Articles | Volume 17, issue 2
https://doi.org/10.5194/os-17-487-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-487-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Imprint of chaotic ocean variability on transports in the southwestern Pacific at interannual timescales
LEGOS, Université de Toulouse, IRD, CNES, CNRS, UPS, Toulouse, France
Guillaume Serazin
Climate Change Research Center, University of New South Wales, Sydney,
Australia
Thierry Penduff
Université Grenoble Alpes, CNRS, IRD, Grenoble-INP, Institut des
Géosciences de l'Environnement (IGE), Grenoble, France
Christophe Menkes
ENTROPIE, IRD, CNRS, UR, UNC, Ifremer, Nouméa, New Caledonia
Related authors
Bastien Pagli, Takeshi Izumo, Alexandre Barboni, Carla Chevillard, Cyril Dutheil, Raphael Legrand, Christophe Menkes, Claire Rocuet, and Sophie Cravatte
EGUsphere, https://doi.org/10.5194/egusphere-2025-4166, https://doi.org/10.5194/egusphere-2025-4166, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Marine heatwaves—periods of unusually warm ocean temperatures—are becoming more frequent and intense with climate change. These events can harm marine ecosystems, especially in vulnerable regions like French Polynesia. Here, we used satellite sea surface temperature data and ocean reanalysis to characterize past events. We investigated their characteristics, variability linked to ENSO, and the physical mechanisms driving their onset and decay across the region.
Shilpa Lal, Sophie Cravatte, Christophe Menkes, Jed Macdonald, Romain LeGendre, Ines Mangolte, Cyril Dutheil, Neil Holbrook, and Simon Nicol
EGUsphere, https://doi.org/10.5194/egusphere-2025-3281, https://doi.org/10.5194/egusphere-2025-3281, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This paper characterizes historical (1981–2023) marine heatwaves in the tropical southwestern Pacific, where they pose a challenge for marine resource dependent Islands. Heatwaves are distinguished as a function of their spatial extent, signature at the coast, and seasonality, to allow a better understanding of their impacts on ecosystems. Marine heatwaves are getting longer and more frequent, with greater spatial extents. Our results aim to inform the Pacific Islands on their vulnerability.
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Clément Vic, and Florent Lyard
EGUsphere, https://doi.org/10.5194/egusphere-2025-95, https://doi.org/10.5194/egusphere-2025-95, 2025
Short summary
Short summary
Temporal variability of the semidiurnal internal tide around New Caledonia is investigated using regional modeling. An important contribution to temporal variability not linked to the astronomically-forced spring-neap cycle is due to the presence of mesoscale eddies, both at the generation sites and in propagation direction. The incoherent tide has a widespread signature in sea surface height (SSH) challenging the SSH observability of mesoscale to submesoscale dynamics.
Romain Le Gendre, David Varillon, Sylvie Fiat, Régis Hocdé, Antoine De Ramon N'Yeurt, Jérôme Aucan, Sophie Cravatte, Maxime Duphil, Alexandre Ganachaud, Baptiste Gaudron, Elodie Kestenare, Vetea Liao, Bernard Pelletier, Alexandre Peltier, Anne-Lou Schaefer, Thomas Trophime, Simon Van Wynsberge, Yves Dandonneau, Michel Allenbach, and Christophe Menkes
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-394, https://doi.org/10.5194/essd-2024-394, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Due to ocean warming, coral reef ecosystems are strongly impacted with dystrophic events and corals experiencing increasing frequencies of bleaching events. In-situ observation remains the best alternative for accurate characterization of trends and extremes in these shallow environments. This paper presents the coastal temperature dataset of the ReefTEMPS monitoring network which spreads over multiple Pacific Island Countries and Territories (PICTS) in the Western and Central South Pacific.
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Luc Rainville, Clément Vic, Guillaume Sérazin, Fabien Durand, Frédéric Marin, and Jean-Luc Fuda
Ocean Sci., 20, 945–964, https://doi.org/10.5194/os-20-945-2024, https://doi.org/10.5194/os-20-945-2024, 2024
Short summary
Short summary
A unique dataset of glider observations reveals tidal beams south of New Caledonia – an internal-tide-generation hot spot in the southwestern tropical Pacific. Observations are in good agreement with numerical modeling output, highlighting the glider's capability to infer internal tides while assessing the model's realism of internal-tide dynamics. Discrepancies are in large part linked to eddy–internal-tide interactions. A methodology is proposed to deduce the internal-tide surface signature.
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Laurent Brodeau, Aurélie Albert, Michel Tchilibou, Florent Lyard, and Clément Vic
Ocean Sci., 19, 1315–1338, https://doi.org/10.5194/os-19-1315-2023, https://doi.org/10.5194/os-19-1315-2023, 2023
Short summary
Short summary
New Caledonia is a hot spot of internal-tide generation due to complex bathymetry. Regional modeling quantifies the coherent internal tide and shows that most energy is converted in shallow waters and on very steep slopes. The region is a challenge for observability of balanced dynamics due to strong internal-tide sea surface height (SSH) signatures at similar wavelengths. Correcting the SSH for the coherent internal tide may increase the observability of balanced motion to < 100 km.
Bastien Pagli, Takeshi Izumo, Alexandre Barboni, Carla Chevillard, Cyril Dutheil, Raphael Legrand, Christophe Menkes, Claire Rocuet, and Sophie Cravatte
EGUsphere, https://doi.org/10.5194/egusphere-2025-4166, https://doi.org/10.5194/egusphere-2025-4166, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Marine heatwaves—periods of unusually warm ocean temperatures—are becoming more frequent and intense with climate change. These events can harm marine ecosystems, especially in vulnerable regions like French Polynesia. Here, we used satellite sea surface temperature data and ocean reanalysis to characterize past events. We investigated their characteristics, variability linked to ENSO, and the physical mechanisms driving their onset and decay across the region.
Shilpa Lal, Sophie Cravatte, Christophe Menkes, Jed Macdonald, Romain LeGendre, Ines Mangolte, Cyril Dutheil, Neil Holbrook, and Simon Nicol
EGUsphere, https://doi.org/10.5194/egusphere-2025-3281, https://doi.org/10.5194/egusphere-2025-3281, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This paper characterizes historical (1981–2023) marine heatwaves in the tropical southwestern Pacific, where they pose a challenge for marine resource dependent Islands. Heatwaves are distinguished as a function of their spatial extent, signature at the coast, and seasonality, to allow a better understanding of their impacts on ecosystems. Marine heatwaves are getting longer and more frequent, with greater spatial extents. Our results aim to inform the Pacific Islands on their vulnerability.
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Clément Vic, and Florent Lyard
EGUsphere, https://doi.org/10.5194/egusphere-2025-95, https://doi.org/10.5194/egusphere-2025-95, 2025
Short summary
Short summary
Temporal variability of the semidiurnal internal tide around New Caledonia is investigated using regional modeling. An important contribution to temporal variability not linked to the astronomically-forced spring-neap cycle is due to the presence of mesoscale eddies, both at the generation sites and in propagation direction. The incoherent tide has a widespread signature in sea surface height (SSH) challenging the SSH observability of mesoscale to submesoscale dynamics.
Lara Börger, Michael Schindelegger, Mengnan Zhao, Rui M. Ponte, Anno Löcher, Bernd Uebbing, Jean-Marc Molines, and Thierry Penduff
Earth Syst. Dynam., 16, 75–90, https://doi.org/10.5194/esd-16-75-2025, https://doi.org/10.5194/esd-16-75-2025, 2025
Short summary
Short summary
Flows in the ocean are driven either by atmospheric forces or by small-scale internal disturbances that are inherently chaotic. We use computer simulation results to show that these chaotic oceanic disturbances can attain spatial scales large enough to alter the motion of Earth's pole of rotation. Given their size and unpredictable nature, the chaotic signals are a source of uncertainty when interpreting observed year-to-year polar motion changes in terms of other processes in the Earth system.
Claudio M. Pierard, Siren Rühs, Laura Gómez-Navarro, Michael C. Denes, Florian Meirer, Thierry Penduff, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3847, https://doi.org/10.5194/egusphere-2024-3847, 2024
Short summary
Short summary
Particle-tracking simulations compute how ocean currents transport material. However, initialising these simulations is often ad-hoc. Here, we explore how two different strategies (releasing particles over space or over time) compare. Specifically, we compare the variability in particle trajectories to the variability of particles computed in a 50-member ensemble simulation. We find that releasing the particles over 20 weeks gives variability that is most like that in the ensemble.
Olivier Narinc, Thierry Penduff, Guillaume Maze, Stéphanie Leroux, and Jean-Marc Molines
Ocean Sci., 20, 1351–1365, https://doi.org/10.5194/os-20-1351-2024, https://doi.org/10.5194/os-20-1351-2024, 2024
Short summary
Short summary
This study examines how the ocean's chaotic variability and atmospheric fluctuations affect yearly changes in North Atlantic Subtropical Mode Water (STMW) properties, using an ensemble of realistic ocean simulations. Results show that while yearly changes in STMW properties are mostly paced by the atmosphere, a notable part of these changes are random in phase. This study also illustrates the value of ensemble simulations over single runs in understanding oceanic fluctuations and their causes.
Romain Le Gendre, David Varillon, Sylvie Fiat, Régis Hocdé, Antoine De Ramon N'Yeurt, Jérôme Aucan, Sophie Cravatte, Maxime Duphil, Alexandre Ganachaud, Baptiste Gaudron, Elodie Kestenare, Vetea Liao, Bernard Pelletier, Alexandre Peltier, Anne-Lou Schaefer, Thomas Trophime, Simon Van Wynsberge, Yves Dandonneau, Michel Allenbach, and Christophe Menkes
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-394, https://doi.org/10.5194/essd-2024-394, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Due to ocean warming, coral reef ecosystems are strongly impacted with dystrophic events and corals experiencing increasing frequencies of bleaching events. In-situ observation remains the best alternative for accurate characterization of trends and extremes in these shallow environments. This paper presents the coastal temperature dataset of the ReefTEMPS monitoring network which spreads over multiple Pacific Island Countries and Territories (PICTS) in the Western and Central South Pacific.
Sarah Albernhe, Thomas Gorgues, Olivier Titaud, Patrick Lehodey, Christophe Menkes, and Anna Conchon
State Planet Discuss., https://doi.org/10.5194/sp-2024-35, https://doi.org/10.5194/sp-2024-35, 2024
Revised manuscript accepted for SP
Short summary
Short summary
Micronekton are marine organisms gathering a wide diversity of taxa (crustaceans, fish, cephalopods, etc.), 2 to 20 cm in size. They are responsible for an important carbon export to the deep ocean and are the main prey for marine predators. We define provinces of homogeneous environmental parameters, representing areas of common micronekton biomass and vertical structure. We observe the evolution of the provinces in time from 1998 to 2023, to account for the seasonal to interannual variability.
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Luc Rainville, Clément Vic, Guillaume Sérazin, Fabien Durand, Frédéric Marin, and Jean-Luc Fuda
Ocean Sci., 20, 945–964, https://doi.org/10.5194/os-20-945-2024, https://doi.org/10.5194/os-20-945-2024, 2024
Short summary
Short summary
A unique dataset of glider observations reveals tidal beams south of New Caledonia – an internal-tide-generation hot spot in the southwestern tropical Pacific. Observations are in good agreement with numerical modeling output, highlighting the glider's capability to infer internal tides while assessing the model's realism of internal-tide dynamics. Discrepancies are in large part linked to eddy–internal-tide interactions. A methodology is proposed to deduce the internal-tide surface signature.
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Laurent Brodeau, Aurélie Albert, Michel Tchilibou, Florent Lyard, and Clément Vic
Ocean Sci., 19, 1315–1338, https://doi.org/10.5194/os-19-1315-2023, https://doi.org/10.5194/os-19-1315-2023, 2023
Short summary
Short summary
New Caledonia is a hot spot of internal-tide generation due to complex bathymetry. Regional modeling quantifies the coherent internal tide and shows that most energy is converted in shallow waters and on very steep slopes. The region is a challenge for observability of balanced dynamics due to strong internal-tide sea surface height (SSH) signatures at similar wavelengths. Correcting the SSH for the coherent internal tide may increase the observability of balanced motion to < 100 km.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Stephanie Leroux, Jean-Michel Brankart, Aurélie Albert, Laurent Brodeau, Jean-Marc Molines, Quentin Jamet, Julien Le Sommer, Thierry Penduff, and Pierre Brasseur
Ocean Sci., 18, 1619–1644, https://doi.org/10.5194/os-18-1619-2022, https://doi.org/10.5194/os-18-1619-2022, 2022
Short summary
Short summary
The goal of the study is to evaluate the predictability of the ocean circulation
at a kilometric scale, in order to anticipate the requirements of the future operational forecasting systems. For that purpose, ensemble experiments have been performed with a regional model for the Western Mediterranean (at 1/60° horizontal resolution). From these ensemble experiments, we show that it is possible to compute targeted predictability scores, which depend on initial and model uncertainties.
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021, https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Short summary
Results from a data set acquired from living foraminifera T. sacculifer collected from surface waters are presented, allowing us to establish a new Mg/Ca–Sr/Ca–temperature equation improving temperature reconstructions. When combining equations, δ18Ow can be reconstructed with a precision of ± 0.5 ‰, while successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69. A new direct linear fit to reconstruct salinity could be established.
Cited articles
Alberty, M., Sprintall, J., MacKinnon, J., Germineaud, C., Cravatte, S., and
Ganachaud, A.: Moored Observations of Transport in the Solomon Sea, J.
Geophys. Res.-Oceans, 124, 8166–8192, https://doi.org/10.1029/2019JC015143, 2019.
Arbic, B. K., Müller, M., Richman, J. G., Shriver, J. F., Morten, A. J., Scott, R. B., Sérazin, G., and Penduff, T.: Geostrophic turbulence in the frequency–wavenumber domain: Eddy-driven low-frequency variability, J. Phys. Oceanogr., 44, 2050–2069, https://doi.org/10.1175/JPO-D-13-054.1, 2014.
Belmadani, A., Concha, E., Donoso, D., Chaigneau, A., Colas, F., Maximenko, N., and Di Lorenzo, E.: Striations and preferred eddy tracks triggered by
topographic steering of the background flow in the eastern South Pacific:
Southeast Pacific striations and eddies, J. Geophys. Res.-Oceans, 122,
2847–2870, https://doi.org/10.1002/2016JC012348, 2017.
Berloff P., Kamenkovich, I., and Pedlosky, J.: A model of multiple zonal jets
in the oceans: Dynamical and kinematical analysis, J. Phys. Oceanogr., 39,
2711–2734, https://doi.org/10.1175/2009JPO4093.1, 2009.
Berloff P., Karabasov, S., Farrar, J. T., and Kamenkovich, I.: On latency of
multiple zonal jets in the oceans, J. Fluid Mech., 686, 534–567,
https://doi.org/10.1017/jfm.2011.345, 2011.
Bessières, L., Leroux, S., Brankart, J.-M., Molines, J.-M., Moine, M.-P., Bouttier, P.-A., Penduff, T., Terray, L., Barnier, B., and Sérazin, G.: Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution, Geosci. Model Dev., 10, 1091–1106, https://doi.org/10.5194/gmd-10-1091-2017, 2017.
Bonjean, F. and Lagerloef, G. S. E.: Diagnostic Model and Analysis of the
Surface Currents in the Tropical Pacific Ocean, J. Phys. Oceanogr., 32, 2938–2954, 2002.
Brankart, J.-M., Candille, G., Garnier, F., Calone, C., Melet, A., Bouttier, P.-A., Brasseur, P., and Verron, J.: A generic approach to explicit simulation of uncertainty in the NEMO ocean model, Geosci. Model Dev., 8, 1285–1297, https://doi.org/10.5194/gmd-8-1285-2015, 2015.
Bull, C. Y. S., Kiss, A. E., Jourdain, N. C., England, M. H., and van
Sebille, E.: Wind forced variability in eddy formation, eddy
shedding, and the separation of the East Australian Current,
J. Geophys. Res.-Oceans, 122, 9980–9998, https://doi.org/10.1002/2017JC013311, 2017.
Cai, W.: Antarctic ozone depletion causes an intensification of the southern ocean super-gyre circulation, Geophys. Res. Lett., 33, L03712, https://doi.org/10.1029/2005GL024911, 2006.
Ceccarelli, D. M., McKinnon, A. D., Andrefouet, S., Allain, V., Young, J.,
Gledhill, D. C., Flynn, A., Bax, N. J., Beaman, R., Borsa, P., Brinkman, R.,
Bustamante, R. H., Campbell, R., Cappo, M., Cravatte, S., D'Agata, S.,
Dichmont, C. M., Dunstan, P. K., Dupouy, C., Edgar, G., Farman, R., Furnas, M., Garrigue, C., Hutton, T., Kulbicki, M., Letourneur, Y., Lindsay, D.,
Menkes, C., Mouillot, D., Parravicini, V., Payri, C., Pelletier, B., de
Forges, B. R., Ridgway, K., Rodier, M., Samadi, S., Schoeman, D., Skewes, T., Swearer, S., Vigliola, L., Wantiez, L., Williams, A., Williams, A., and
Richardson, A. J.: The Coral Sea: Physical Environment, Ecosystem Status and
Biodiversity Assets, Adv. Mar. Biol., 66, 213–290, 2013.
Cetina-Heredia, P., Roughan, M., van Sebille, E., and Coleman, M. A.:
Long-term trends in the East Australian Current separation latitude and eddy
driven transport, J. Geophys. Res.-Oceans, 119, 4351–4366,
https://doi.org/10.1002/2014JC010071, 2014.
Chen R. and Flierl, G. R.: The contribution of striations to the eddy energy
budget and mixing: Diagnostic frameworks and results in a quasigeostrophic
barotropic system with mean flow, J. Phys. Oceanogr., 45, 2095–2113,
https://doi.org/10.1175/JPO-D-14-0199.1, 2015.
Cleveland, W. S. and Devlin, S. J.: Locally weighted regression: An approach
to regression analysis by local fitting, J. Am. Stat. Assoc., 83,
596–610, https://doi.org/10.1080/01621459.1988.10478639, 1988.
Condie, S. A. and Dunn, J. R.: Seasonal characteristics of the surface mixed
layer in the Australasian region: implications for primary production
regimes and biogeography, Mar. Freshwater Res., 57, 569–590, 2006.
Couvelard, X., Marchesiello, P., Gourdeau, L., and Lefèvre, J.:
Barotropic Zonal Jets Induced by Islands in the Southwest Pacific, J. Phys.
Oceanogr., 38, 2185–2204, https://doi.org/10.1175/2008JPO3903.1, 2008.
Cravatte, S., Ganachaud, A., Duong, Q.-P., Kessler, W. S., Eldin, G., and
Dutrieux, P.: Observed circulation in the Solomon Sea from SADCP data, Prog.
Oceanogr., 88, 116–130, https://doi.org/10.1016/j.pocean.2010.12.015, 2011.
Cravatte, S., Kestenare, E., Eldin, G., Ganachaud, A., Lefevre, J., Marin, F., Menkes, C., and Aucan, J.: Regional circulation around New Caledonia from
two decades of observations, J. Marine Syst., 148, 249–271,
https://doi.org/10.1016/j.jmarsys.2015.03.004, 2015.
Davis, A., Di Lorenzo, E., Luo, H., Belmadani, A., Maximenko, N.,
Melnichenko, O., and Schneider, N.: Mechanisms for the emergence of ocean
striations in the North Pacific: Formation of North Pacific Striations,
Geophys. Res. Lett., 41, 948–953, https://doi.org/10.1002/2013GL057956, 2014.
Davis, R. E., Kessler, W. S., and Sherman, J. T.: Gliders Measure Western
Boundary Current Transport from the South Pacific to the Equator, J. Phys.
Oceanogr., 42, 2001–2013, https://doi.org/10.1175/JPO-D-12-022.1, 2012.
Dawson, A.: eofs: A Library for EOF Analysis of Meteorological,
Oceanographic, and Climate Data, Journal of Open Research Software, 4,
e14, https://doi.org/10.5334/jors.122, 2016.
Dussin, R., Barnier, B., Brodeau, L., and Molines, J. M.: The making of DRAKKAR
forcing set DFS5, DRAKKAR/My-Ocean Rep. 01-04-16, available at:
https://www.drakkar-ocean.eu/publications/reports/report_DFS5v3_April2016.pdf (last access: 9 March 2021),
34 pp., 2016.
Ganachaud, A., Gourdeau, L., and Kessler, W.: Bifurcation of the subtropical
south equatorial current against New Caledonia in December 2004 from a
hydrographic inverse box model, J. Phys. Oceanogr., 38, 2072–2084,
https://doi.org/10.1175/2008JPO3901.1, 2008.
Gasparin, F., Ganachaud, A., Maes, C., Marin, F., and Eldin, G.: Oceanic
transports through the Solomon Sea: The bend of the New Guinea Coastal
Undercurrent, Geophys. Res. Lett., 39, L15608, https://doi.org/10.1029/2012GL052575,
2012.
Godfrey, J. S.: A Sverdrup model of the depth-integrated flow for the world ocean allowing for island circulations, Geophys. Astrophys. Fluid Dyn., 45, 89–112, 1989.
Gourdeau, L., Kessler, W. S., Davis, R. E., Sherman, J., Maes, C., and
Kestenare, E.: Zonal jets entering the coral sea, J. Phys. Oceanogr., 38,
715–725, https://doi.org/10.1175/2007JPO3780.1, 2008.
Gregorio, S., Penduff, T., Serazin, G., Molines, J.-M., Barnier, B., and
Hirschi, J.: Intrinsic Variability of the Atlantic Meridional Overturning
Circulation at Interannual-to-Multidecadal Time Scales, J. Phys. Oceanogr., 45, 1929–1946, https://doi.org/10.1175/JPO-D-14-0163.1, 2015.
Hill, K. L., Rintoul, S. R., Coleman, R., and Ridgway, K. R.: Wind forced low
frequency variability of the East Australia Current, Geophys. Res. Lett., 35, L08602, https://doi.org/10.1029/2007GL032912, 2008.
Hill, K. L., Rintoul, S. R., Ridgway, K. R., and Oke, P. R.: Decadal changes
in the South Pacific western boundary current system revealed in
observations and ocean state estimates, J. Geophys. Res.-Oceans, 116,
C01009, https://doi.org/10.1029/2009JC005926, 2011.
Holbrook, N. J., Chan, P. S. L., and Venegas, S. A.: Oscillatory and propagating modes of temperature variability at the 3–3.5- and 4–4.5-year time scales in the upper Southwest Pacific Ocean, J. Clim., 18, 719–736, 1637–1639, 2005.
Holbrook, N. J., Goodwin, I. D., McGregor, S., Molina, E., and Power, S. B.:
ENSO to multi-decadal time scale changes in East Australian Current
transports and Fort Denison sea level: Oceanic Rossby waves as the
connecting mechanism, Deep-Sea Res. Part II, 58,
547–558, https://doi.org/10.1016/j.dsr2.2010.06.007, 2011.
Ishida, A., Kashino, Y., Hosoda, S., and Ando, K.: North-south asymmetry of
warm water volume transport related with El Nino variability, Geophys. Res.
Lett., 35, L18612, https://doi.org/10.1029/2008GL034858, 2008.
Jamet, Q., Dewar, W. K., Wienders, N., Deremble, B., Close, S., and Penduff, T.: Locally and remotely forced subtropical AMOC variability: a matter of time scales, J. Clim., 33, 5155–5172, https://doi.org/10.1175/JCLI-D-19-0844.1, 2020.
Keppler, L., Cravatte, S., Chaigneau, A., Pegliasco, C., Gourdeau, L., and
Singh, A.: Observed Characteristics and Vertical Structure of Mesoscale
Eddies in the Southwest Tropical Pacific, J. Geophys. Res.-Oceans, 123,
2731–2756, https://doi.org/10.1002/2017JC013712, 2018.
Kessler, W. S. and Gourdeau, L.: The annual cycle of circulation in the southwest subtropical Pacific, analyzed in an ocean GCM, J. Phys. Oceanogr., 37, 1610–1627, 2007.
Kessler, W. S. and Cravatte, S.: Mean circulation of the Coral Sea, J.
Geophys. Res.-Oceans, 118, 6385–6410, https://doi.org/10.1002/2013JC009117, 2013a.
Kessler, W. S. and Cravatte, S.: ENSO and Short-Term Variability of the
South Equatorial Current Entering the Coral Sea, J. Phys. Oceanogr., 43,
956–969, https://doi.org/10.1175/JPO-D-12-0113.1, 2013b.
Kessler, W. S., Hristova, H. G., and Davis, R. E.: Equatorward western
boundary transport from the South Pacific: Glider observations, dynamics and
consequences, Prog. Oceanogr., 175, 208–225,
https://doi.org/10.1016/j.pocean.2019.04.005, 2019.
Lacasce, J. H.: On turbulence and normal modes in a basin, J. Mar. Res., 60,
431–460, https://doi.org/10.1357/002224002762231160, 2002.
Lee, T. and Fukumori, I.: Interannual-to-decadal variations of
tropical-subtropical exchange in the Pacific Ocean: Boundary versus interior
pycnocline transports, J. Climate, 16, 4022–4042,
https://doi.org/10.1175/1520-0442(2003)016<4022:IVOTEI>2.0.CO;2,
2003.
Leroux, S., Penduff, T., Bessieres, L., Molines, J.-M., Brankart, J.-M.,
Serazin, G., Barnier, B., and Terray, L.: Intrinsic and Atmospherically
Forced Variability of the AMOC: Insights from a Large-Ensemble Ocean
Hindcast, J. Climate, 31, 1183–1203, https://doi.org/10.1175/JCLI-D-17-0168.1, 2018.
Llovel, W., Penduff, T., Meyssignac, B., Molines, J.-M., Terray, L.,
Bessieres, L., and Barnier, B.: Contributions of Atmospheric Forcing and
Chaotic Ocean Variability to Regional Sea Level Trends Over 1993–2015,
Geophys. Res. Lett., 45, 13405–13413, https://doi.org/10.1029/2018GL080838, 2018.
Madec, G. and NEMO System Team: NEMO ocean engine, Scientific Notes of Climate Modelling Center, 27, ISSN 1288-1619, Institut Pierre-Simon Laplace (IPSL), https://doi.org/10.5281/zenodo.1464816, 2008.
Mantua, N. J. and Hare, S. R.: The Pacific decadal oscillation, J. Oceanogr.,
58, 35–44, https://doi.org/10.1023/A:1015820616384, 2002.
Maximenko, N. A., Bang, B., and Sasaki, H.: Observational evidence of
alternating zonal jets in the world ocean, Geophys. Res. Lett., 32, L12607,
https://doi.org/10.1029/2005GL022728, 2005.
Melet, A., Gourdeau, L., Verron, J., and Djath, B.: Solomon Sea circulation
and water mass modifications: response at ENSO timescales, Ocean Dyn.,
63, 1–19, https://doi.org/10.1007/s10236-012-0582-0, 2013.
Nonaka, M., Sasaki, H., Taguchi, B., and Schneider, N.: Atmospheric-Driven and Intrinsic Interannual-to-Decadal Variability in the Kuroshio Extension Jet and Eddy Activities, Front. Mar. Sci., 7, 547442, https://doi.org/10.3389/fmars.2020.547442, 2020.
Oke, P. R., Roughan, M., Cetina-Heredia, P., Pilo, G. S., Ridgway, K. R.,
Rykova, T., Archer, M. R., Coleman, R. C., Kerry, C. G., Rocha, C.,
Schaeffer, A., and Vitarelli, E.: Revisiting the circulation of the East
Australian Current: Its path, separation, and eddy field, Prog. Oceanogr.,
176, 102139, https://doi.org/10.1016/j.pocean.2019.102139, 2019a.
Oke, P. R., Pilo, G. S., Ridgway, K., Kiss, A., and Rykova, T.. A search
for the Tasman Front, J. Marine Syst., 199, 103217,
https://doi.org/10.1016/j.jmarsys.2019.103217, 2019b.
Oliver, E. C. J. and Holbrook, N. J.: Extending our understanding of
South Pacific gyre “spin-up”: Modeling the East Australian Current in a
future climate, J. Geophys. Res.-Oceans, 119, 2788–2805,
https://doi.org/10.1002/2013JC009591, 2014.
Penduff, T., Barnier, B., Zika, J., Dewar, W. K., Treguier, A.-M.,
Molines, J.-M., and Audiffren, N.: Sea level expression of intrinsic and forced
ocean variabilities at interannual time scales, J. Climate, 24, 5652–5670,
https://doi.org/10.1175/JCLI-D-11-00077.1, 2011.
Penduff, T., Barnier, B., Terray, L., Bessières, L., Sérazin, G.,
Grégorio, S., Brankart, J.-M., Moine, M.-P., Molines, J.-M., and Brasseur, P.:
Ensembles of eddying ocean simulations for climate, CLIVAR Exchanges,
Special Issue on High Resolution Ocean Climate Modelling, 65, Vol. 19, No. 2,
July 2014.
Penduff, T., Serazin, G., Leroux, S., Close, S., Molines, J.-M., Barnier, B., Bessieres, L., Terray, L., and Maze, G.: Chaotic Variability of Ocean
Heat Content: Climate-Relevant Features and Observational Implications,
Oceanography, 31, 63–71, https://doi.org/10.5670/oceanog.2018.210, 2018.
Penduff, T., Llovel, W., Close, S., Garcia-Gomez, I., and Leroux, S.: Trends of
Coastal Sea Level Between 1993 and 2015: Imprints of Atmospheric Forcing and
Oceanic Chaos, Surv. Geophys., 40, 1543–1562, https://doi.org/10.1007/s10712-019-09571-7,
2019.
Qiu, B. and Chen, S. M.: Seasonal modulations in the eddy field of the South
Pacific Ocean, J. Phys. Oceanogr., 34, 1515–1527,
https://doi.org/10.1175/1520-0485(2004)034<1515:SMITEF>2.0.CO;2,
2004.
Qiu, B., Chen, S., and Kessler, W. S.: Source of the 70-Day Mesoscale Eddy
Variability in the Coral Sea and the North Fiji Basin, J. Phys. Oceanogr.,
39, 404–420, https://doi.org/10.1175/2008JPO3988.1, 2009.
Qu, T. D. and Lindstrom, E. J.: A climatological interpretation of the
circulation in the Western South Pacific, J. Phys. Oceanogr., 32, 2492–2508,
https://doi.org/10.1175/1520-0485(2002)032<2492:ACIOTC>2.0.CO;2, 2002.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V.,
Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface
temperature, sea ice, and night marine air temperature since the late
nineteenth century, J. Geophys. Res., 108, 4407
https://doi.org/10.1029/2002JD002670, 2003.
Renault, L., McWilliams, J. C., and Masson, S.: Satellite Observations of
Imprint of Oceanic Current on Wind Stress by Air-Sea Coupling, Sci. Rep.-UK, 7,
17747, https://doi.org/10.1038/s41598-017-17939-1, 2017.
Renault, L., Masson, S., Oerder, V., Jullien, S., and Colas, F.:
Disentangling the Mesoscale Ocean-Atmosphere Interactions, J. Geophys.
Res.-Oceans, 124, 2164–2178, https://doi.org/10.1029/2018JC014628, 2019.
Ridgway, K. R.: Long-term trend and decadal variability of the southward
penetration of the East Australian Current, Geophys. Res. Lett., 34, L13613, https://doi.org/10.1029/2007GL030393, 2007.
Ridgway, K. R. and Dunn, J. R.: Mesoscale structure of the mean East
Australian Current System and its relationship with topography, Prog.
Oceanogr., 56, 189–222, https://doi.org/10.1016/S0079-6611(03)00004-1, 2003.
Ridgway, K. R., Dunn, J. R., and Wilkin, J. L.: Ocean interpolation by
four-dimensional weighted least squares – application to the waters around
Australasia, J. Atmos. Ocean. Tech., 19, 1357–1375,
https://doi.org/10.1175/1520-0426(2002)019<1357:OIBFDW>2.0.CO;2,
2002.
Rieck, J. K., Boening, C. W., and Greatbatch, R. J.: Decadal Variability of
Eddy Kinetic Energy in the South Pacific Subtropical Countercurrent in an
Ocean General Circulation Model, J. Phys. Oceanogr., 48, 757–771,
https://doi.org/10.1175/JPO-D-17-0173.1, 2018.
Sasaki, Y. N., Minobe, S., Schneider, N., Kagimoto, T., Nonaka, M., and
Sasaki, H.: Decadal sea level variability in the South Pacific in a global
eddy-resolving ocean model hindcast, J. Phys. Oceanogr., 38, 1731–1747,
https://doi.org/10.1175/2007JPO3915.1, 2008.
Serazin, G., Penduff, T., Gregorio, S., Barnier, B., Molines, J.-M., and
Terray, L.: Intrinsic variability of sea level from global ocean simulations:
Spatiotemporal scales, J. Climate, 28, 4279–4292,
https://doi.org/10.1175/JCLI-D-14-00554.1, 2015.
Serazin, G., Meyssignac, B., Penduff, T., Terray, L., Barnier, B., and
Molines, J.-M.: Quantifying uncertainties on regional sea level change
induced by multidecadal intrinsic oceanic variability, Geophys. Res. Lett.,
43, 8151–8159, https://doi.org/10.1002/2016GL069273, 2016.
Serazin, G., Jaymond, A., Leroux, S., Penduff, T., Bessieres, L., Llovel, W., Barnier, B., Molines, J.-M., and Terray, L.: A global probabilistic study
of the ocean heat content low-frequency variability: Atmospheric forcing
versus oceanic chaos, Geophys. Res. Lett., 44, 5580–5589,
https://doi.org/10.1002/2017GL073026, 2017.
Serazin, G., Penduff, T., Barnier, B., Molines, J.-M., Arbic, B. K.,
Mueller, M., and Terray, L.: Inverse Cascades of Kinetic Energy as a Source
of Intrinsic Variability: A Global OGCM Study, J. Phys. Oceanogr., 48, 1385–1408, https://doi.org/10.1175/JPO-D-17-0136.1, 2018.
Sloyan, B. M., Ridgway, K. R., and Cowley, R.: The East Australian Current
and Property Transport at 27 degrees S from 2012 to 2013, J. Phys.
Oceanogr., 46, 993–1008, https://doi.org/10.1175/JPO-D-15-0052.1, 2016.
Sprintall, J., Cravatte, S., Dewitte, B., Du, Y., and Gupta, A. S.: ENSO Oceanic Teleconnections, in: El Niño Southern Oscillation in a Changing Climate, edited by: McPhaden, M. J., Santoso, A., and Cai, W., https://doi.org/10.1002/9781119548164.ch15, 2020.
Tchilibou, M., Gourdeau, L., Lyard, F., Morrow, R., Koch Larrouy, A., Allain, D., and Djath, B.: Internal tides in the Solomon Sea in contrasted ENSO conditions, Ocean Sci., 16, 615–635, https://doi.org/10.5194/os-16-615-2020, 2020.
Thompson, D. W. J. and Wallace, J. M.: Annular Modes in the Extratropical Circulation, Part I: Month-to-Month Variability, J. Clim., 13, 1000–1016, retrieved from: https://journals.ametsoc.org/view/journals/clim/13/5/1520-0442_2000_013_1000_amitec_2.0.co_2.xml (last access: 8 March 2021), 2000.
Travis, S. and Qiu, B.: Decadal Variability in the South Pacific Subtropical
Countercurrent and Regional Mesoscale Eddy Activity, J. Phys. Oceanogr.,
47, 499–512, https://doi.org/10.1175/JPO-D-16-0217.1, 2017.
van Sebille, E., England, M. H., Zika, J. D., and Sloyan, B. M.: Tasman
leakage in a fine-resolution ocean model, Geophys. Res. Lett., 39, L06601,
https://doi.org/10.1029/2012GL051004, 2012.
Zanna, L., Brankart, J. M., Huber, M., Leroux, S., Penduff, T., and
Williams, P. D.: Uncertainty and Scale Interactions in Ocean Ensembles: From
Seasonal Forecasts to Multi-Decadal Climate Predictions, Q. J. Roy. Meteor.
Soc., 2018, 1–16, https://doi.org/10.1002/qj.3397, 2018.
Zilberman, N. V., Roemmich, D. H., and Gille, S. T.: The Mean and the Time
Variability of the Shallow Meridional Overturning Circulation in the
Tropical South Pacific Ocean, J. Climate, 26, 4069–4087,
https://doi.org/10.1175/JCLI-D-12-00120.1, 2013.
Zilberman, N. V., Roemmich, D. H., and Gille, S. T.: Meridional volume
transport in the South Pacific: Mean and SAM-related variability, J.
Geophys. Res.-Oceans, 119, 2658–2678, https://doi.org/10.1002/2013JC009688, 2014.
Zilberman, N. V., Roemmich, D. H., Gille, S. T., and Gilson, J.: Estimating
the Velocity and Transport of Western Boundary Current Systems: A Case Study
of the East Australian Current near Brisbane, J. Atmos. Ocean.
Tech., 35, 1313–1329, https://doi.org/10.1175/JTECH-D-17-0153.1, 2018.
Short summary
The various currents in the southwestern Pacific Ocean contribute to the redistribution of waters from the subtropical gyre equatorward and poleward. The drivers of their interannual variability are not completely understood but are usually thought to be related to well-known climate modes of variability. Here, we suggest that oceanic chaotic variability alone, which is by definition unpredictable, explains the majority of this interannual variability south of 20° S.
The various currents in the southwestern Pacific Ocean contribute to the redistribution of...