Articles | Volume 17, issue 1
https://doi.org/10.5194/os-17-285-2021
https://doi.org/10.5194/os-17-285-2021
Research article
 | 
15 Feb 2021
Research article |  | 15 Feb 2021

A 30-year reconstruction of the Atlantic meridional overturning circulation shows no decline

Emma L. Worthington, Ben I. Moat, David A. Smeed, Jennifer V. Mecking, Robert Marsh, and Gerard D. McCarthy

Related authors

Risk of compound flooding substantially increases in the future Mekong River delta
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, and Joël J.-M. Hirschi
Nat. Hazards Earth Syst. Sci., 24, 3627–3649, https://doi.org/10.5194/nhess-24-3627-2024,https://doi.org/10.5194/nhess-24-3627-2024, 2024
Short summary
Comparing observed and modelled components of the Atlantic Meridional Overturning Circulation at 26° N
Harry Bryden, Jordi Beunk, Sybren Drijfhout, Wilco Hazeleger, and Jennifer Mecking
Ocean Sci., 20, 589–599, https://doi.org/10.5194/os-20-589-2024,https://doi.org/10.5194/os-20-589-2024, 2024
Short summary
European summer weather linked to North Atlantic freshwater anomalies in preceding years
Marilena Oltmanns, N. Penny Holliday, James Screen, Ben I. Moat, Simon A. Josey, D. Gwyn Evans, and Sheldon Bacon
Weather Clim. Dynam., 5, 109–132, https://doi.org/10.5194/wcd-5-109-2024,https://doi.org/10.5194/wcd-5-109-2024, 2024
Short summary
Data supporting the North Atlantic Climate System: Integrated Studies (ACSIS) programme, including atmospheric composition, oceanographic and sea ice observations (2016–2022) and output from ocean, atmosphere, land and sea-ice models (1950–2050)
Alexander T. Archibald, Bablu Sinha, Maria Russo, Emily Matthews, Freya Squires, N. Luke Abraham, Stephane Bauguitte, Thomas Bannan, Thomas Bell, David Berry, Lucy Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Ben I. Moat, Katie Read, Chris Reed, Malcolm Roberts, Reinhard Schiemann, David Schroeder, Tim Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Ming-Xi Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-405,https://doi.org/10.5194/essd-2023-405, 2024
Revised manuscript accepted for ESSD
Short summary
Forcing and impact of the Northern Hemisphere continental snow cover in 1979–2014
Guillaume Gastineau, Claude Frankignoul, Yongqi Gao, Yu-Chiao Liang, Young-Oh Kwon, Annalisa Cherchi, Rohit Ghosh, Elisa Manzini, Daniela Matei, Jennifer Mecking, Lingling Suo, Tian Tian, Shuting Yang, and Ying Zhang
The Cryosphere, 17, 2157–2184, https://doi.org/10.5194/tc-17-2157-2023,https://doi.org/10.5194/tc-17-2157-2023, 2023
Short summary

Related subject area

Approach: In situ Observations | Properties and processes: Overturning circulation | Depth range: All Depths | Geographical range: Deep Seas: North Atlantic | Challenges: Oceans and climate
Mixing and air–sea buoyancy fluxes set the time-mean overturning circulation in the subpolar North Atlantic and Nordic Seas
Dafydd Gwyn Evans, N. Penny Holliday, Sheldon Bacon, and Isabela Le Bras
Ocean Sci., 19, 745–768, https://doi.org/10.5194/os-19-745-2023,https://doi.org/10.5194/os-19-745-2023, 2023
Short summary
Observation-based estimates of volume, heat, and freshwater exchanges between the subpolar North Atlantic interior, its boundary currents, and the atmosphere
Sam C. Jones, Neil J. Fraser, Stuart A. Cunningham, Alan D. Fox, and Mark E. Inall
Ocean Sci., 19, 169–192, https://doi.org/10.5194/os-19-169-2023,https://doi.org/10.5194/os-19-169-2023, 2023
Short summary

Cited articles

Baehr, J., Haak, H., Alderson, S., Cunningham, S. A., Jungclaus, J. H., and Marotzke, J.: Timely Detection of Changes in the Meridional Overturning Circulation at 26 N in the Atlantic, J. Climate, 20, 5827–5841, https://doi.org/10.1175/2007JCLI1686.1, 2007. a
Baehr, J., Keller, K., and Marotzke, J.: Detecting Potential Changes in the Meridional Overturning Circulation at 26 N in the Atlantic, Clim. Change, 91, 11–27, https://doi.org/10.1007/s10584-006-9153-z, 2008. a, b
Baringer, M. O. and Larsen, J. C.: Sixteen Years of Florida Current Transport at 27 N, Geophys. Res. Lett., 28, 3179–3182, https://doi.org/10.1029/2001GL013246, 2001. a
Boyer, T. P., Antonov, J. I., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., Johnson, D. R., Locarnini, R., Mishonov, R. A., O'Brien, T., Paver, C., Reagan, J., Seidov, D., Smolyar, I. V., and Zweng, M.: NCEI Standard Product: World Ocean Database (WOD), NOAA National Centers for Environmental Information, Dataset, available at: https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html (last access: 16 April 2020), 2018. a, b
Bryden, H. L., Longworth, H. R., and Cunningham, S. A.: Slowing of the Atlantic Meridional Overturning Circulation at 25 N, Nature, 438, 655–657, https://doi.org/10.1038/nature04385, 2005. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Download
Short summary
The RAPID array has observed the Atlantic meridional overturning circulation (AMOC) since 2004, but the AMOC was directly calculated only five times from 1957–2004. Here we create a statistical regression model from RAPID data, relating AMOC changes to density changes within the different water masses at 26°  N, and apply it to historical hydrographic data. The resulting 1981–2016 record shows that the AMOC from 2008–2012 was its weakest since the mid-1980s, but it shows no overall decline.