 10 May 2021), 2006.
IMO: Use of seawater lubricated tube bearings to eliminate stern tube oil
pollution from ships, IMO, Canada, 2008a.
IMO: Use of seawater lubricated tube bearings to eliminate stern tube oil
pollution from ships, MEPC58/INF.22, Canada, 2008b.
IMO: Simplified overview of the discharge provisions of the revised MARPOL
Annex V which entered into force on 1 January 2013, 201, available at: https://wwwcdn.imo.org/localresources/en/OurWork/ (last access: 10 May 2021),
2013.
IMO: Effective date of implementation of the fuel oil standard in regulation
14.1.3 of MARPOL Annex VI, IMO MEPC70, UK, 2016.
IMO: Additional information on environmental concentrations observed
worldwide and scientific evidence for the adverse effects of cybutryne to
the marine environment and to human health, MEPC 73/INF.10, 1–14, 2018a.
IMO: Review of the 2015 guidelines for exhaust gas cleaning systems, 2018b.
IMO: Scrubber Environmental Impact Literature Review Submitted by Panama,
MEPC 74/INF.10, 1–21 February, available at:
https://wwf.ca/wp-content/uploads/2019/ (last access: 10 May 2021),
2019.
Ivče, R., Bakota, M., Kos, S., and Brčić, D.: Advanced numerical
method for determining the wetted area of container ships for increased
estimation accuracy of copper biocide emissions, J. Mar. Sci. Eng., 8,
1–18, https://doi.org/10.3390/jmse8110848, 2020.
Jalkanen, J.-P. and Johansson, L.: Discharges to the sea from Baltic Sea
shipping in 2006–2018, available at:
https://portal.helcom.fi/meetings/MARITIME_19-2019-582/ (last access: 10 May 2021), 2019.
Jalkanen, J.-P., Brink, A., Kalli, J., Pettersson, H., Kukkonen, J., and Stipa, T.: A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area, Atmos. Chem. Phys., 9, 9209–9223, https://doi.org/10.5194/acp-9-9209-2009, 2009.
Jalkanen, J. P., Johansson, L., Kukkonen, J., Brink, A., Kalli, J., and
Stipa, T.: Extension of an assessment model of ship traffic exhaust
emissions for particulate matter and carbon monoxide, Atmos. Chem. Phys.,
12, 2641–2659, https://doi.org/10.5194/acp-12-2641-2012, 2012.
Jalkanen, J. P., Johansson, L., Liefvendahl, M., Bensow, R., Sigray, P.,
Östberg, M., Karasalo, I., Andersson, M., Peltonen, H., and Pajala, J.:
Modelling of ships as a source of underwater noise, Ocean Sci., 14,
1373–1383, https://doi.org/10.5194/os-14-1373-2018, 2018.
Jalkanen, J.-P., Johansson, L., Wilewska-Bien, M., Granhag, L., Ytreberg, E., Eriksson, K. M., and Yngsell, D., Hassellöv, I.-M., Magnusson, K., Raudsepp, U., Maljutenko, I., Winnes, H., and Moldanova, J.: Modeling of discharges from Baltic Sea shipping, Zenodo [Dataset], https://doi.org/10.5281/zenodo.4063643, 2020.
Johansson, L., Jalkanen, J.-P., Kalli, J., and Kukkonen, J.: The evolution of
shipping emissions and the costs of regulation changes in the northern EU
area, Atmos. Chem. Phys., 13, 11375–11389,
https://doi.org/10.5194/acp-13-11375-2013, 2013.
Johansson, L., Jalkanen, J.-P., and Kukkonen, J.: Global assessment of
shipping emissions in 2015 on a high spatial and temporal resolution, Atmos.
Environ., 167, 403–415, https://doi.org/10.1016/j.atmosenv.2017.08.042, 2017.
Johansson, L., Ytreberg, E., Jalkanen, J.-P., Fridell, E., Eriksson, K. M., Lagerström, M., Maljutenko, I., Raudsepp, U., Fischer, V., and Roth, E.: Model for leisure boat activities and emissions – implementation for the Baltic Sea, Ocean Sci., 16, 1143–1163, https://doi.org/10.5194/os-16-1143-2020, 2020.
Jonson, J. E., Jalkanen, J. P., Johansson, L., Gauss, M., and Denier van der Gon, H. A. C.: Model calculations of the effects of present and future emissions of air pollutants from shipping in the Baltic Sea and the North Sea, Atmos. Chem. Phys., 15, 783–798, https://doi.org/10.5194/acp-15-783-2015, 2015.
Jönsson, H., Baky, A., Jeppsson, U., Hellström, D., and Kärrman,
E.: Composition of Urine, Feaces, Greywater and Biowaste for Utilisation in
the URWARE Model, available at:
https://www.iea.lth.se/publications/Reports/LTH-IEA-7222.pdf (last access: 10 May 2021), 2005.
Karasalo, I., Östberg, M., Sigray, P., Jalkanen, J.-P., Johansson, L.,
Liefvendahl, M., and Bensow, R.: Estimates of source spectra of ships from
long term recordings in the Baltic sea, Front. Mar. Sci., 4, 164,
https://doi.org/10.3389/fmars.2017.00164, 2017.
Karl, M., Jonson, J. E., Uppstu, A., Aulinger, A., Prank, M., Sofiev, M., Jalkanen, J.-P., Johansson, L., Quante, M., and Matthias, V.: Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models, Atmos. Chem. Phys., 19, 7019–7053, https://doi.org/10.5194/acp-19-7019-2019, 2019a.
Karl, M., Bieser, J., Geyer, B., Matthias, V., Jalkanen, J.-P., Johansson, L., and Fridell, E.: Impact of a nitrogen emission control area (NECA) on the future air quality and nitrogen deposition to seawater in the Baltic Sea region, Atmos. Chem. Phys., 19, 1721–1752, https://doi.org/10.5194/acp-19-1721-2019, 2019b.
Kattner, L., Mathieu-Üffing, B., Burrows, J. P., Richter, A., Schmolke, S., Seyler, A., and Wittrock, F.: Monitoring compliance with sulfur content regulations of shipping fuel by in situ measurements of ship emissions, Atmos. Chem. Phys., 15, 10087–10092, https://doi.org/10.5194/acp-15-10087-2015, 2015.
King, D., Hagan, P., Riggio, M., and Wright, D.: Preview of global ballast
water treatment markets, J. Mar. Eng. Technol., 11, 3–15,
2012.
Kjølholt, J., Aakre, S., Jürgensen, C., and Lauridsen, J.: Assessment
of possible impacts of scrubber water discharges on the marine environment,
Copenhagen, Denmark, available at:
https://www2.mst.dk/Udgiv/publications/2012/06/978-87-92903-30-3.pdf (last access: 10 May 2021), 2012.
Koivisto, S.: Finnish exposure scenarios for antifouling products – Reports
of the Finnish Environment Institute, Helsinki, Finland, 2003.
Kojima, R., Shibata, T., and Ueda, K.: Leaching Phenomena of Antifouling
Agents from Ships' Hull Paints, J. Shipp. Ocean Eng., 6, 269–278,
https://doi.org/10.17265/2159-5879/2016.05.002, 2016.
Koski, M., Stedmon, C., and Trapp, S.: Ecological effects of scrubber water
discharge on coastal plankton: Potential synergistic effects of contaminants
reduce survival and feeding of the copepod Acartia tonsa, Mar. Environ.
Res., 129, 374–385, https://doi.org/10.1016/j.marenvres.2017.06.006,
2017.
Lagerström, M., Lindgren, J. F., Holmqvist, A., Dahlström, M., and
Ytreberg, E.: In situ release rates of Cu and Zn from commercial antifouling
paints at different salinities, Mar. Pollut. Bull., 127, 289–296,
https://doi.org/10.1016/j.marpolbul.2017.12.027, 2018.
Lagerström, M., Ytreberg, E., Wiklund, A. K. E., and Granhag, L.:
Antifouling paints leach copper in excess – study of metal release rates
and efficacy along a salinity gradient, Water Res., 186, 116383,
https://doi.org/10.1016/j.watres.2020.116383, 2020.
Liu, H., Fu, M., Jin, X., Shang, Y., Shindell, D., Faluvegi, G., Shindell,
C., and He, K.: Health and climate impacts of ocean-going vessels in East
Asia, Nat. Clim. Change, 6, 1037–1041, https://doi.org/10.1038/nclimate3083, 2016.
Lloyds Register: Understanding Exhaust Gas Treatment Systems – Guidance for
shipowners and operators, London, available at:
https://www.rtu.lv/writable/public_files/RTU_understanding_exhaust_gas_treatment_systems.pdf (last access: 10 May 2021), 2012.
Madjidian, J. and Rantanen, A.: CLEANSHIP Task 4.5 Port Reception Facilities
for Ship-generated Sewage, available at:
https://silo.tips/download/port-of-trelleborg-port-of-helsinki (last access: 10 May 2021), 2011.
Magnusson, K., Jalkanen, J. P., Johansson, L., Smailys, V., Telemo, P., and
Winnes, H.: Risk assessment of bilge water discharges in two Baltic shipping
lanes, Mar. Pollut. Bull., 126, 575–584,
https://doi.org/10.1016/j.marpolbul.2017.09.035, 2018a.
Magnusson, K., Thor, P., Granberg, M., Magnusson, A. K., Thor, P., and
Granberg, M.: Scrubbers: Closing the loop Activity 3: Task 2 Risk
Assessment of marine exhaust gas scrubber water, Swedish Environment
Institute IVL, Stockholm, 2018b.
McLaughlin, C., Falatko, D., Danesi, R., and Albert, R.: Characterizing
shipboard bilgewater effluent before and after treatment, Environ. Sci. Pollut.
Res. Int., 21, 5637–5652, https://doi.org/10.1007/s11356-013-2443-x, 2014.
National Geospatial Intelligence Agency: World Port Index,
available at: http://msi.nga.mil/NGAPortal/MSI.portal_nfpb=true&_pageLabel=msi_portal_page_62&pubCode=0015 (last access: 10 May 2021), 2014.
New Zealand: Application for the Reassessment of a Group of Hazardous Substances under Section 63 of the Hazardous Substances and New Organisms Act 1996, New Zealand Environmental Protection Agency, available at: https://www.epa.govt.nz/assets/FileAPI/, (last access: 10 May 2021), 2013.
Pavlakis, P., Tarchi, D., Seiber, A. J., Ferraro, G., and Vincent, G.: On the
monitoring of illicit vessel discharges. A reconnaissance study in the
Mediterranean Sea, 20 pp., available at:
https://ec.europa.eu/echo/files/ (last access: 10 May 2021), 2001.
Penny, R. and Suominen-Yeh, M.: Biological Bilge Water Treatment System,
Nav. Eng. J., 118, 45–50,
https://doi.org/10.1111/j.1559-3584.2006.tb00462.x, 2008.
Raudsepp, U., Maljutenko, I., Kõuts, M., Granhag, L., Wilewska-Bien, M.,
Hassellöv, I. M., Eriksson, K. M., Johansson, L., Jalkanen, J. P., Karl,
M., Matthias, V., and Moldanova, J.: Shipborne nutrient dynamics and impact
on the eutrophication in the Baltic Sea, Sci. Total Environ., 671, 189–207,
https://doi.org/10.1016/j.scitotenv.2019.03.264, 2019.
RINA: Significant ships, edited by: Halfhide, R., RINA, London, UK, 2010.
Rousseau, C., Baraud, F., Leleyter, L., and Gil, O.: Cathodic protection by
zinc sacrificial anodes: Impact on marine sediment metallic contamination,
J. Hazard. Mater., 167, 953–958, https://doi.org/10.1016/j.jhazmat.2009.01.083,
2009.
Schneekluth, H. and Bertram, V.: Ship Design for Efficiency and Economy, Butterworth-Heineman, Oxford, UK, ISBN 9780750641333, 1998.
Schultz, M. P.: Effects of coating roughness and biofouling on ship
resistance and powering, Biofouling, 23, 331–341,
https://doi.org/10.1080/08927010701461974, 2007.
Seebens, H., Gastner, M. T., and Blasius, B.: The risk of marine bioinvasion
caused by global shipping, Ecol. Lett., 16, 782–790,
https://doi.org/10.1111/ele.12111, 2013.
Sengottuvel, P. and Jagdale, K.: Review on the propeller shaft composite
bearings used to reduce the stern tube oil pollution in ocean, Int. J. Pure
Appl. Math., 116, 471–477, 2017.
Sofiev, M., Winebrake, J. J., Johansson, L., Carr, E. W., Prank, M., Soares,
J., Vira, J., Kouznetsov, R., Jalkanen, J.-P., and Corbett, J. J.: Cleaner
fuels for ships provide public health benefits with climate tradeoffs, Nat.
Commun., 9, 406, https://doi.org/10.1038/s41467-017-02774-9, 2018.
Stamper, D. M. and Montgomery, M. T.: Biological treatment and toxicity of
low concentrations of oily wastewater (bilgewater), Can. J. Microbiol.,
54, 687–693, https://doi.org/10.1139/W08-053, 2008.
SWAM: Water Information System Sweden, available at:
https://viss.lansstyrelsen.se/Maps.aspx (last access: 30 September 2020), 2018.
Tiselius, P. and Magnusson, K.: Toxicity of treated bilge water: The need
for revised regulatory control, Mar. Pollut. Bull., 114, 860–866,
https://doi.org/10.1016/j.marpolbul.2016.11.010, 2017.
Turner, D. R., Hassellöv, I. M., Ytreberg, E., and Rutgersson, A.:
Shipping and the environment: Smokestack emissions, scrubbers and
unregulated oceanic consequences, Elem. Sci. Anthr., 5, 1–10,
https://doi.org/10.1525/elementa.167, 2017.
US EPA: Assigning values to non-detected/non-quantified pesticide residues
in human health food exposure assessments, 6047, 1–25,
available at:
https://archive.epa.gov/pesticides/trac/web/pdf/trac3b012.pdf (last access: 10 May 2021), 2000.
US EPA: Cruise Ship Discharge Assessment Report,
2008.
US EPA: Environmentally Acceptable Lubricants. Report EPA 800-R-11-002, available at: https://www3.epa.gov/npdes/pubs/vgp_environmentally_acceptable_lubricants.pdf (last access: 10 May 2021),
2011a.
US EPA: Exhaust Gas Scrubber. Washwater Effluent, Report EPA-800-R-11-006,
(November), 46, available at:
https://www3.epa.gov/npdes/pubs/vgp_exhaust_gas_scrubber.pdf (last access: 10 May 2021), 2011b.
Valkirs, A. O., Seligman, P. F., Haslbeck, E., and Caso, J. S.: Measurement
of copper release rates from antifouling paint under laboratory and in situ
conditions: implications for loading estimation to marine water bodies, Mar.
Pollut. Bull., 46, 763–779,
https://doi.org/10.1016/S0025-326X (03)00044-4, 2003.
Wärtsilä Corp.: Wartsila Environmental Product Guide,
available at:
https://cdn.wartsila.com/docs/default-source/product-files/egc/product-guide-o-env-environmental-solutions.pdf (last access: 10 May 2021),
2017.
Werschkun, B., Sommer, Y., and Banerji, S.: Disinfection by-products in
ballast water treatment: An evaluation of regulatory data, Water Res.,
46, 4884–4901, https://doi.org/10.1016/j.watres.2012.05.034, 2012.
Wilewska-bien, M., Granhag, L., and Jalkanen, J.: Phosphorus flows on ships:
Case study from the Baltic Sea, Inst. Mech. Eng. J. Eng. Marit. Environ.,
233, 528–539, https://doi.org/10.1177/1475090218761761, 2019.
Winnes, H., Fridell, E., and Moldanová, J.: Effects of marine exhaust gas
scrubbers on gas and particle emissions, J. Mar. Sci. Eng., 8, 299,
https://doi.org/10.3390/JMSE8040299, 2020.
Yebra, D. M., Kiil, S., and Dam-Johansen, K.: Antifouling technology – Past,
present and future steps towards efficient and environmentally friendly
antifouling coatings, Prog. Org. Coat., 50, 75–104,
https://doi.org/10.1016/j.porgcoat.2003.06.001, 2004.
Ytreberg, E., Karlsson, J., and Eklund, B.: Comparison of toxicity and
release rates of Cu and Zn from anti-fouling paints leached in natural and
artificial brackish seawater, Sci. Total Environ., 408, 2459–2466,
https://doi.org/10.1016/j.scitotenv.2010.02.036, 2010.
Ytreberg, E., Lagerström, M., Holmqvist, A., Eklund, B., Elwing, H.,
Dahlström, M., Dahl, P., and Dahlström, M.: A novel XRF method to
measure environmental release of copper and zinc from antifouling paints,
Environ. Pollut., 225, 490–496, https://doi.org/10.1016/j.envpol.2017.03.014, 2017.
Ytreberg, E., Hassellöv, I. M., Nylund, A. T., Hedblom, M., Al-Handal,
A. Y., and Wulff, A.: Effects of scrubber washwater discharge on
microplankton in the Baltic Sea, Mar. Pollut. Bull., 145,
316–324, https://doi.org/10.1016/j.marpolbul.2019.05.023, 2019.
Short summary
This modelling study describes a methodology for describing pollutant discharges from ships to the sea. The pilot area used is the Baltic Sea area and discharges of bilge, ballast, sewage, wash water as well as stern tube oil are reported for the year 2012. This work also reports the release of SOx scrubber effluents. This technique may be used by ships to comply with tight sulfur limits inside Emission Control Areas, but it also introduces a new pollutant stream from ships to the sea.
This modelling study describes a methodology for describing pollutant discharges from ships to...