Articles | Volume 17, issue 2
https://doi.org/10.5194/os-17-463-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-463-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Water masses in the Atlantic Ocean: characteristics and distributions
Mian Liu
College of Ocean and Earth Sciences,
Xiamen University, Xiamen, 361005, China
GEOMAR Helmholtz Centre for Ocean Research Kiel,
Marine Biogeochemistry, Chemical Oceanography,
Düsternbrooker Weg 20, 24105 Kiel, Germany
GEOMAR Helmholtz Centre for Ocean Research Kiel,
Marine Biogeochemistry, Chemical Oceanography,
Düsternbrooker Weg 20, 24105 Kiel, Germany
Related authors
Mian Liu and Toste Tanhua
EGUsphere, https://doi.org/10.5194/egusphere-2024-1362, https://doi.org/10.5194/egusphere-2024-1362, 2024
Short summary
Short summary
Based on the distribution of water masses in the Atlantic Ocean, the water mass ages are shown by using CFC-12 and SF6. The ages increase with pressure and along the pathway. The central waters in the upper layer obtain the lowest ages. In all the other three deeper layers, the ages increase with the distance from formation area. The age is also used to calculate the oxygen utilization rate (OUR) in water masses. The western basin exhibits lower age with higher OUR due to the better ventilation.
Mian Liu and Toste Tanhua
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-140, https://doi.org/10.5194/os-2018-140, 2019
Publication in OS not foreseen
Mian Liu and Toste Tanhua
EGUsphere, https://doi.org/10.5194/egusphere-2024-1362, https://doi.org/10.5194/egusphere-2024-1362, 2024
Short summary
Short summary
Based on the distribution of water masses in the Atlantic Ocean, the water mass ages are shown by using CFC-12 and SF6. The ages increase with pressure and along the pathway. The central waters in the upper layer obtain the lowest ages. In all the other three deeper layers, the ages increase with the distance from formation area. The age is also used to calculate the oxygen utilization rate (OUR) in water masses. The western basin exhibits lower age with higher OUR due to the better ventilation.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Steve D. Jones, Maren K. Karlsen, Claire Lo Monaco, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, https://doi.org/10.5194/essd-13-5565-2021, 2021
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2021 is the third update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 989 hydrographic cruises covering the world's oceans from 1972 to 2020.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Pingyang Li and Toste Tanhua
Ocean Sci., 17, 509–525, https://doi.org/10.5194/os-17-509-2021, https://doi.org/10.5194/os-17-509-2021, 2021
Short summary
Short summary
Observations of transient tracer distribution provide essential information on ocean ventilation. The use of several commonly used transient traces is limited as their atmospheric mole fractions do not monotonically change. Here we explore new potential oceanic transient tracers with an analytical system that simultaneously measures a large range of compounds. Combined with the known atmospheric history and seawater solubility, we discuss the utility of selected HCFCs, HFCs, and PFCs as tracers.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Dagmar Hainbucher, Marta Álvarez, Blanca Astray Uceda, Giancarlo Bachi, Vanessa Cardin, Paolo Celentano, Spyros Chaikalis, Maria del Mar Chaves Montero, Giuseppe Civitarese, Noelia M. Fajar, Francois Fripiat, Lennart Gerke, Alexandra Gogou, Elisa F. Guallart, Birte Gülk, Abed El Rahman Hassoun, Nico Lange, Andrea Rochner, Chiara Santinelli, Tobias Steinhoff, Toste Tanhua, Lidia Urbini, Dimitrios Velaoras, Fabian Wolf, and Andreas Welsch
Earth Syst. Sci. Data, 12, 2747–2763, https://doi.org/10.5194/essd-12-2747-2020, https://doi.org/10.5194/essd-12-2747-2020, 2020
Short summary
Short summary
We report on data from an oceanographic cruise in the Mediterranean Sea (MSM72, March 2018). The main objective of the cruise was to contribute to the understanding of long-term changes and trends in physical and biogeochemical parameters, such as the anthropogenic carbon uptake, and further assess the hydrographical situation after the Eastern and Western Mediterranean Transients. Multidisciplinary measurements were conducted on a predominantly
zonal section throughout the Mediterranean Sea.
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, J. Magdalena Santana-Casiano, and Alex Kozyr
Earth Syst. Sci. Data, 12, 1725–1743, https://doi.org/10.5194/essd-12-1725-2020, https://doi.org/10.5194/essd-12-1725-2020, 2020
Short summary
Short summary
This work offers a vision of the global ocean regarding the carbon cycle and the implications of ocean acidification through a climatology of a changing variable in the context of climate change: total dissolved inorganic carbon. The climatology was designed through artificial intelligence techniques to represent the mean state of the present ocean. It is very useful to introduce in models to evaluate the state of the ocean from different perspectives.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Marta Álvarez, Susan Becker, Henry C. Bittig, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Steve D. Jones, Sara Jutterström, Maren K. Karlsen, Alex Kozyr, Siv K. Lauvset, Claire Lo Monaco, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Maciej Telszewski, Bronte Tilbrook, Anton Velo, and Rik Wanninkhof
Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, https://doi.org/10.5194/essd-11-1437-2019, 2019
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2019 is the first update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 840 hydrographic cruises covering the world's oceans from 1972 to 2017.
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, Melchor González-Dávila, Emil Jeansson, Alex Kozyr, and Steven M. A. C. van Heuven
Earth Syst. Sci. Data, 11, 1109–1127, https://doi.org/10.5194/essd-11-1109-2019, https://doi.org/10.5194/essd-11-1109-2019, 2019
Short summary
Short summary
In this work, we are contributing to the knowledge of the consequences of climate change in the ocean. We have focused on a variable related to this process: total alkalinity. We have designed a monthly climatology of total alkalinity using artificial intelligence techniques, that is, a representation of the average capacity of the ocean in the last decades to decelerate the consequences of climate change. The climatology is especially useful to infer the evolution of the ocean through models.
Mian Liu and Toste Tanhua
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-140, https://doi.org/10.5194/os-2018-140, 2019
Publication in OS not foreseen
Pingyang Li, Jens Mühle, Stephen A. Montzka, David E. Oram, Benjamin R. Miller, Ray F. Weiss, Paul J. Fraser, and Toste Tanhua
Ocean Sci., 15, 33–60, https://doi.org/10.5194/os-15-33-2019, https://doi.org/10.5194/os-15-33-2019, 2019
Short summary
Short summary
Use of CFCs as oceanic transient tracers is difficult for recently ventilated water masses as their atmospheric mole fractions have been decreasing. To explore novel tracers, we synthesized consistent annual mean atmospheric histories of HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 (CF4) and PFC-116 in both hemispheres and reconstructed their solubility functions in water and seawater. This work is also potentially useful for tracer studies in a range of natural waters.
James C. Orr, Raymond G. Najjar, Olivier Aumont, Laurent Bopp, John L. Bullister, Gokhan Danabasoglu, Scott C. Doney, John P. Dunne, Jean-Claude Dutay, Heather Graven, Stephen M. Griffies, Jasmin G. John, Fortunat Joos, Ingeborg Levin, Keith Lindsay, Richard J. Matear, Galen A. McKinley, Anne Mouchet, Andreas Oschlies, Anastasia Romanou, Reiner Schlitzer, Alessandro Tagliabue, Toste Tanhua, and Andrew Yool
Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, https://doi.org/10.5194/gmd-10-2169-2017, 2017
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) is a model comparison effort under Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Its physical component is described elsewhere in this special issue. Here we describe its ocean biogeochemical component (OMIP-BGC), detailing simulation protocols and analysis diagnostics. Simulations focus on ocean carbon, other biogeochemical tracers, air-sea exchange of CO2 and related gases, and chemical tracers used to evaluate modeled circulation.
Leif G. Anderson, Göran Björk, Ola Holby, Sara Jutterström, Carl Magnus Mörth, Matt O'Regan, Christof Pearce, Igor Semiletov, Christian Stranne, Tim Stöven, Toste Tanhua, Adam Ulfsbo, and Martin Jakobsson
Ocean Sci., 13, 349–363, https://doi.org/10.5194/os-13-349-2017, https://doi.org/10.5194/os-13-349-2017, 2017
Short summary
Short summary
We use data collected in 2014 to show that the outflow of nutrient-rich water occurs much further to the west than has been reported in the past. We suggest that this is due to much less summer sea-ice coverage in the northwestern East Siberian Sea than in the past decades. Further, our data support a more complicated flow pattern in the region where the Mendeleev Ridge reaches the shelf compared to the general cyclonic circulation within the individual basins as suggested historically.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Nadine Tisnérat-Laborde, Paolo Montagna, Toste Tanhua, Giuseppe Siani, and Philippe Jean-Baptiste
Biogeosciences, 14, 1197–1213, https://doi.org/10.5194/bg-14-1197-2017, https://doi.org/10.5194/bg-14-1197-2017, 2017
Short summary
Short summary
A high-resolution dynamical model was used to give the first simulation of the distribution of natural and anthropogenic radiocarbon (14C) across the whole Mediterranean Sea. The model correctly simulates the main features of 14C distribution during and after the bomb perturbation. The results demonstrate the major influence of the flux of Atlantic water through the Strait of Gibraltar, and a significant increase in 14C in the Aegean deep water during the Eastern Mediterranean Transient event.
Meike Becker, Nils Andersen, Helmut Erlenkeuser, Matthew P. Humphreys, Toste Tanhua, and Arne Körtzinger
Earth Syst. Sci. Data, 8, 559–570, https://doi.org/10.5194/essd-8-559-2016, https://doi.org/10.5194/essd-8-559-2016, 2016
Short summary
Short summary
The stable carbon isotope composition of dissolved inorganic carbon (δ13C-DIC) can be used to quantify fluxes within the marine carbon system such as the exchange between ocean and atmosphere or the amount of anthropogenic carbon in the water column. In this study, an internally consistent δ13C-DIC dataset for the North Atlantic is presented. The data have undergone a secondary quality control during which systematic biases between the respective cruises have been quantified and adjusted.
Björn Fiedler, Damian S. Grundle, Florian Schütte, Johannes Karstensen, Carolin R. Löscher, Helena Hauss, Hannes Wagner, Alexandra Loginova, Rainer Kiko, Péricles Silva, Toste Tanhua, and Arne Körtzinger
Biogeosciences, 13, 5633–5647, https://doi.org/10.5194/bg-13-5633-2016, https://doi.org/10.5194/bg-13-5633-2016, 2016
Short summary
Short summary
Oxygen-depleted mesoscale features in the open eastern tropical North Atlantic, which are formed in the Mauritanian upwelling region, were discovered recently. This study examines biogeochemical structure and magnitudes of related processes within these isolated water masses. We found very low oxygen concentrations and strongly enhanced acidity at near-surface depth. Oxygen utilization and downward carbon export were found to exceed known values for this ocean region.
Are Olsen, Robert M. Key, Steven van Heuven, Siv K. Lauvset, Anton Velo, Xiaohua Lin, Carsten Schirnick, Alex Kozyr, Toste Tanhua, Mario Hoppema, Sara Jutterström, Reiner Steinfeldt, Emil Jeansson, Masao Ishii, Fiz F. Pérez, and Toru Suzuki
Earth Syst. Sci. Data, 8, 297–323, https://doi.org/10.5194/essd-8-297-2016, https://doi.org/10.5194/essd-8-297-2016, 2016
Short summary
Short summary
The GLODAPv2 data product collects data from more than 700 hydrographic cruises into a global and internally calibrated product. It provides access to the data from almost all ocean carbon cruises carried out since the 1970s and is a unique resource for marine science, in particular regarding the ocean carbon cycle. GLODAPv2 will form the foundation for future routine synthesis of hydrographic data of the same sort.
Siv K. Lauvset, Robert M. Key, Are Olsen, Steven van Heuven, Anton Velo, Xiaohua Lin, Carsten Schirnick, Alex Kozyr, Toste Tanhua, Mario Hoppema, Sara Jutterström, Reiner Steinfeldt, Emil Jeansson, Masao Ishii, Fiz F. Perez, Toru Suzuki, and Sylvain Watelet
Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016, https://doi.org/10.5194/essd-8-325-2016, 2016
Short summary
Short summary
This paper describes the mapped climatologies that are part of the Global Ocean Data Analysis Project Version 2 (GLODAPv2). GLODAPv2 is a uniformly calibrated open ocean data product on inorganic carbon and carbon-relevant variables. Global mapped climatologies of the total dissolved inorganic carbon, total alkalinity, pH, saturation state of calcite and aragonite, anthropogenic carbon, preindustrial carbon content, inorganic macronutrients, oxygen, salinity, and temperature have been created.
Tim Stöven, Toste Tanhua, Mario Hoppema, and Wilken-Jon von Appen
Ocean Sci., 12, 319–333, https://doi.org/10.5194/os-12-319-2016, https://doi.org/10.5194/os-12-319-2016, 2016
Short summary
Short summary
The article describes transient tracer distributions of CFC-12 and SF6 in the Fram Strait in 2012. The SF6 excess and the anthropogenic carbon content in this area was estimated assuming a standard parameterization of the inverse-Gaussian–transit-time distribution. Hydrographic data were obtained along a mooring array at 78°50’N and a mean velocity field was used for flux estimates.
L. Stramma, R. Czeschel, T. Tanhua, P. Brandt, M. Visbeck, and B. S. Giese
Ocean Sci., 12, 153–167, https://doi.org/10.5194/os-12-153-2016, https://doi.org/10.5194/os-12-153-2016, 2016
Short summary
Short summary
The subsurface circulation in the eastern tropical North Atlantic OMZ is derived from velocity, float and tracer data and data assimilation results, and shows a cyclonic flow around the Guinea Dome reaching into the oxygen minimum zone. The stronger cyclonic flow around the Guinea Dome in 2009 seem to be connected to a strong Atlantic Meridional Mode (AMM) event.
A continuous deoxygenation trend of the low oxygen layer was confirmed.
Eddy influence is weak south of the Cape Verde Islands.
S. Walter, A. Kock, T. Steinhoff, B. Fiedler, P. Fietzek, J. Kaiser, M. Krol, M. E. Popa, Q. Chen, T. Tanhua, and T. Röckmann
Biogeosciences, 13, 323–340, https://doi.org/10.5194/bg-13-323-2016, https://doi.org/10.5194/bg-13-323-2016, 2016
Short summary
Short summary
Oceans are a source of H2, an indirect greenhouse gas. Measurements constraining the temporal and spatial patterns of oceanic H2 emissions are sparse and although H2 is assumed to be produced mainly biologically, direct evidence for biogenic marine production was lacking. By analyzing the H2 isotopic composition (δD) we were able to constrain the global H2 budget in more detail, verify biogenic production and point to additional sources. We also showed that current models are reasonably working.
T. Stöven, T. Tanhua, M. Hoppema, and J. L. Bullister
Ocean Sci., 11, 699–718, https://doi.org/10.5194/os-11-699-2015, https://doi.org/10.5194/os-11-699-2015, 2015
Short summary
Short summary
We use a suite of transient tracer measurements from a Southern Ocean sector southeast of Africa collected from 1998 and 2012 to quantify ventilation and change in ventilation. We found that the ventilation can be constrained by an inverse Gaussian transit time distribution north of the Subantarctic Front. We do not find any significant changes in upper ocean ventilation during this time period.
P. Brandt, H. W. Bange, D. Banyte, M. Dengler, S.-H. Didwischus, T. Fischer, R. J. Greatbatch, J. Hahn, T. Kanzow, J. Karstensen, A. Körtzinger, G. Krahmann, S. Schmidtko, L. Stramma, T. Tanhua, and M. Visbeck
Biogeosciences, 12, 489–512, https://doi.org/10.5194/bg-12-489-2015, https://doi.org/10.5194/bg-12-489-2015, 2015
Short summary
Short summary
Our observational study looks at the structure of the eastern tropical North Atlantic (ETNA) oxygen minimum zone (OMZ) in comparison with the less-ventilated, eastern tropical South Pacific OMZ. We quantify the OMZ’s oxygen budget composed of consumption, advection, lateral and vertical mixing. Substantial oxygen variability is observed on interannual to multidecadal timescales. The deoxygenation of the ETNA OMZ during the last decades represents a substantial imbalance of the oxygen budget.
A. Oviedo, P. Ziveri, M. Álvarez, and T. Tanhua
Ocean Sci., 11, 13–32, https://doi.org/10.5194/os-11-13-2015, https://doi.org/10.5194/os-11-13-2015, 2015
D. Hainbucher, A. Rubino, V. Cardin, T. Tanhua, K. Schroeder, and M. Bensi
Ocean Sci., 10, 669–682, https://doi.org/10.5194/os-10-669-2014, https://doi.org/10.5194/os-10-669-2014, 2014
T. Stöven and T. Tanhua
Ocean Sci., 10, 439–457, https://doi.org/10.5194/os-10-439-2014, https://doi.org/10.5194/os-10-439-2014, 2014
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
M. Álvarez, H. Sanleón-Bartolomé, T. Tanhua, L. Mintrop, A. Luchetta, C. Cantoni, K. Schroeder, and G. Civitarese
Ocean Sci., 10, 69–92, https://doi.org/10.5194/os-10-69-2014, https://doi.org/10.5194/os-10-69-2014, 2014
A. Schneider, T. Tanhua, W. Roether, and R. Steinfeldt
Ocean Sci., 10, 1–16, https://doi.org/10.5194/os-10-1-2014, https://doi.org/10.5194/os-10-1-2014, 2014
F. Ziska, B. Quack, K. Abrahamsson, S. D. Archer, E. Atlas, T. Bell, J. H. Butler, L. J. Carpenter, C. E. Jones, N. R. P. Harris, H. Hepach, K. G. Heumann, C. Hughes, J. Kuss, K. Krüger, P. Liss, R. M. Moore, A. Orlikowska, S. Raimund, C. E. Reeves, W. Reifenhäuser, A. D. Robinson, C. Schall, T. Tanhua, S. Tegtmeier, S. Turner, L. Wang, D. Wallace, J. Williams, H. Yamamoto, S. Yvon-Lewis, and Y. Yokouchi
Atmos. Chem. Phys., 13, 8915–8934, https://doi.org/10.5194/acp-13-8915-2013, https://doi.org/10.5194/acp-13-8915-2013, 2013
T. Tanhua, D. Hainbucher, K. Schroeder, V. Cardin, M. Álvarez, and G. Civitarese
Ocean Sci., 9, 789–803, https://doi.org/10.5194/os-9-789-2013, https://doi.org/10.5194/os-9-789-2013, 2013
T. Tanhua, D. Hainbucher, V. Cardin, M. Álvarez, G. Civitarese, A. P. McNichol, and R. M. Key
Earth Syst. Sci. Data, 5, 289–294, https://doi.org/10.5194/essd-5-289-2013, https://doi.org/10.5194/essd-5-289-2013, 2013
T. Fischer, D. Banyte, P. Brandt, M. Dengler, G. Krahmann, T. Tanhua, and M. Visbeck
Biogeosciences, 10, 5079–5093, https://doi.org/10.5194/bg-10-5079-2013, https://doi.org/10.5194/bg-10-5079-2013, 2013
S. Khatiwala, T. Tanhua, S. Mikaloff Fletcher, M. Gerber, S. C. Doney, H. D. Graven, N. Gruber, G. A. McKinley, A. Murata, A. F. Ríos, and C. L. Sabine
Biogeosciences, 10, 2169–2191, https://doi.org/10.5194/bg-10-2169-2013, https://doi.org/10.5194/bg-10-2169-2013, 2013
Related subject area
Approach: Analytic Theory | Properties and processes: Water mass | Depth range: All Depths | Geographical range: All Geographic Regions | Challenges: Oceans and climate
Spiciness theory revisited, with new views on neutral density, orthogonality, and passiveness
Rémi Tailleux
Ocean Sci., 17, 203–219, https://doi.org/10.5194/os-17-203-2021, https://doi.org/10.5194/os-17-203-2021, 2021
Short summary
Short summary
Because the density of seawater depends on both temperature (T) and salinity (S), it is possible for seawater samples of the same density to have widely different T and S characteristics ranging from hot and salt (spicy) to fresh and cold (minty). For several decades, oceanographers have been debating how to best construct a variable for quantifying the
spicinessof seawater. This work discusses the relative merits and drawbacks of existing approaches and proposes a new way forward.
Cited articles
Abernathey, R. P., Cerovecki, I., Holland, P. R., Newsom E., Mazloff, M., and
Talley, L. D.: Water-mass transformation by sea ice in the upper branch of
the southern ocean overturning, Nat. Geosci., 9, 596–601,
https://doi.org/10.1038/ngeo2749, 2016.
Alvarez, M., Brea, S., Mercier, H., and Alvarez-Salgado, X. A.: Mineralization
of biogenic materials in the water masses of the South Atlantic Ocean. I:
Assessment and results of an optimum multiparameter analysis, Prog. Oceanogr.
123, 1–23, 2014.
Andrié, C., Gouriou, Y., Bourlès, B., Ternon, J. F., Braga, E. S.,
Morin, P., and Oudot, C.: Variability of AABW properties in the equatorial
channel at 35∘ W, Geophys. Res. Lett., 30, https://doi.org/10.1029/2002GL015766, 2003.
Arhan, M.: The North Atlantic current and subarctic intermediate water, J.
Mar. Res., 48, 109–144, 1990.
Arhan, M. and King, B.: Lateral Mixing of the Mediterranean Water in the
Eastern North-Atlantic, J. Mar. Res., 53, 865–895, 1995.
Baringer, M. O. and Price, J. F.: Mixing and spreading of the Mediterranean
outflow, J. Phys. Oceanogr., 27, 1654–1677, 1997.
Broecker, W. S.: No a Conservative Water-Mass Tracer, Earth Planet. Sci. Lett.,
23, 100–107, 1974.
Broecker, W. S. and Denton, G. H.: The Role of Ocean-Atmosphere Reorganizations
in Glacial Cycles, Geochim. Cosmochim. Ac., 53, 2465–2501, 1989.
Carracedo, L. I., Pardo, P. C., Flecha, S., and Pérez, F. F.: On the
Mediterranean Water Composition, J. Phys. Oceanogr., 46, 1339–1358, 2016.
Castro, C. G., Perez, F. F., Holley, S. E., and Rios, A. F.: Chemical
characterisation and modelling of water masses in the Northeast Atlantic,
Prog. Oceanogr., 41, 249–279, 1998.
Cianca, A., Santana, R., Marrero, J. P., Rueda, M. J., and Llinás, O.: Modal composition of the central water in the North Atlantic subtropical gyre, Ocean Sci. Discuss., 6, 2487–2506, https://doi.org/10.5194/osd-6-2487-2009, 2009.
Clarke, R. A. and Gascard, J.-C.: The Formation of Labrador Sea Water. Part I:
Large-Scale Processes, J. Phys. Oceanogr., 13, 1764–1778, 1983.
Defant, A.: Dynamische Ozeanographie, Springer, New York, USA, 1929.
Dengler, M., Schott, F. A., Eden, C., Brandt, P., Fischer, J., and Zantopp, R. J.:
Break-up of the Atlantic deep western boundary current into eddies at
8∘ S, Nature, 432, 1018, https://doi.org/10.1038/nature03134, 2004.
Deruijter, W.: Asymptotic Analysis of the Agulhas and Brazil Current
Systems, J. Phys. Oceanogr., 12, 361–373, 1982.
Dickson, R. R. and Brown, J.: The Production of North-Atlantic Deep-Water –
Sources, Rates, and Pathways, J. Geophys. Res.-Oceans, 99, 12319–12341, 1994.
Elliot, M., Labeyrie, L., and Duplessy, J. C.: Changes in North Atlantic
deep-water formation associated with the Dansgaard-Oeschger temperature
oscillations (60-10 ka), Quatern. Sci. Rev., 21, 1153–1165, 2002.
Emery, W. J. and Meincke, J.: Global Water Masses – Summary and Review,
Oceanol. Acta, 9, 383–391, 1986.
Flynn, R. F., Granger, J., Veitch, J. A. Siedlecki, S., Burger, J. M., Pillay,
K., and Fawcett, S. E.: On-Shelf Nutrient Trapping Enhances the Fertility of the
Southern Benguela Upwelling System, J. Geophys. Res.-Oceans, 125, e2019JC015948, https://doi.org/10.1029/2019jc015948, 2020.
Foldvik, A. and Gammelsrod, T.: Notes on Southern-Ocean Hydrography, Sea-Ice
and Bottom Water Formation, Palaeogeogr. Palaeocl.,
67, 3–17, 1988.
Garcia-Ibanez, M. I., Pardo, P. C., Carracedo, L. I., Mercier, H., Lherminier,
P., Rios, A. F., and Perez, F. F.: Structure, transports and transformations of
the water masses in the Atlantic Subpolar Gyre, Prog. Oceanogr., 135, 18–36,
2015.
Gascard, J.-C. and Clarke, R. A.: The Formation of Labrador Sea Water. Part II.
Mesoscale and Smaller-Scale Processes, J. Phys. Oceanogr., 13,
1779–1797, 1983.
Gordon, A. L.: Bottom Water Formation, in: Encyclopedia of Ocean Sciences, edited by: Steele, J. H.,
Oxford Academic Press, Oxford, UK, 334–340, 2001.
Gordon, A. L., Weiss, R. F., Smethie, W. M., and Warner, M. J.: Thermocline and
Intermediate Water Communication between the South-Atlantic and Indian
Oceans, J. Geophys. Res.-Oceans, 97, 7223–7240, 1992.
Groeskamp, S., Abernathey, R. P., and Klocker, A.: Water mass transformation by
cabbeling and thermobaricity, Geophys. Res. Lett., 43, 10835–10845,
2016.
Haine, T. W. N. and Hall, T. M.: A generalized transport theory: Water-mass
composition and age, J. Phys. Oceanogr., 32, 1932–1946, 2002.
Harvey, J.: Theta-S Relationships and Water Masses in the Eastern
North-Atlantic, Deep-Sea Res., 29,
1021–1033, 1982.
Helland-Hansen, B. R.: Nogen hydrografiske metoder, Scand, Naturforsker Mote,
Kristiana, Oslo, Norway, 1916.
Jackett, D. R., Mcdougall, T., Feistel, R., Wright, D., and Griffies, S.: Algorithms
for Density, Potential Temperature, Conservative Temperature, and the
Freezing Temperature of Seawater, J. Atmos. Ocean. Tech., 23, 1706–1728, 2006.
Jacobsen, J. P.: Line graphische Methode zur Bestimmung des
Vermischungskoeffizienten im Meer, Gerlands Beitrdge zur Geophysik, 16,
404–412, 1927.
Jullion, L., Jacquet, S., and Tanhua, T.: Untangling biogeochemical processes
from the impact of ocean circulation: First insight on the Mediterranean
dissolved barium dynamics, Global Biogeochem. Cy., 31, 1256–1270, 2017.
Karstensen, J. and Tomczak, M.: Ventilation processes and water mass ages in
the thermocline of the southeast Indian Ocean, Geophys. Res. Lett.,
24, 2777–2780, 1997.
Karstensen, J. and Tomczak, M.: Age determination of mixed water masses using
CFC and oxygen data, J. Geophys. Res.-Oceans, 103, 18599–18609, 1998.
Karstensen, J., Stramma, L., and Visbeck, M.: Oxygen minimum zones in the eastern
tropical Atlantic and Pacific oceans, Prog. Oceanogr., 77, 331–350,
2008.
Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister,
J. L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T. H.: A global ocean
carbon climatology: Results from Global Data Analysis Project (GLODAP),
Global Biogeochem. Cy., 18, GB4031, https://doi.org/10.1029/2004gb002247, 2004.
Key, R. M., Tanhua, T., Olsen, A., Hoppema, M., Jutterström, S., Schirnick, C., van Heuven, S., Kozyr, A., Lin, X., Velo, A., Wallace, D. W. R., and Mintrop, L.: The CARINA data synthesis project: introduction and overview, Earth Syst. Sci. Data, 2, 105–121, https://doi.org/10.5194/essd-2-105-2010, 2010.
Key, R. M., Olsen, A., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishi, M., Perez, F. F., and Suzuki, T.: Global Ocean
Data Analysis Project, Version 2 (GLODAPv2), ORNL/CDIAC-162, ND-P093, Carbon
Dioxide Information Analysis Center, Oak Ridge National Laboratory, US
Department of Energy, Oak Ridge, USA,
https://doi.org/10.3334/CDIAC/OTG.NDP093_GLODAPv2, 2015.
Kieke, D., Rhein, M., Stramma, L., Smethie, W. M., LeBel, D. A., and Zenk, W.:
Changes in the CFC inventories and formation rates of Upper Labrador Sea
Water, 1997–2001, J. Phys. Oceanogr., 36, 64–86, 2006.
Kieke, D., Rhein, M., Stramma, L., Smethie, W. M., Bullister, J. L., and LeBel,
D. A.: Changes in the pool of Labrador Sea Water in the subpolar North
Atlantic, Geophys. Res. Lett., 34, L06605, https://doi.org/10.1029/2008jc005165, 2007.
Kirchner, K., Rhein, M., Huttl-Kabus, S., and Boning, C. W.: On the spreading of
South Atlantic Water into the Northern Hemisphere, J. Geophys. Res.-Ocean., 114, C05019, https://doi.org/10.1029/2008JC005165,
2009.
Klein, B. and Hogg, N.: On the variability of 18 Degree Water formation as
observed from moored instruments at 55 degrees W. Deep-Sea Res., 43, 1777–1806, 1996.
Kuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann, M., and
Rahmstorf, S.: On the driving processes of the Atlantic meridional
overturning circulation, Rev. Geophys., 45, RG200, https://doi.org/10.1029/2004rg000166, 2007.
Lacan, F. and Jeandel, C.: Neodymium isotopic composition and rare earth
element concentrations in the deep and intermediate Nordic Seas: Constraints
on the Iceland Scotland Overflow Water signature, Geochem. Geophy.
Geosy., 5, Q11006, https://doi.org/10.1029/2004gc000742, 2004.
Lawson, C. L. and Hanson, R. J.: Solving Least Squares Problems,
Prentice-Hall, New York, USA, 1974.
Lazier, J. R. N. and Wright, D. G.: Annual Velocity Variations in the Labrador
Current, J. Phys. Oceanogr., 23, 659–678, 1993.
Liu, M. and Tanhua, T.: Atlantic Ocean water mass fraction estimates based on GLODAPv2 Atlantic database (NCEI Accession 0225455), NOAA National Centers for Environmental Information, Dataset, https://doi.org/10.25921/zfhg-8676, 2021.
Lozier, M. S.: Overturning in the North Atlantic, Ann. Rev. Mar. Sci., 4, 291–315,
2012.
Lutjeharms, J. R. and van Ballegooyen, R. C.: Anomalous upstream retroflection in
the agulhas current, Science, 240, 1770, https://doi.org/10.1126/science.240.4860.1770, 1988.
Lynch-Stieglitz, J., Adkins, J. F., Curry, W. B., Dokken, T., Hall, I. R.,
Herguera, J. C., Hirschi, J. J., Ivanova, E. V., Kissel, C., Marchal, O.,
Marchitto, T. M., McCave, I. N., McManus, J. F., Mulitza, S., Ninnemann, U.,
Peeters, F., Yu, E. F., and Zahn, R.: Atlantic meridional overturning circulation
during the Last Glacial Maximum, Science, 316, 66–69, 2007.
Marshall, J. and Speer, K.: Closure of the meridional overturning circulation
through Southern Ocean upwelling, Nat. Geosci., 5, 171–180, 2012.
McCartney, M. S.: The subtropical recirculation of Mode Waters, J. Mar. Res., 40,
427–464, 1982.
McCartney, M. S. and Talley, L. D.: The subpolar mode water of the North Atlantic
Ocean, J. Phys. Oceanogr., 12, 1169–1188, 1982.
Millero, F. J., Feistel, R., Wright, D.G., and Mcdougall, T .J.: The composition of
Standard Seawater and the definition of the Reference-Composition Salinity
Scale, Deep-Sea Res., 55, 50–72, 2008.
Montgomery, R.B.: Water characteristics of Atlantic Ocean and of world
ocean, Deep Sea Res., 5, 134–148, 1958.
Morrison, A. K., Frulicher, T. L., and Sarmiento, J. L.: Upwelling in the Southern
Ocean, Phys. Today, 68, 27–32, 2015.
Nycander, J., Hieronymus, M., and Roquet, F.: The nonlinear equation of state
of sea water and the global water mass distribution, Geophys. Res. Lett.,
42, 7714–7721, https://doi.org/10.1002/2015GL065525, 2015.
Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., and Suzuki, T.: The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean, Earth Syst. Sci. Data, 8, 297–323, https://doi.org/10.5194/essd-8-297-2016, 2016.
Olsen, A., Key, R. M., Lauvset, S. K., Kozyr, A., Tanhua, T., Hoppema, M., Ishii, M., Jeansson, E., van Heuven, S., Jutterström, S., Schirnick, C., Steinfeldt, R., Suzuki, T., Lin, X., Velo, A., and Pérez, F. F.: Global Ocean Data Analysis Project, Version 2 (GLODAPv2) (NCEI Accession 0162565), Version 1.1, NOAA National Centers for Environmental Information, Dataset, https://doi.org/10.7289/V5KW5D97, 2017.
Olsen, A., Lange, N., Key, R. M., Tanhua, T., Álvarez, M., Becker, S., Bittig, H. C., Carter, B. R., Cotrim Da Cunha, L., Feely, R.A., Van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jones, S.D., Jutterström, S., Karlsen, M. K., Kozyr, A., Lauvset, S. K., Lo Monaco, C., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Telszewski, M., Tilbrook, B., Velo, A., and Wanninkhof, R.: GLODAPv2.2019 – an update of GLODAPv2, Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, 2019.
Olsen, A., Lange, N., Key, R. M., Tanhua, T., Bittig, H. C., Kozyr, A., Álvarez, M., Azetsu-Scott, K., Becker, S., Brown, P. J., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jutterström, S., Landa, C. S., Lauvset, S. K., Michaelis, P., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Velo, A., Wanninkhof, R., and Woosley, R. J.: An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2020, Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, 2020.
Orsi, A. H., Johnson, G. C., and Bullister, J. L.: Circulation, mixing, and
production of Antarctic Bottom Water, Prog. Oceanogr., 43, 55–109, 1999.
Pawlowicz, R., Wright, D. G., and Millero, F. J.: The effects of biogeochemical processes on oceanic conductivity/salinity/density relationships and the characterization of real seawater, Ocean Sci., 7, 363–387, https://doi.org/10.5194/os-7-363-2011, 2011.
Peterson, R. G. and Stramma, L.: Upper-Level Circulation in the South-Atlantic
Ocean, Prog. Oceanogr., 26, 1–73, 1991.
Pickart, R. S., Spall, M. A., and Lazier, J. R. N.: Mid-depth ventilation in the
western boundary current system of the sub-polar gyre, Deep-Sea Res., 44, 1025–1054, 1997.
Piola, A. R. and Georgi, D. T.: Circumpolar properties of Antarctic intermediate
water and Subantarctic Mode Water, Deep Sea Res., 29, 687–711, 1982.
Piola, A. R. and Gordon, A. L.: Intermediate Waters in the Southwest
South-Atlantic, Deep-Sea Res., 36,
1–16, 1989.
Pollard, R. T. and Pu, S.: Structure and Circulation of the Upper Atlantic Ocean
Northeast of the Azores, Prog. Oceanogr., 14, 443–462, 1985.
Pollard, R. T., Grifftths, M. J., Cunningham, S. A., Read, J. F., Pérez,
F. F., and Ríos, A. F.: Vivaldi 1991 – a study of the formation, circulation
and ventilation of Eastern North Atlantic Central Water, Prog.
Oceanogr., 37, 167–192, 1996.
Poole, R. and Tomczak, M.: Optimum multiparameter analysis of the water mass
structure in the Atlantic Ocean thermocline, Deep-Sea Res., 46, 1895–1921, 1999.
Price, J. F., Baringer, M. O., Lueck, R. G., Johnson, G. C., Ambar, I.,
Parrilla, G., Cantos, A., Kennelly, M. A., and Sanford, T. B.: Mediterranean
outflow mixing and dynamics, Science, 259, 1277–1282, 1993.
Prieto, E., Gonzalez-Pola, C., Lavin, A., and Holliday, N.P.: Interannual
variability of the northwestern Iberia deep ocean: Response to large-scale
North Atlantic forcing, J. Geophys. Res.-Oceans, 120, 832–847, 2015.
Read, J.: CONVEX-91: water masses and circulation of the Northeast Atlantic
subpolar gyre, Prog. Oceanogr., 48, 461–510, 2000.
Reid, J. L.: On the middepth circulation and salinity field in the North
Atlantic Ocean, J. Geophys. Res.-Oceans, 83, 5063–5067, 1978.
Reid, J. L.: On the contribution of the Mediterranean Sea outflow to the
Norwegian-Greenland Sea, Deep Sea Res., 26, 1199–1223, 1979.
Rhein, M., Stramma, L., and Krahmann, G.: The spreading of Antarctic bottom
water in the tropical Atlantic, Deep-Sea Res., 45, 507–527, 1998.
Rhein, M., Kieke, D., Huttl-Kabus, S., Roessler, A., Mertens, C., Meissner,
R., Klein, B., Boning, C. W., and Yashayaev, I.: Deep water formation, the
subpolar gyre, and the meridional overturning circulation in the subpolar
North Atlantic, Deep-Sea Res.,
58, 1819–1832, 2011.
Rudels, B., Fahrbach, E., Meincke, J., Budéus, G., and Eriksson, P.: The
East Greenland Current and its contribution to the Denmark Strait overflow,
ICES J. Mar. Sci., 59, 1133–1154, 2002.
Saenko, O. A. and Weaver, A. J.: Importance of wind-driven sea ice motion
for the formation of antarctic intermediate water in a global climate model,
Geophys. Res. Lett., 28, 4147–4150, https://doi.org/10.1029/2001GL013632, 2001.
Smethie, W. M. and Fine, R. A.: Rates of North Atlantic Deep Water formation
calculated from chlorofluorocarbon inventories, Deep-Sea Res., 48, 189–215, 2001.
Smith, E. H., Soule, F. M., and Mosby, O.: The Marion and General Greene
Expeditions to Davis Strait and Labrador Sea, Under Direction of the United
States Coast Guard: 1928-1931-1933-1934-1935: Scientific Results, Part 2:
Physical Oceanography, US Government Printing Office, Washington DC, USA, 1937.
Sprintall, J. and Tomczak, M.: On the formation of Central Water and
thermocline ventilation in the southern hemisphere, Deep Sea Res., 40, 827–848, 1993.
Stramma, L. and England, M. H.: On the water masses and mean circulation of the
South Atlantic Ocean, J. Geophys. Res.-Oceans, 104, 20863–20883, 1999.
Stramma, L. and Peterson, R. G.: The South-Atlantic Current, J. Phys.
Oceanogr., 20, 846–859, 1990.
Stramma, L., Kieke, D., Rhein, M., Schott, F., Yashayaev, I., and Koltermann,
K. P.: Deep water changes at the western boundary of the subpolar North
Atlantic during 1996 to 2001, Deep Sea Res., 51, 1033–1056, 2004.
Sverdrup, H. U., Johnson M. W., and Fleming, R. H.: The Oceans: Their Physics, Chemistry and General Biology, Prentice Hall, USA, 1087 pp., 1942.
Swift, J. H.: The Circulation of the Denmark Strait and Iceland Scotland
Overflow Waters in the North-Atlantic, Deep-Sea Res., 31, 1339–1355, 1984.
Swift, S. M.: Activity patterns of pipistrelle bats (Pipistrellus
pipistrellus) in north-east Scotland, J. Zoology, 190, 285–295, 1980.
Talley, L.: Antarctic intermediate water in the South Atlantic, The South
Atlantic, Springer, Heidelberg, Germany, 1996.
Talley, L. and Raymer, M.: Eighteen degree water variability, J. Mar. Res., 40,
757–775, 1982.
Talley, L. D. and Mccartney, M. S.: Distribution and Circulation of Labrador
Sea-Water, J. Phys. Oceanogr., 12, 1189–1205, 1982.
Tanhua, T., Olsson, K. A., and Jeansson, E.: Formation of Denmark Strait overflow
water and its hydro-chemical composition, J. Mar. Syst., 57,
264–288, 2005.
Tanhua, T., van Heuven, S., Key, R. M., Velo, A., Olsen, A., and Schirnick, C.: Quality control procedures and methods of the CARINA database, Earth Syst. Sci. Data, 2, 35–49, https://doi.org/10.5194/essd-2-35-2010, 2010.
Tomczak, M.: A multi-parameter extension of temperature/salinity diagram
techniques for the analysis of non-isopycnal mixing, Prog. Oceanogr., 10,
147–171, 1981.
Tomczak, M.: Some historical, theoretical and applied aspects of
quantitative water mass analysis, J. Mar. Res., 57, 275–303, 1999.
Tomczak, M. and Godfrey, J. S.: Regional oceanography: an introduction,
Elsevier, Amsterdam, the Netherlands, 2013.
Tomczak, M. and Large, D. G.: Optimum multiparameter analysis of mixing in the
thermocline of the eastern Indian Ocean, J. Geophys. Res.-Oceans, 94, 16141–16149, 1989.
van Heuven, S. M. A. C., Hoppema, M., Huhn, O., Slagter, H. A., and de Baar, H. J. W.:
Direct observation of increasing CO2 in the Weddell Gyre along the Prime
Meridian during 1973–2008, Deep Sea Res., 58, 2613–2635, 2011.
Weiss, R. F., Ostlund, H. G., and Craig, H.: Geochemical Studies of the Weddell
Sea, Deep-Sea Res., 26, 1093–1120,
1979.
Worthington, L.: The 18 water in the Sargasso Sea, Deep Sea Res.,
5, 297–305, 1959.
Wüst, G. and Defant, A.: Atlas zur Schichtung und Zirkulation des
Atlantischen Ozeans: Schnitte und Karten von Temperatur, Salzgehalt und
Dichte, W. de Gruyter, Berlin, Germany, 1936.
Zou, S. J., Bower, A., Furey, H., Lozier, M. S., and Xu, X. B.: Redrawing the
Iceland-Scotland Overflow Water pathways in the North Atlantic, Nat. Commun., 11, 1890, https://doi.org/10.1038/s41467-020-15513-4, 2020.
Short summary
We have characterized the major water masses in the Atlantic Ocean based on the properties found in their formation areas using six properties taken from the GLODAPv2 data product, including both conservative (conservative temperature and absolute salinity) and non-conservative (oxygen, silicate, phosphate and nitrate) properties. The distributions of the water masses are estimated by using the optimum multi-parameter (OMP) model, and we have mapped the distributions of the water masses.
We have characterized the major water masses in the Atlantic Ocean based on the properties found...