Articles | Volume 17, issue 2
https://doi.org/10.5194/os-17-463-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-463-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Water masses in the Atlantic Ocean: characteristics and distributions
Mian Liu
College of Ocean and Earth Sciences,
Xiamen University, Xiamen, 361005, China
GEOMAR Helmholtz Centre for Ocean Research Kiel,
Marine Biogeochemistry, Chemical Oceanography,
Düsternbrooker Weg 20, 24105 Kiel, Germany
GEOMAR Helmholtz Centre for Ocean Research Kiel,
Marine Biogeochemistry, Chemical Oceanography,
Düsternbrooker Weg 20, 24105 Kiel, Germany
Related authors
Mian Liu and Toste Tanhua
EGUsphere, https://doi.org/10.5194/egusphere-2024-1362, https://doi.org/10.5194/egusphere-2024-1362, 2024
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Quantifies Atlantic water mass ages using CFC-12, SF₆, and ³⁹Ar tracers. Reveals ventilation timescales: surface (~100y mean), intermediate (AAIW ~300y), deep (NADW ~600y), bottom (NEABW ~800y). Shows younger ages in western basins due to better ventilation. Provides framework for biogeochemical studies.
Lennart Gerke, Toste Tanhua, William A. Nesbitt, Samuel W. Stevens, and Douglas W. R. Wallace
EGUsphere, https://doi.org/10.5194/egusphere-2025-3999, https://doi.org/10.5194/egusphere-2025-3999, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Transient tracer data, measured for the first time in 2022 in the Gulf of St. Lawrence, reveal older deep waters in the east than the west, contrary to expected estuarine circulation, indicating increased influence of older, warmer, less oxygenated North Atlantic Central Water over younger, oxygen-rich Labrador Current Water. While consistent with previous reports of increasing NACW contribution, our results contradict claims of a complete shift to NACW by 2021, showing that LCW still persists.
William A. Nesbitt, Samuel W. Stevens, Alfonso O. Mucci, Lennart Gerke, Toste Tanhua, Gwénaëlle Chaillou, and Douglas W. R. Wallace
EGUsphere, https://doi.org/10.5194/egusphere-2025-2400, https://doi.org/10.5194/egusphere-2025-2400, 2025
Short summary
Short summary
We use 20 years of oxygen measurements and recent carbon data with a tracer-calibrated 1D model to quantify oxygen loss and inorganic carbon accumulation in the deep waters of the Gulf and St. Lawrence Estuary. We further utilize the model to give a first estimate of the impact of adding pure oxygen, a by-product from green hydrogen production to these deep waters. Results show this could restore oxygen to year-2000 levels, but full recovery would require a larger input.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Anne-Marie Wefing, Annabel Payne, Marcel Scheiwiller, Christof Vockenhuber, Marcus Christl, Toste Tanhua, and Núria Casacuberta
EGUsphere, https://doi.org/10.5194/egusphere-2025-1322, https://doi.org/10.5194/egusphere-2025-1322, 2025
Short summary
Short summary
Here we used the anthropogenic radionuclides I-129 and U-236 as tracers for Atlantic Water circulation in the Arctic Ocean. New data collected in 2021 allowed to assess the distribution of Atlantic Water and mixing with Pacific-origin water in the surface layer in that year. By using historical tracer data from 2011 to 2021, we looked into temporal changes of the circulation and found slightly older waters in the central Arctic Ocean in 2021 compared to 2015.
Mian Liu and Toste Tanhua
EGUsphere, https://doi.org/10.5194/egusphere-2024-1362, https://doi.org/10.5194/egusphere-2024-1362, 2024
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Quantifies Atlantic water mass ages using CFC-12, SF₆, and ³⁹Ar tracers. Reveals ventilation timescales: surface (~100y mean), intermediate (AAIW ~300y), deep (NADW ~600y), bottom (NEABW ~800y). Shows younger ages in western basins due to better ventilation. Provides framework for biogeochemical studies.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Steve D. Jones, Maren K. Karlsen, Claire Lo Monaco, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, https://doi.org/10.5194/essd-13-5565-2021, 2021
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2021 is the third update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 989 hydrographic cruises covering the world's oceans from 1972 to 2020.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Pingyang Li and Toste Tanhua
Ocean Sci., 17, 509–525, https://doi.org/10.5194/os-17-509-2021, https://doi.org/10.5194/os-17-509-2021, 2021
Short summary
Short summary
Observations of transient tracer distribution provide essential information on ocean ventilation. The use of several commonly used transient traces is limited as their atmospheric mole fractions do not monotonically change. Here we explore new potential oceanic transient tracers with an analytical system that simultaneously measures a large range of compounds. Combined with the known atmospheric history and seawater solubility, we discuss the utility of selected HCFCs, HFCs, and PFCs as tracers.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Dagmar Hainbucher, Marta Álvarez, Blanca Astray Uceda, Giancarlo Bachi, Vanessa Cardin, Paolo Celentano, Spyros Chaikalis, Maria del Mar Chaves Montero, Giuseppe Civitarese, Noelia M. Fajar, Francois Fripiat, Lennart Gerke, Alexandra Gogou, Elisa F. Guallart, Birte Gülk, Abed El Rahman Hassoun, Nico Lange, Andrea Rochner, Chiara Santinelli, Tobias Steinhoff, Toste Tanhua, Lidia Urbini, Dimitrios Velaoras, Fabian Wolf, and Andreas Welsch
Earth Syst. Sci. Data, 12, 2747–2763, https://doi.org/10.5194/essd-12-2747-2020, https://doi.org/10.5194/essd-12-2747-2020, 2020
Short summary
Short summary
We report on data from an oceanographic cruise in the Mediterranean Sea (MSM72, March 2018). The main objective of the cruise was to contribute to the understanding of long-term changes and trends in physical and biogeochemical parameters, such as the anthropogenic carbon uptake, and further assess the hydrographical situation after the Eastern and Western Mediterranean Transients. Multidisciplinary measurements were conducted on a predominantly
zonal section throughout the Mediterranean Sea.
Cited articles
Abernathey, R. P., Cerovecki, I., Holland, P. R., Newsom E., Mazloff, M., and
Talley, L. D.: Water-mass transformation by sea ice in the upper branch of
the southern ocean overturning, Nat. Geosci., 9, 596–601,
https://doi.org/10.1038/ngeo2749, 2016.
Alvarez, M., Brea, S., Mercier, H., and Alvarez-Salgado, X. A.: Mineralization
of biogenic materials in the water masses of the South Atlantic Ocean. I:
Assessment and results of an optimum multiparameter analysis, Prog. Oceanogr.
123, 1–23, 2014.
Andrié, C., Gouriou, Y., Bourlès, B., Ternon, J. F., Braga, E. S.,
Morin, P., and Oudot, C.: Variability of AABW properties in the equatorial
channel at 35∘ W, Geophys. Res. Lett., 30, https://doi.org/10.1029/2002GL015766, 2003.
Arhan, M.: The North Atlantic current and subarctic intermediate water, J.
Mar. Res., 48, 109–144, 1990.
Arhan, M. and King, B.: Lateral Mixing of the Mediterranean Water in the
Eastern North-Atlantic, J. Mar. Res., 53, 865–895, 1995.
Baringer, M. O. and Price, J. F.: Mixing and spreading of the Mediterranean
outflow, J. Phys. Oceanogr., 27, 1654–1677, 1997.
Broecker, W. S.: No a Conservative Water-Mass Tracer, Earth Planet. Sci. Lett.,
23, 100–107, 1974.
Broecker, W. S. and Denton, G. H.: The Role of Ocean-Atmosphere Reorganizations
in Glacial Cycles, Geochim. Cosmochim. Ac., 53, 2465–2501, 1989.
Carracedo, L. I., Pardo, P. C., Flecha, S., and Pérez, F. F.: On the
Mediterranean Water Composition, J. Phys. Oceanogr., 46, 1339–1358, 2016.
Castro, C. G., Perez, F. F., Holley, S. E., and Rios, A. F.: Chemical
characterisation and modelling of water masses in the Northeast Atlantic,
Prog. Oceanogr., 41, 249–279, 1998.
Cianca, A., Santana, R., Marrero, J. P., Rueda, M. J., and Llinás, O.: Modal composition of the central water in the North Atlantic subtropical gyre, Ocean Sci. Discuss., 6, 2487–2506, https://doi.org/10.5194/osd-6-2487-2009, 2009.
Clarke, R. A. and Gascard, J.-C.: The Formation of Labrador Sea Water. Part I:
Large-Scale Processes, J. Phys. Oceanogr., 13, 1764–1778, 1983.
Defant, A.: Dynamische Ozeanographie, Springer, New York, USA, 1929.
Dengler, M., Schott, F. A., Eden, C., Brandt, P., Fischer, J., and Zantopp, R. J.:
Break-up of the Atlantic deep western boundary current into eddies at
8∘ S, Nature, 432, 1018, https://doi.org/10.1038/nature03134, 2004.
Deruijter, W.: Asymptotic Analysis of the Agulhas and Brazil Current
Systems, J. Phys. Oceanogr., 12, 361–373, 1982.
Dickson, R. R. and Brown, J.: The Production of North-Atlantic Deep-Water –
Sources, Rates, and Pathways, J. Geophys. Res.-Oceans, 99, 12319–12341, 1994.
Elliot, M., Labeyrie, L., and Duplessy, J. C.: Changes in North Atlantic
deep-water formation associated with the Dansgaard-Oeschger temperature
oscillations (60-10 ka), Quatern. Sci. Rev., 21, 1153–1165, 2002.
Emery, W. J. and Meincke, J.: Global Water Masses – Summary and Review,
Oceanol. Acta, 9, 383–391, 1986.
Flynn, R. F., Granger, J., Veitch, J. A. Siedlecki, S., Burger, J. M., Pillay,
K., and Fawcett, S. E.: On-Shelf Nutrient Trapping Enhances the Fertility of the
Southern Benguela Upwelling System, J. Geophys. Res.-Oceans, 125, e2019JC015948, https://doi.org/10.1029/2019jc015948, 2020.
Foldvik, A. and Gammelsrod, T.: Notes on Southern-Ocean Hydrography, Sea-Ice
and Bottom Water Formation, Palaeogeogr. Palaeocl.,
67, 3–17, 1988.
Garcia-Ibanez, M. I., Pardo, P. C., Carracedo, L. I., Mercier, H., Lherminier,
P., Rios, A. F., and Perez, F. F.: Structure, transports and transformations of
the water masses in the Atlantic Subpolar Gyre, Prog. Oceanogr., 135, 18–36,
2015.
Gascard, J.-C. and Clarke, R. A.: The Formation of Labrador Sea Water. Part II.
Mesoscale and Smaller-Scale Processes, J. Phys. Oceanogr., 13,
1779–1797, 1983.
Gordon, A. L.: Bottom Water Formation, in: Encyclopedia of Ocean Sciences, edited by: Steele, J. H.,
Oxford Academic Press, Oxford, UK, 334–340, 2001.
Gordon, A. L., Weiss, R. F., Smethie, W. M., and Warner, M. J.: Thermocline and
Intermediate Water Communication between the South-Atlantic and Indian
Oceans, J. Geophys. Res.-Oceans, 97, 7223–7240, 1992.
Groeskamp, S., Abernathey, R. P., and Klocker, A.: Water mass transformation by
cabbeling and thermobaricity, Geophys. Res. Lett., 43, 10835–10845,
2016.
Haine, T. W. N. and Hall, T. M.: A generalized transport theory: Water-mass
composition and age, J. Phys. Oceanogr., 32, 1932–1946, 2002.
Harvey, J.: Theta-S Relationships and Water Masses in the Eastern
North-Atlantic, Deep-Sea Res., 29,
1021–1033, 1982.
Helland-Hansen, B. R.: Nogen hydrografiske metoder, Scand, Naturforsker Mote,
Kristiana, Oslo, Norway, 1916.
Jackett, D. R., Mcdougall, T., Feistel, R., Wright, D., and Griffies, S.: Algorithms
for Density, Potential Temperature, Conservative Temperature, and the
Freezing Temperature of Seawater, J. Atmos. Ocean. Tech., 23, 1706–1728, 2006.
Jacobsen, J. P.: Line graphische Methode zur Bestimmung des
Vermischungskoeffizienten im Meer, Gerlands Beitrdge zur Geophysik, 16,
404–412, 1927.
Jullion, L., Jacquet, S., and Tanhua, T.: Untangling biogeochemical processes
from the impact of ocean circulation: First insight on the Mediterranean
dissolved barium dynamics, Global Biogeochem. Cy., 31, 1256–1270, 2017.
Karstensen, J. and Tomczak, M.: Ventilation processes and water mass ages in
the thermocline of the southeast Indian Ocean, Geophys. Res. Lett.,
24, 2777–2780, 1997.
Karstensen, J. and Tomczak, M.: Age determination of mixed water masses using
CFC and oxygen data, J. Geophys. Res.-Oceans, 103, 18599–18609, 1998.
Karstensen, J., Stramma, L., and Visbeck, M.: Oxygen minimum zones in the eastern
tropical Atlantic and Pacific oceans, Prog. Oceanogr., 77, 331–350,
2008.
Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister,
J. L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T. H.: A global ocean
carbon climatology: Results from Global Data Analysis Project (GLODAP),
Global Biogeochem. Cy., 18, GB4031, https://doi.org/10.1029/2004gb002247, 2004.
Key, R. M., Tanhua, T., Olsen, A., Hoppema, M., Jutterström, S., Schirnick, C., van Heuven, S., Kozyr, A., Lin, X., Velo, A., Wallace, D. W. R., and Mintrop, L.: The CARINA data synthesis project: introduction and overview, Earth Syst. Sci. Data, 2, 105–121, https://doi.org/10.5194/essd-2-105-2010, 2010.
Key, R. M., Olsen, A., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishi, M., Perez, F. F., and Suzuki, T.: Global Ocean
Data Analysis Project, Version 2 (GLODAPv2), ORNL/CDIAC-162, ND-P093, Carbon
Dioxide Information Analysis Center, Oak Ridge National Laboratory, US
Department of Energy, Oak Ridge, USA,
https://doi.org/10.3334/CDIAC/OTG.NDP093_GLODAPv2, 2015.
Kieke, D., Rhein, M., Stramma, L., Smethie, W. M., LeBel, D. A., and Zenk, W.:
Changes in the CFC inventories and formation rates of Upper Labrador Sea
Water, 1997–2001, J. Phys. Oceanogr., 36, 64–86, 2006.
Kieke, D., Rhein, M., Stramma, L., Smethie, W. M., Bullister, J. L., and LeBel,
D. A.: Changes in the pool of Labrador Sea Water in the subpolar North
Atlantic, Geophys. Res. Lett., 34, L06605, https://doi.org/10.1029/2008jc005165, 2007.
Kirchner, K., Rhein, M., Huttl-Kabus, S., and Boning, C. W.: On the spreading of
South Atlantic Water into the Northern Hemisphere, J. Geophys. Res.-Ocean., 114, C05019, https://doi.org/10.1029/2008JC005165,
2009.
Klein, B. and Hogg, N.: On the variability of 18 Degree Water formation as
observed from moored instruments at 55 degrees W. Deep-Sea Res., 43, 1777–1806, 1996.
Kuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann, M., and
Rahmstorf, S.: On the driving processes of the Atlantic meridional
overturning circulation, Rev. Geophys., 45, RG200, https://doi.org/10.1029/2004rg000166, 2007.
Lacan, F. and Jeandel, C.: Neodymium isotopic composition and rare earth
element concentrations in the deep and intermediate Nordic Seas: Constraints
on the Iceland Scotland Overflow Water signature, Geochem. Geophy.
Geosy., 5, Q11006, https://doi.org/10.1029/2004gc000742, 2004.
Lawson, C. L. and Hanson, R. J.: Solving Least Squares Problems,
Prentice-Hall, New York, USA, 1974.
Lazier, J. R. N. and Wright, D. G.: Annual Velocity Variations in the Labrador
Current, J. Phys. Oceanogr., 23, 659–678, 1993.
Liu, M. and Tanhua, T.: Atlantic Ocean water mass fraction estimates based on GLODAPv2 Atlantic database (NCEI Accession 0225455), NOAA National Centers for Environmental Information, Dataset, https://doi.org/10.25921/zfhg-8676, 2021.
Lozier, M. S.: Overturning in the North Atlantic, Ann. Rev. Mar. Sci., 4, 291–315,
2012.
Lutjeharms, J. R. and van Ballegooyen, R. C.: Anomalous upstream retroflection in
the agulhas current, Science, 240, 1770, https://doi.org/10.1126/science.240.4860.1770, 1988.
Lynch-Stieglitz, J., Adkins, J. F., Curry, W. B., Dokken, T., Hall, I. R.,
Herguera, J. C., Hirschi, J. J., Ivanova, E. V., Kissel, C., Marchal, O.,
Marchitto, T. M., McCave, I. N., McManus, J. F., Mulitza, S., Ninnemann, U.,
Peeters, F., Yu, E. F., and Zahn, R.: Atlantic meridional overturning circulation
during the Last Glacial Maximum, Science, 316, 66–69, 2007.
Marshall, J. and Speer, K.: Closure of the meridional overturning circulation
through Southern Ocean upwelling, Nat. Geosci., 5, 171–180, 2012.
McCartney, M. S.: The subtropical recirculation of Mode Waters, J. Mar. Res., 40,
427–464, 1982.
McCartney, M. S. and Talley, L. D.: The subpolar mode water of the North Atlantic
Ocean, J. Phys. Oceanogr., 12, 1169–1188, 1982.
Millero, F. J., Feistel, R., Wright, D.G., and Mcdougall, T .J.: The composition of
Standard Seawater and the definition of the Reference-Composition Salinity
Scale, Deep-Sea Res., 55, 50–72, 2008.
Montgomery, R.B.: Water characteristics of Atlantic Ocean and of world
ocean, Deep Sea Res., 5, 134–148, 1958.
Morrison, A. K., Frulicher, T. L., and Sarmiento, J. L.: Upwelling in the Southern
Ocean, Phys. Today, 68, 27–32, 2015.
Nycander, J., Hieronymus, M., and Roquet, F.: The nonlinear equation of state
of sea water and the global water mass distribution, Geophys. Res. Lett.,
42, 7714–7721, https://doi.org/10.1002/2015GL065525, 2015.
Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., and Suzuki, T.: The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean, Earth Syst. Sci. Data, 8, 297–323, https://doi.org/10.5194/essd-8-297-2016, 2016.
Olsen, A., Key, R. M., Lauvset, S. K., Kozyr, A., Tanhua, T., Hoppema, M., Ishii, M., Jeansson, E., van Heuven, S., Jutterström, S., Schirnick, C., Steinfeldt, R., Suzuki, T., Lin, X., Velo, A., and Pérez, F. F.: Global Ocean Data Analysis Project, Version 2 (GLODAPv2) (NCEI Accession 0162565), Version 1.1, NOAA National Centers for Environmental Information, Dataset, https://doi.org/10.7289/V5KW5D97, 2017.
Olsen, A., Lange, N., Key, R. M., Tanhua, T., Álvarez, M., Becker, S., Bittig, H. C., Carter, B. R., Cotrim Da Cunha, L., Feely, R.A., Van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jones, S.D., Jutterström, S., Karlsen, M. K., Kozyr, A., Lauvset, S. K., Lo Monaco, C., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Telszewski, M., Tilbrook, B., Velo, A., and Wanninkhof, R.: GLODAPv2.2019 – an update of GLODAPv2, Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, 2019.
Olsen, A., Lange, N., Key, R. M., Tanhua, T., Bittig, H. C., Kozyr, A., Álvarez, M., Azetsu-Scott, K., Becker, S., Brown, P. J., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jutterström, S., Landa, C. S., Lauvset, S. K., Michaelis, P., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Velo, A., Wanninkhof, R., and Woosley, R. J.: An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2020, Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, 2020.
Orsi, A. H., Johnson, G. C., and Bullister, J. L.: Circulation, mixing, and
production of Antarctic Bottom Water, Prog. Oceanogr., 43, 55–109, 1999.
Pawlowicz, R., Wright, D. G., and Millero, F. J.: The effects of biogeochemical processes on oceanic conductivity/salinity/density relationships and the characterization of real seawater, Ocean Sci., 7, 363–387, https://doi.org/10.5194/os-7-363-2011, 2011.
Peterson, R. G. and Stramma, L.: Upper-Level Circulation in the South-Atlantic
Ocean, Prog. Oceanogr., 26, 1–73, 1991.
Pickart, R. S., Spall, M. A., and Lazier, J. R. N.: Mid-depth ventilation in the
western boundary current system of the sub-polar gyre, Deep-Sea Res., 44, 1025–1054, 1997.
Piola, A. R. and Georgi, D. T.: Circumpolar properties of Antarctic intermediate
water and Subantarctic Mode Water, Deep Sea Res., 29, 687–711, 1982.
Piola, A. R. and Gordon, A. L.: Intermediate Waters in the Southwest
South-Atlantic, Deep-Sea Res., 36,
1–16, 1989.
Pollard, R. T. and Pu, S.: Structure and Circulation of the Upper Atlantic Ocean
Northeast of the Azores, Prog. Oceanogr., 14, 443–462, 1985.
Pollard, R. T., Grifftths, M. J., Cunningham, S. A., Read, J. F., Pérez,
F. F., and Ríos, A. F.: Vivaldi 1991 – a study of the formation, circulation
and ventilation of Eastern North Atlantic Central Water, Prog.
Oceanogr., 37, 167–192, 1996.
Poole, R. and Tomczak, M.: Optimum multiparameter analysis of the water mass
structure in the Atlantic Ocean thermocline, Deep-Sea Res., 46, 1895–1921, 1999.
Price, J. F., Baringer, M. O., Lueck, R. G., Johnson, G. C., Ambar, I.,
Parrilla, G., Cantos, A., Kennelly, M. A., and Sanford, T. B.: Mediterranean
outflow mixing and dynamics, Science, 259, 1277–1282, 1993.
Prieto, E., Gonzalez-Pola, C., Lavin, A., and Holliday, N.P.: Interannual
variability of the northwestern Iberia deep ocean: Response to large-scale
North Atlantic forcing, J. Geophys. Res.-Oceans, 120, 832–847, 2015.
Read, J.: CONVEX-91: water masses and circulation of the Northeast Atlantic
subpolar gyre, Prog. Oceanogr., 48, 461–510, 2000.
Reid, J. L.: On the middepth circulation and salinity field in the North
Atlantic Ocean, J. Geophys. Res.-Oceans, 83, 5063–5067, 1978.
Reid, J. L.: On the contribution of the Mediterranean Sea outflow to the
Norwegian-Greenland Sea, Deep Sea Res., 26, 1199–1223, 1979.
Rhein, M., Stramma, L., and Krahmann, G.: The spreading of Antarctic bottom
water in the tropical Atlantic, Deep-Sea Res., 45, 507–527, 1998.
Rhein, M., Kieke, D., Huttl-Kabus, S., Roessler, A., Mertens, C., Meissner,
R., Klein, B., Boning, C. W., and Yashayaev, I.: Deep water formation, the
subpolar gyre, and the meridional overturning circulation in the subpolar
North Atlantic, Deep-Sea Res.,
58, 1819–1832, 2011.
Rudels, B., Fahrbach, E., Meincke, J., Budéus, G., and Eriksson, P.: The
East Greenland Current and its contribution to the Denmark Strait overflow,
ICES J. Mar. Sci., 59, 1133–1154, 2002.
Saenko, O. A. and Weaver, A. J.: Importance of wind-driven sea ice motion
for the formation of antarctic intermediate water in a global climate model,
Geophys. Res. Lett., 28, 4147–4150, https://doi.org/10.1029/2001GL013632, 2001.
Smethie, W. M. and Fine, R. A.: Rates of North Atlantic Deep Water formation
calculated from chlorofluorocarbon inventories, Deep-Sea Res., 48, 189–215, 2001.
Smith, E. H., Soule, F. M., and Mosby, O.: The Marion and General Greene
Expeditions to Davis Strait and Labrador Sea, Under Direction of the United
States Coast Guard: 1928-1931-1933-1934-1935: Scientific Results, Part 2:
Physical Oceanography, US Government Printing Office, Washington DC, USA, 1937.
Sprintall, J. and Tomczak, M.: On the formation of Central Water and
thermocline ventilation in the southern hemisphere, Deep Sea Res., 40, 827–848, 1993.
Stramma, L. and England, M. H.: On the water masses and mean circulation of the
South Atlantic Ocean, J. Geophys. Res.-Oceans, 104, 20863–20883, 1999.
Stramma, L. and Peterson, R. G.: The South-Atlantic Current, J. Phys.
Oceanogr., 20, 846–859, 1990.
Stramma, L., Kieke, D., Rhein, M., Schott, F., Yashayaev, I., and Koltermann,
K. P.: Deep water changes at the western boundary of the subpolar North
Atlantic during 1996 to 2001, Deep Sea Res., 51, 1033–1056, 2004.
Sverdrup, H. U., Johnson M. W., and Fleming, R. H.: The Oceans: Their Physics, Chemistry and General Biology, Prentice Hall, USA, 1087 pp., 1942.
Swift, J. H.: The Circulation of the Denmark Strait and Iceland Scotland
Overflow Waters in the North-Atlantic, Deep-Sea Res., 31, 1339–1355, 1984.
Swift, S. M.: Activity patterns of pipistrelle bats (Pipistrellus
pipistrellus) in north-east Scotland, J. Zoology, 190, 285–295, 1980.
Talley, L.: Antarctic intermediate water in the South Atlantic, The South
Atlantic, Springer, Heidelberg, Germany, 1996.
Talley, L. and Raymer, M.: Eighteen degree water variability, J. Mar. Res., 40,
757–775, 1982.
Talley, L. D. and Mccartney, M. S.: Distribution and Circulation of Labrador
Sea-Water, J. Phys. Oceanogr., 12, 1189–1205, 1982.
Tanhua, T., Olsson, K. A., and Jeansson, E.: Formation of Denmark Strait overflow
water and its hydro-chemical composition, J. Mar. Syst., 57,
264–288, 2005.
Tanhua, T., van Heuven, S., Key, R. M., Velo, A., Olsen, A., and Schirnick, C.: Quality control procedures and methods of the CARINA database, Earth Syst. Sci. Data, 2, 35–49, https://doi.org/10.5194/essd-2-35-2010, 2010.
Tomczak, M.: A multi-parameter extension of temperature/salinity diagram
techniques for the analysis of non-isopycnal mixing, Prog. Oceanogr., 10,
147–171, 1981.
Tomczak, M.: Some historical, theoretical and applied aspects of
quantitative water mass analysis, J. Mar. Res., 57, 275–303, 1999.
Tomczak, M. and Godfrey, J. S.: Regional oceanography: an introduction,
Elsevier, Amsterdam, the Netherlands, 2013.
Tomczak, M. and Large, D. G.: Optimum multiparameter analysis of mixing in the
thermocline of the eastern Indian Ocean, J. Geophys. Res.-Oceans, 94, 16141–16149, 1989.
van Heuven, S. M. A. C., Hoppema, M., Huhn, O., Slagter, H. A., and de Baar, H. J. W.:
Direct observation of increasing CO2 in the Weddell Gyre along the Prime
Meridian during 1973–2008, Deep Sea Res., 58, 2613–2635, 2011.
Weiss, R. F., Ostlund, H. G., and Craig, H.: Geochemical Studies of the Weddell
Sea, Deep-Sea Res., 26, 1093–1120,
1979.
Worthington, L.: The 18 water in the Sargasso Sea, Deep Sea Res.,
5, 297–305, 1959.
Wüst, G. and Defant, A.: Atlas zur Schichtung und Zirkulation des
Atlantischen Ozeans: Schnitte und Karten von Temperatur, Salzgehalt und
Dichte, W. de Gruyter, Berlin, Germany, 1936.
Zou, S. J., Bower, A., Furey, H., Lozier, M. S., and Xu, X. B.: Redrawing the
Iceland-Scotland Overflow Water pathways in the North Atlantic, Nat. Commun., 11, 1890, https://doi.org/10.1038/s41467-020-15513-4, 2020.
Short summary
We have characterized the major water masses in the Atlantic Ocean based on the properties found in their formation areas using six properties taken from the GLODAPv2 data product, including both conservative (conservative temperature and absolute salinity) and non-conservative (oxygen, silicate, phosphate and nitrate) properties. The distributions of the water masses are estimated by using the optimum multi-parameter (OMP) model, and we have mapped the distributions of the water masses.
We have characterized the major water masses in the Atlantic Ocean based on the properties found...