Articles | Volume 17, issue 6
https://doi.org/10.5194/os-17-1677-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-1677-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Progress in understanding of Indian Ocean circulation, variability, air–sea exchange, and impacts on biogeochemistry
Helen E. Phillips
CORRESPONDING AUTHOR
Institute for Marine and Antarctic Studies, University of Tasmania,
Hobart, 7005, Australia
Australian Antarctic Program Partnership, Institute for Marine and
Antarctic Studies, University of Tasmania, Hobart, 7005, Australia
Amit Tandon
Department of Mechanical Engineering, College of Engineering,
University of Massachusetts, Dartmouth, 02747, USA
Ryo Furue
APL/JAMSTEC, Yokohama, 236-0001, Japan
Raleigh Hood
Horn Point
Laboratory, University of Maryland Center for Environmental Science, Cambridge, 21613, USA
Caroline C. Ummenhofer
Department of Physical Oceanography, Woods Hole Oceanographic
Institution, Woods Hole, 02543, USA
ARC Centre of Excellence for Climate Extremes, University of New South
Wales, Sydney, 2052, Australia
Jessica A. Benthuysen
Australian Institute of Marine Science, Indian Ocean Marine Research
Centre, Crawley, 6009, Australia
Viviane Menezes
Department of Physical Oceanography, Woods Hole Oceanographic
Institution, Woods Hole, 02543, USA
Shijian Hu
Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
Ben Webber
School of Environmental Sciences, University of East Anglia, Norwich,
NR4 7TJ, UK
Alejandra Sanchez-Franks
National Oceanography Centre, Southampton, SO 15 UK
Deepak Cherian
National Center for Atmospheric Research, Boulder, 80305, USA
Emily Shroyer
College of Earth, Ocean and Atmospheric Sciences, Oregon State
University, Corvallis, 97331, USA
Ming Feng
CSIRO Oceans and Atmosphere, Indian Ocean Marine Research Centre,
Crawley, 6009, Australia
Centre for Southern Hemisphere Oceans Research, Hobart, 7004, Australia
Hemantha Wijesekera
U.S. Naval Research Laboratory, Stennis Space Center, 39529, USA
Abhisek Chatterjee
Indian National Centre for Ocean Information Services, Ministry of
Earth Sciences, Hyderabad, India
Lisan Yu
Department of Physical Oceanography, Woods Hole Oceanographic
Institution, Woods Hole, 02543, USA
Juliet Hermes
South African Environmental Observation Network, Cape Town, South
Africa
Raghu Murtugudde
Department of Atmospheric and Oceanic Science, University of
Maryland, College Park, 20742, USA
Tomoki Tozuka
Department of Earth and Planetary Science, Graduate School of
Science, The University of Tokyo, Tokyo, 113-0033, Japan
APL/JAMSTEC, Yokohama, 236-0001, Japan
Danielle Su
Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR
7159 LOCEAN-IPSL, Paris, France
Arvind Singh
Physical Research Laboratory, Ahmedabad, India
Luca Centurioni
Scripps Institution of Oceanography, University of California San
Diego, La Jolla, 92093, USA
Satya Prakash
Indian National Centre for Ocean Information Services, Ministry of
Earth Sciences, Hyderabad, India
deceased, 22 July 2021
Jerry Wiggert
Marine Science Department, University of Southern Mississippi, Hattiesburg, 399406, USA
Related authors
Mana Inoue, Mark A. J. Curran, Andrew D. Moy, Tas D. van Ommen, Alexander D. Fraser, Helen E. Phillips, and Ian D. Goodwin
Clim. Past, 13, 437–453, https://doi.org/10.5194/cp-13-437-2017, https://doi.org/10.5194/cp-13-437-2017, 2017
Short summary
Short summary
A 120 m ice core from Mill Island, East Antarctica, was studied its chemical components. The Mill Island ice core contains 97 years of climate record (1913–2009) and has a mean snow accumulation of 1.35 m yr−1 (ice equivalent). Trace ion concentrations were generally higher than other Antarctic ice core sites. Nearby sea ice concentration was found to influence the annual mean sea salt record. The Mill Island ice core records are unexpectedly complex, with strong modulation of the trace chemistry.
This article is included in the Encyclopedia of Geosciences
P. G. Strutton, V. J. Coles, R. R. Hood, R. J. Matear, M. J. McPhaden, and H. E. Phillips
Biogeosciences, 12, 2367–2382, https://doi.org/10.5194/bg-12-2367-2015, https://doi.org/10.5194/bg-12-2367-2015, 2015
Short summary
Short summary
In 2010, a first-of-its-kind deployment of biological sensors on a mooring in the central Indian Ocean revealed interesting variability in chlorophyll (a proxy for ocean productivity) at timescales of about 2 weeks. Using the mooring data with satellite observations and a biogeochemical model, it was determined that local wind mixing and entrainment, rather than mixed Rossby gravity waves, were likely responsible for much of the observed variability.
This article is included in the Encyclopedia of Geosciences
Toan Bui, Ming Feng, and Chris Chapman
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-449, https://doi.org/10.5194/essd-2024-449, 2024
Preprint under review for ESSD
Short summary
Short summary
Time series data are crucial to detect changes in the ocean. Moored instruments have traditionally been used to obtain long-term observations on the continental shelf. However, mooring losses or instrument failures often result in data gaps. Here we present a gap-filled time series dataset of a shelf mooring array off the Western Australian coast, by adopting a machine learning tool to fill the data gaps. The gap-filled data has acceptable errors and shows consistency with observations.
This article is included in the Encyclopedia of Geosciences
Kyla Drushka, Elizabeth Westbrook, Frederick M. Bingham, Peter Gaube, Suzanne Dickinson, Severine Fournier, Viviane Menezes, Sidharth Misra, Jaynice Pérez Valentín, Edwin J. Rainville, Julian J. Schanze, Carlyn Schmidgall, Andrey Shcherbina, Michael Steele, Jim Thomson, and Seth Zippel
Earth Syst. Sci. Data, 16, 4209–4242, https://doi.org/10.5194/essd-16-4209-2024, https://doi.org/10.5194/essd-16-4209-2024, 2024
Short summary
Short summary
The NASA SASSIE mission aims to understand the role of salinity in modifying sea ice formation in early autumn. The 2022 SASSIE campaign collected measurements of upper-ocean properties, including stratification (layering of the ocean) and air–sea fluxes in the Beaufort Sea. These data are presented here and made publicly available on the NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC), along with code to manipulate the data and generate the figures presented herein.
This article is included in the Encyclopedia of Geosciences
Helene Asbjørnsen, Tor Eldevik, Johanne Skrefsrud, Helen L. Johnson, and Alejandra Sanchez-Franks
Ocean Sci., 20, 799–816, https://doi.org/10.5194/os-20-799-2024, https://doi.org/10.5194/os-20-799-2024, 2024
Short summary
Short summary
The Gulf Stream system is essential for northward ocean heat transport. Here, we use observations along the path of the extended Gulf Stream system and an observationally constrained ocean model to investigate variability in the Gulf Stream system since the 1990s. We find regional differences in the variability between the subtropical, subpolar, and Nordic Seas regions, which warrants caution in using observational records at a single latitude to infer large-scale circulation change.
This article is included in the Encyclopedia of Geosciences
Maria D. Iglesias-Rodríguez, Rosalind E. M. Rickaby, Arvind Singh, and James A. Gately
State Planet, 2-oae2023, 5, https://doi.org/10.5194/sp-2-oae2023-5-2023, https://doi.org/10.5194/sp-2-oae2023-5-2023, 2023
Short summary
Short summary
Recent concern about the repercussions of rising atmospheric CO2 as a key heat-trapping agent have prompted ocean experts to discuss ocean alkalinity enhancement (OAE) as a CO2 removal approach but also as a potential way to mitigate ocean acidification. This chapter provides an overview of best practice in OAE laboratory experimentation by identifying key criteria to achieve high-quality results and providing recommendations to contrast results with other laboratories.
This article is included in the Encyclopedia of Geosciences
Pierre-Marie Poulain, Luca Centurioni, Carlo Brandini, Stefano Taddei, Maristella Berta, and Milena Menna
Ocean Sci., 19, 1617–1631, https://doi.org/10.5194/os-19-1617-2023, https://doi.org/10.5194/os-19-1617-2023, 2023
Short summary
Short summary
Drifters and a profiling float were deployed in the coastal waters of the southeastern Ligurian Sea to characterize the near-surface circulation at a scale of ~10 km. The drifters were trapped in an offshore-flowing filament and a cyclonic eddy that developed at the southwestern extremity of the filament. Drifter velocities are used to estimate differential kinematic properties and relative dispersion statistics of the surface currents.
This article is included in the Encyclopedia of Geosciences
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
This article is included in the Encyclopedia of Geosciences
Alan D. Fox, Patricia Handmann, Christina Schmidt, Neil Fraser, Siren Rühs, Alejandra Sanchez-Franks, Torge Martin, Marilena Oltmanns, Clare Johnson, Willi Rath, N. Penny Holliday, Arne Biastoch, Stuart A. Cunningham, and Igor Yashayaev
Ocean Sci., 18, 1507–1533, https://doi.org/10.5194/os-18-1507-2022, https://doi.org/10.5194/os-18-1507-2022, 2022
Short summary
Short summary
Observations of the eastern subpolar North Atlantic in the 2010s show exceptional freshening and cooling of the upper ocean, peaking in 2016 with the lowest salinities recorded for 120 years. Using results from a high-resolution ocean model, supported by observations, we propose that the leading cause is reduced surface cooling over the preceding decade in the Labrador Sea, leading to increased outflow of less dense water and so to freshening and cooling of the eastern subpolar North Atlantic.
This article is included in the Encyclopedia of Geosciences
Yixi Zheng, David P. Stevens, Karen J. Heywood, Benjamin G. M. Webber, and Bastien Y. Queste
The Cryosphere, 16, 3005–3019, https://doi.org/10.5194/tc-16-3005-2022, https://doi.org/10.5194/tc-16-3005-2022, 2022
Short summary
Short summary
New observations reveal the Thwaites gyre in a habitually ice-covered region in the Amundsen Sea for the first time. This gyre rotates anticlockwise, despite the wind here favouring clockwise gyres like the Pine Island Bay gyre – the only other ocean gyre reported in the Amundsen Sea. We use an ocean model to suggest that sea ice alters the wind stress felt by the ocean and hence determines the gyre direction and strength. These processes may also be applied to other gyres in polar oceans.
This article is included in the Encyclopedia of Geosciences
Abhisek Chatterjee, Gouri Anil, and Lakshmi R. Shenoy
Ocean Sci., 18, 639–657, https://doi.org/10.5194/os-18-639-2022, https://doi.org/10.5194/os-18-639-2022, 2022
Short summary
Short summary
Marine heatwaves refer to discrete, prolonged warm ocean conditions known to cause severe destruction in marine ecosystems. We find that coastal waters off the west coast of India have experienced a rapid multifold increase in heatwave days since the early 80s. This resulted in more frequent and longer marine heatwave events in the last decade. We show that the rapid warming in the Arabian Sea in the last decade is the primary cause of the observed enhanced heatwave events in this basin.
This article is included in the Encyclopedia of Geosciences
Puthenveettil Narayana Menon Vinayachandran, Yukio Masumoto, Michael J. Roberts, Jenny A. Huggett, Issufo Halo, Abhisek Chatterjee, Prakash Amol, Garuda V. M. Gupta, Arvind Singh, Arnab Mukherjee, Satya Prakash, Lynnath E. Beckley, Eric Jorden Raes, and Raleigh Hood
Biogeosciences, 18, 5967–6029, https://doi.org/10.5194/bg-18-5967-2021, https://doi.org/10.5194/bg-18-5967-2021, 2021
Short summary
Short summary
Upwelling in the coastal ocean triggers biological productivity and thus enhances fisheries. Therefore, understanding the phenomenon of upwelling and the underlying mechanisms is important. In this paper, the present understanding of the upwelling along the coastline of the Indian Ocean from the coast of Africa all the way up to the coast of Australia is reviewed. The review provides a synthesis of the physical processes associated with upwelling and its impact on the marine ecosystem.
This article is included in the Encyclopedia of Geosciences
Alejandra Sanchez-Franks, Eleanor Frajka-Williams, Ben I. Moat, and David A. Smeed
Ocean Sci., 17, 1321–1340, https://doi.org/10.5194/os-17-1321-2021, https://doi.org/10.5194/os-17-1321-2021, 2021
Short summary
Short summary
In the North Atlantic, ocean currents carry warm surface waters northward and return cooler deep waters southward. This type of ocean circulation, known as overturning, is important for the Earth’s climate. This overturning has been measured using a mooring array at 26° N in the North Atlantic since 2004. Here we use these mooring data and global satellite data to produce a new method for monitoring the overturning over longer timescales, which could potentially be applied to different latitudes.
This article is included in the Encyclopedia of Geosciences
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
This article is included in the Encyclopedia of Geosciences
Jack Giddings, Karen J. Heywood, Adrian J. Matthews, Manoj M. Joshi, Benjamin G. M. Webber, Alejandra Sanchez-Franks, Brian A. King, and Puthenveettil N. Vinayachandran
Ocean Sci., 17, 871–890, https://doi.org/10.5194/os-17-871-2021, https://doi.org/10.5194/os-17-871-2021, 2021
Short summary
Short summary
Little is known about the impact of chlorophyll on SST in the Bay of Bengal (BoB). Solar irradiance measured by an ocean glider and three Argo floats is used to determine the effect of chlorophyll on BoB SST during the 2016 summer monsoon. The Southwest Monsoon Current has high chlorophyll concentrations (∼0.5 mg m−3) and shallow solar penetration depths (∼14 m). Ocean mixed layer model simulations show that SST increases by 0.35°C per month, with the potential to influence monsoon rainfall.
This article is included in the Encyclopedia of Geosciences
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
This article is included in the Encyclopedia of Geosciences
Jack Giddings, Adrian J. Matthews, Nicholas P. Klingaman, Karen J. Heywood, Manoj Joshi, and Benjamin G. M. Webber
Weather Clim. Dynam., 1, 635–655, https://doi.org/10.5194/wcd-1-635-2020, https://doi.org/10.5194/wcd-1-635-2020, 2020
Short summary
Short summary
The impact of chlorophyll on the southwest monsoon is unknown. Here, seasonally varying chlorophyll in the Bay of Bengal was imposed in a general circulation model coupled to an ocean mixed layer model. The SST increases by 0.5 °C in response to chlorophyll forcing and shallow mixed layer depths in coastal regions during the inter-monsoon. Precipitation increases significantly to 3 mm d-1 across Myanmar during June and over northeast India and Bangladesh during October, decreasing model bias.
This article is included in the Encyclopedia of Geosciences
Ben I. Moat, David A. Smeed, Eleanor Frajka-Williams, Damien G. Desbruyères, Claudie Beaulieu, William E. Johns, Darren Rayner, Alejandra Sanchez-Franks, Molly O. Baringer, Denis Volkov, Laura C. Jackson, and Harry L. Bryden
Ocean Sci., 16, 863–874, https://doi.org/10.5194/os-16-863-2020, https://doi.org/10.5194/os-16-863-2020, 2020
Short summary
Short summary
The RAPID 26° N array has been measuring the Atlantic meridional overturning circulation (AMOC) since 2004. Since 2009 the AMOC has, compared with previous years, been in a low state. In 2013–2015, in the northern North Atlantic, strong cooling was observed in the ocean and anticipated to intensify the strength of the AMOC some years later. Here, we analyse the latest results from 26° N and conclude that while the AMOC has increased since 2009, this increase is not statistically significant.
This article is included in the Encyclopedia of Geosciences
Hideharu Sasaki, Shinichiro Kida, Ryo Furue, Hidenori Aiki, Nobumasa Komori, Yukio Masumoto, Toru Miyama, Masami Nonaka, Yoshikazu Sasai, and Bunmei Taguchi
Geosci. Model Dev., 13, 3319–3336, https://doi.org/10.5194/gmd-13-3319-2020, https://doi.org/10.5194/gmd-13-3319-2020, 2020
Short summary
Short summary
A quasi-global eddying ocean hindcast simulation using a new version of our model, called OFES2, was conducted to overcome several issues in its previous version. OFES2 simulated oceanic fields from 1958 to 2016 with improved global sea surface temperature and salinity, water mass properties in the Indonesian and Arabian seas, and Niño3.4 and Indian Ocean Dipole indexes. The output from OFES2 will be useful in studying various oceanic phenomena with broad spatiotemporal scales.
This article is included in the Encyclopedia of Geosciences
Estee Ann Vermeulen, Björn Backeberg, Juliet Hermes, and Shane Elipot
Ocean Sci., 15, 513–526, https://doi.org/10.5194/os-15-513-2019, https://doi.org/10.5194/os-15-513-2019, 2019
Short summary
Short summary
This modelling study aimed to recreate the Agulhas Current transport proxy within a regional HYCOM simulation of the Agulhas Current system, attempting to test the validity of the underlying assumptions on which the satellite-altimeter proxy was based. Results showed that the proxy is sensitive to subsurface variability in the model but that the proxy remained robust regarding the time periods needed to build a sufficient linear relationship between transport and sea surface height slope.
This article is included in the Encyclopedia of Geosciences
Venugopal Thushara, Puthenveettil Narayana Menon Vinayachandran, Adrian J. Matthews, Benjamin G. M. Webber, and Bastien Y. Queste
Biogeosciences, 16, 1447–1468, https://doi.org/10.5194/bg-16-1447-2019, https://doi.org/10.5194/bg-16-1447-2019, 2019
Short summary
Short summary
Chlorophyll distribution in the ocean remains to be explored in detail, despite its climatic significance. Here, we document the vertical structure of chlorophyll in the Bay of Bengal using observations and a model. The shape of chlorophyll profiles, characterized by prominent deep chlorophyll maxima, varies in dynamically different regions, controlled by the monsoonal forcings. The present study provides new insights into the vertical distribution of chlorophyll, rarely observed by satellites.
This article is included in the Encyclopedia of Geosciences
Rhawn F. Denniston, Amanda N. Houts, Yemane Asmerom, Alan D. Wanamaker Jr., Jonathan A. Haws, Victor J. Polyak, Diana L. Thatcher, Setsen Altan-Ochir, Alyssa C. Borowske, Sebastian F. M. Breitenbach, Caroline C. Ummenhofer, Frederico T. Regala, Michael M. Benedetti, and Nuno F. Bicho
Clim. Past, 14, 1893–1913, https://doi.org/10.5194/cp-14-1893-2018, https://doi.org/10.5194/cp-14-1893-2018, 2018
Short summary
Short summary
The sediment deposited off the coast of Portugal includes the remains of marine organisms and pollen washed to sea from Iberia. Analysis of both the pollen and the ocean sediments has revealed that the type and density of vegetation on land changed in concert with shifts in ocean temperature over centuries to tens of millennia. Proxies for climate in Portuguese stalagmites from the last two glacial periods show precipitation was reduced when sea surface temperatures fell.
This article is included in the Encyclopedia of Geosciences
Mohanan Geethalekshmi Sreeush, Vinu Valsala, Sreenivas Pentakota, Koneru Venkata Siva Rama Prasad, and Raghu Murtugudde
Biogeosciences, 15, 1895–1918, https://doi.org/10.5194/bg-15-1895-2018, https://doi.org/10.5194/bg-15-1895-2018, 2018
Short summary
Short summary
A simple modification to the existing methodology for calculating biological production in global ocean model is proposed here. A space- and time-varying production depth is found in the upper few metres of the ocean based on sunlight and nutrient availability. This new method is tested for Indian Ocean biological production zones. With this new method the carbon cycling in the surface of the Indian Ocean is simulated better in the model. A reason for the improvement is detailed in the paper.
This article is included in the Encyclopedia of Geosciences
Alex R. Baker, Maria Kanakidou, Katye E. Altieri, Nikos Daskalakis, Gregory S. Okin, Stelios Myriokefalitakis, Frank Dentener, Mitsuo Uematsu, Manmohan M. Sarin, Robert A. Duce, James N. Galloway, William C. Keene, Arvind Singh, Lauren Zamora, Jean-Francois Lamarque, Shih-Chieh Hsu, Shital S. Rohekar, and Joseph M. Prospero
Atmos. Chem. Phys., 17, 8189–8210, https://doi.org/10.5194/acp-17-8189-2017, https://doi.org/10.5194/acp-17-8189-2017, 2017
Short summary
Short summary
Man's activities have greatly increased the amount of nitrogen emitted into the atmosphere. Some of this nitrogen is transported to the world's oceans, where it may affect microscopic marine plants and cause ecological problems. The huge size of the oceans makes direct monitoring of nitrogen inputs impossible, so computer models must be used to assess this issue. We find that current models reproduce observed nitrogen deposition to the oceans reasonably well and recommend future improvements.
This article is included in the Encyclopedia of Geosciences
Mana Inoue, Mark A. J. Curran, Andrew D. Moy, Tas D. van Ommen, Alexander D. Fraser, Helen E. Phillips, and Ian D. Goodwin
Clim. Past, 13, 437–453, https://doi.org/10.5194/cp-13-437-2017, https://doi.org/10.5194/cp-13-437-2017, 2017
Short summary
Short summary
A 120 m ice core from Mill Island, East Antarctica, was studied its chemical components. The Mill Island ice core contains 97 years of climate record (1913–2009) and has a mean snow accumulation of 1.35 m yr−1 (ice equivalent). Trace ion concentrations were generally higher than other Antarctic ice core sites. Nearby sea ice concentration was found to influence the annual mean sea salt record. The Mill Island ice core records are unexpectedly complex, with strong modulation of the trace chemistry.
This article is included in the Encyclopedia of Geosciences
Sonaljit Mukherjee and Amit Tandon
Ocean Sci. Discuss., https://doi.org/10.5194/os-2016-45, https://doi.org/10.5194/os-2016-45, 2016
Revised manuscript not accepted
Isaac D. Irby, Marjorie A. M. Friedrichs, Carl T. Friedrichs, Aaron J. Bever, Raleigh R. Hood, Lyon W. J. Lanerolle, Ming Li, Lewis Linker, Malcolm E. Scully, Kevin Sellner, Jian Shen, Jeremy Testa, Hao Wang, Ping Wang, and Meng Xia
Biogeosciences, 13, 2011–2028, https://doi.org/10.5194/bg-13-2011-2016, https://doi.org/10.5194/bg-13-2011-2016, 2016
Short summary
Short summary
A comparison of eight hydrodynamic-oxygen models revealed that while models have difficulty resolving key drivers of dissolved oxygen (DO) variability, all models exhibit skill in reproducing the variability of DO itself. Further, simple oxygen models and complex biogeochemical models reproduced observed DO variability similarly well. Future advances in hypoxia simulations will depend more on the ability to reproduce the depth of the mixed layer than the degree of the vertical density gradient.
This article is included in the Encyclopedia of Geosciences
X. Zhang, P. R. Oke, M. Feng, M. A. Chamberlain, J. A. Church, D. Monselesan, C. Sun, R. J. Matear, A. Schiller, and R. Fiedler
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-17, https://doi.org/10.5194/gmd-2016-17, 2016
Revised manuscript not accepted
Short summary
Short summary
Eddy-resolving global ocean models are highly desired, but expensive to run, and also subject to many problems including drift. Here we modified a near-global eddy-resolving OGCM for climate studies with some novel strategies. We demonstrated that the historical experiment driven by Japanese atmospheric reanalysis product, didn't have significant drifts, and also provided an eddy-resolving simulation of the global ocean over 1979–2014. Our experiences can be helpful to other modelling groups.
This article is included in the Encyclopedia of Geosciences
A. Singh, S. E. Baer, U. Riebesell, A. C. Martiny, and M. W. Lomas
Biogeosciences, 12, 6389–6403, https://doi.org/10.5194/bg-12-6389-2015, https://doi.org/10.5194/bg-12-6389-2015, 2015
Short summary
Short summary
Stoichiometry of macronutrients in the subtropical ocean is important to understand how biogeochemical cycles are coupled. We observed that elemental stoichiometry was much higher in the dissolved organic-matter pools than in the particulate organic matter pools. In addition ratios vary with depth due to changes in growth rates of specific phytoplankton groups, namely cyanobacteria. These data will improve biogeochemical models by placing observational constraints on these ratios.
This article is included in the Encyclopedia of Geosciences
P. G. Strutton, V. J. Coles, R. R. Hood, R. J. Matear, M. J. McPhaden, and H. E. Phillips
Biogeosciences, 12, 2367–2382, https://doi.org/10.5194/bg-12-2367-2015, https://doi.org/10.5194/bg-12-2367-2015, 2015
Short summary
Short summary
In 2010, a first-of-its-kind deployment of biological sensors on a mooring in the central Indian Ocean revealed interesting variability in chlorophyll (a proxy for ocean productivity) at timescales of about 2 weeks. Using the mooring data with satellite observations and a biogeochemical model, it was determined that local wind mixing and entrainment, rather than mixed Rossby gravity waves, were likely responsible for much of the observed variability.
This article is included in the Encyclopedia of Geosciences
Y.-H. Wang, I-J. Cheng, and L. Centurioni
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-11481-2014, https://doi.org/10.5194/bgd-11-11481-2014, 2014
Revised manuscript not accepted
M. R. Stukel, V. J. Coles, M. T. Brooks, and R. R. Hood
Biogeosciences, 11, 3259–3278, https://doi.org/10.5194/bg-11-3259-2014, https://doi.org/10.5194/bg-11-3259-2014, 2014
A. M. Waite, V. Rossi, M. Roughan, B. Tilbrook, P. A. Thompson, M. Feng, A. S. J. Wyatt, and E. J. Raes
Biogeosciences, 10, 5691–5702, https://doi.org/10.5194/bg-10-5691-2013, https://doi.org/10.5194/bg-10-5691-2013, 2013
P. Wang, A. B. Burd, M. A. Moran, R. R. Hood, V. J. Coles, and P. L. Yager
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-815-2013, https://doi.org/10.5194/bgd-10-815-2013, 2013
Revised manuscript not accepted
Cited articles
Abram, N. J., Gagan, M. K., Cole, J. E., Hantoro, W. S., and Mudelsee, M.:
Recent intensification of tropical climate variability in the Indian Ocean,
Nat. Geosci., 1, 849–853, https://doi.org/10.1038/ngeo357, 2008.
Abram, N. J., Hargreaves, J. A., Wright, N. M., Thirumalai, K., Ummenhofer,
C. C., and England, M. H.: Palaeoclimate perspectives on the Indian Ocean
Dipole, Quat. Sci. Rev., 237, 106302,
https://doi.org/10.1016/j.quascirev.2020.106302, 2020a.
Abram, N. J., Wright, N. M., Ellis, B., Dixon, B. C., Wurtzel, J. B.,
England, M. H., Ummenhofer, C. C., Philibosian, B., Cahyarini, S. Y., Yu,
T.-L., Shen, C.-C., Cheng, H., Edwards, R. L., and Heslop, D.: Coupling of
Indo-Pacific climate variability over the last millennium, Nature, 579,
385–392, https://doi.org/10.1038/s41586-020-2084-4, 2020b.
Adams, K., MacKinnon, J., Lucas, A. J., Nash, J., Shroyer, E., and Farrar, J. T.: Multi-platform observations of small-scale lateral mixed layer variability in the northern Bay of Bengal, Deep-Sea Res. Pt. II, 168, 104629, https://doi.org/10/ggdzdw, 2019.
Akhil, V. P., Durand, F., Lengaigne, M., Vialard, J., Keerthi, M. G.,
Gopalakrishna, V. V., Deltel, C., Papa, F., and De Boyer Montégut, C.: A
modeling study of the processes of surface salinity seasonal cycle in the
Bay of Bengal, J. Geophys. Res.-Oceans, 119, 3926–3947, https://doi.org/10.1002/2013JC009632, 2014.
Alory, G., Wijffels, S., and Meyers, G.: Observed temperature trends in the
Indian Ocean over 1960–1999 and associated mechanisms, Geophys. Res. Lett.,
34, L02606, https://doi.org/10.1029/2006GL028044, 2007.
Amol, P., Shankar, D., Fernando, V., Mukherjee, A., Aparna, S. G.,
Fernandes, R., Michael, G. S., Khalap, S. T., Satelkar, N. P., Agarvadekar,
Y., Gaonkar, M. G., Tari, A. P., Kankonkar, A., and Vernekar, S. P.: Observed
intraseasonal and seasonal variability of the West India Coastal Current on
the continental slope, J. Earth Syst. Sci., 123 1045–1074,
https://doi.org/10.1007/s12040-014-0449-5, 2014.
Anderson, D. L. T. and Gill, A. E.: Spin-up of a stratified ocean, with
applications to upwelling, Deep-Sea Res., 22, 583–596,
https://doi.org/10.1016/0011-7471(75)90046-7, 1975.
Andersson, H. C. and Stigebrandt, A.: Regulation of the Indonesian throughflow by baroclinic draining of the North Australian Basin, Deep-Sea Res. Pt. I, 52, 2214–2233, https://doi.org/10.1016/j.dsr.2005.06.014, 2005.
Andrews, J. C.: Eddy structure and the West Australian current, Deep-Sea
Res., 24, 1133–1148, https://doi.org/10.1016/0146-6291(77)90517-3,
1977.
Annamalai, H., Potemra, J., Murtugudde, R., and McCreary, J. P.: Effect of
preconditioning on the extreme climate events in the tropical Indian Ocean,
J. Climate, 18, 3450–3469, https://doi.org/10.1175/JCLI3494.1, 2005.
Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., and Garcia, H. E.: World Ocean Atlas 2009, Volume 2: Salinity. NOAA Atlas NESDIS 69, NOAA, U.S. Government Printing Office, Washington D.C., 2010.
Anutaliya, A., Send, U., McClean, J. L., Sprintall, J., Rainville, L., Lee, C. M., Jinadasa, S. U. P., Wallcraft, A. J., and Metzger, E. J.: An undercurrent off the east coast of Sri Lanka, Ocean Sci., 13, 1035–1044, https://doi.org/10.5194/os-13-1035-2017, 2017.
Arzeno, I. B., Giddings, S. N., Pawlak, G., and Pinkel, R.: Generation of Quasi
Biweekly Yanai Waves in the Equatorial Indian Ocean, Geophys. Res. Lett., 47, e2020GL088915.
https://doi.org/10.1029/2020GL088915, 2020.
Ash, K. D. and Matyas, C. J.: The influences of ENSO and the Subtropical
Indian Ocean Dipole on tropical cyclone trajectories in the South Indian
Ocean, Int. J. Climatol., 32, 41–56, https://doi.org/10.1002/joc.2249,
2012.
Ashok, K., Guan, Z., Saji, N. H., and Yamagata, T.: Individual and Combined Influences of ENSO and the Indian Ocean Dipole on the Indian Summer Monsoon, J. Climate, 17, 3141–3155,
https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2, 2004.
Ayers, J. M., Strutton, P. G., Coles, V. J., Hood, R. R., and Matear, R. J.:
Indonesian throughflow nutrient fluxes and their potential impact on Indian
Ocean productivity, Geophys. Res. Lett., 41, 5060–5067, https://doi.org/10.1002/2014GL060593, 2014.
Bahmanpour, M. H., Pattiaratchi, C., Wijeratne, E. M. S., Steinberg, C., and
D'Adamo, N.: Multi-year observation of Holloway Current along the shelf edge
of North Western Australia, J. Coast. Res., 517–521,
https://doi.org/10.2112/SI75-104.1, 2016.
Banks, C. J., Srokosz, M. A., Cipollini, P., Snaith, H. M., Blundell, J. R., Gommenginger, C. P., and Tzortzi, E.:
Reduced ascending/descending pass bias in SMOS salinity data demonstrated by observing westward-propagating features in the South Indian Ocean,
Remote Sens. Environ., 180, 154–163,
https://doi.org/10.1016/j.rse.2016.02.035,
2016.
Banse, K. and English, D. C.: Geographical differences in seasonality of
CZCS-derived phytoplankton pigment in the Arabian Sea for 1978–1986, Deep-Sea
Res. Pt. II, 47, 1623–1677, https://doi.org/10.1016/S0967-0645(99)00157-5, 2000.
Banse, K. and McClain, C.: Winter blooms of phytoplankton in the Arabian Sea
as observed by the Coastal Zone Color Scanner, Mar. Ecol. Prog. Ser., 34, 201–211,
https://doi.org/10.3354/meps034201, 1986.
Baranowski, D. B., Flatau, M. K., Flatau, P. J., and Matthews, A. J.:
Impact of atmospheric convectively coupled equatorial kelvin waves on upper
ocean variability, J. Geophys. Res.-Atmos., 121,
2045–2059, https://doi.org/10.1002/2015jd024150, 2016.
Barlow, R., Lamont, T., Morris, T., Sessions, H., and van den Berg, M.:
Adaptation of phytoplankton communities to mesoscale eddies in the
Mozambique Channel, Deep-Sea Res. Pt. II, 100, 106–118,
https://doi.org/10.1016/j.dsr2.2013.10.020, 2014.
Beal, L. M. and Bryden, H. L.: The velocity and vorticity structure of the
Agulhas Current at 32∘ S, J. Geophys. Res.-Oceans, 104, 5151–5176,
https://doi.org/10.1029/1998jc900056, 1999.
Beal, L. M. and Donohue, K. A.: The Great Whirl: Observations of its
seasonal development and interannual variability, J. Geophys. Res.-Oceans, 118, 1–13,
https://doi.org/10.1029/2012JC008198, 2013.
Beal, L. and Elipot, S.: Broadening not strengthening of the Agulhas Current
since the early 1990s, Nature, 540, 570–573,
https://doi.org/10.1038/nature19853, 2016.
Beal, L. M., De Ruijter, W. P. M., Biastoch, A., Zahn, R., Cronin, M.,
Hermes, J., Lutjeharms, J., Quartly, G., Tozuka, T., Baker-Yeboah, S.,
Bornman, T., Cipollini, P., Dijkstra, H., Hall, I., Park, W., Peeters, F.,
Penven, P., Ridderinkhof, H., and Zinke, J.: On the role of the Agulhas
system in ocean circulation and climate, Nature, 118, 1–13, https://doi.org/10.1038/nature09983,
2011.
Beal, L. M., Hormann, V., Lumpkin, R., and Foltz, G. R.,: The Response of
the Surface Circulation of the Arabian Sea to Monsoonal Forcing, J.
Phys. Oceanogr., 43, 2008–2022,
2013.
Beal, L. M., Elipot, S., Houk, A., and Leber, G. M.: Capturing the Transport
Variability of aWestern Boundary Jet: Results from the Agulhas Current
Time-Series Experiment (ACT)*, J. Phys. Oceanogr., 45,
1302–1324, https://doi.org/10.1175/jpo-d-14-0119.1, 2015.
Beal, L. M., Vialard, J., Roxy, M. K., and lead authors: IndOOS-2: A roadmap
to sustained observations of the Indian Ocean for 2020–2030, CLIVAR-4/2019,
GOOS-237, 204 pp., https://doi.org/10.36071/clivar.rp.4.2019 , 2019.
Beal, L. M., Vialard, J., Roxy, M. K., Li, J., Andres, M., Annamalai, H.,
Feng, M., Han, W., Hood, R., Lee, T., Lengaigne, M., Lumpkin, R., Masumoto,
Y., McPhaden, M. J., Ravichandran, M., Shinoda, T., Sloyan, B. M., Strutton,
P. G., Subramanian, A. C., Tozuka, T., Ummenhofer, C. C., Unnikrishnan, A.
S., Wiggert, J., Yu, L., Cheng, L., Desbruyères, D. G., and Parvathi,
V.: A Road Map to IndOOS-2: Better Observations of the Rapidly Warming
Indian Ocean, B. Am. Meteorol. Soc., 101,
E1891–E1913,
2020.
Behera, S. K. and Yamagata, T.: Subtropical SST dipole events in the
southern Indian Ocean, Geophys. Res. Lett., 28, 327–330,
https://doi.org/10.1029/2000GL011451, 2001.
Bellon, G., Sobel, A. H., and Vialard, J.: Ocean-atmosphere coupling in the
monsoon intraseasonal oscillation: A simple model study, J. Climate, 21,
5254–5270, https://doi.org/10.1175/2008JCLI2305.1, 2008.
Benshila, R., Durand, F., Masson, S., Bourdalle-Badie, R., de Boyer Montégut, C., Papa, F., and Madec, G.: The upper Bay of Bengal salinity structure in a high-resolution model, Ocean Model., 74, 36–52, https://doi.org/10.1016/j.ocemod.2013.12.001, 2014.
Benthuysen, J., Feng, M., and Zhong, L.: Spatial patterns of warming off
Western Australia during the 2011 Ningaloo Niño: quantifying impacts of
remote and local forcing, Continental Shelf Res., 91, 232–246,
https://doi.org/10.1016/j.csr.2014.09.014, 2014a.
Benthuysen, J., Furue, R., McCreary, J. P., Bindoff, N. L., and Phillips, H.
E.: Dynamics of the Leeuwin Current: Part 2. Impacts of mixing, friction,
and advection on a buoyancy-driven eastern boundary current over a shelf,
Dyn. Atmos. Oceans, 65, 39–63,
https://doi.org/10.1016/j.dynatmoce.2013.10.004, 2014b.
Benthuysen, J. A., Oliver, E. C. J., Feng, M., and Marshall, A. G.: Extreme
marine warming across tropical Australia during austral summer 2015–2016,
J. Geophys. Res.-Oceans, 123, 1301–1326,
https://doi.org/10.1002/2017JC013326, 2018.
Bergman, J. W., Hendon, H. H., and Weickmann, K. M.: Intraseasonal air-sea
interactions at the onset of El Nino, J. Climate, 14, 1702–1719, 2001.
Beron-Vera, F. J., Wang, Y., Olascoaga, M. J., Goni, G. J., and Haller, G.:
Objective detection of oceanic eddies and the Agulhas leakage, J. Phys.
Oceanogr., 43, 1426–1438, https://doi.org/10.1175/JPO-D-12-0171.1, 2013.
Biastoch, A. and Böning, C. W.: Anthropogenic impact on Agulhas leakage,
Geophys. Res. Lett., 40, 1138–1143, https://doi.org/10.1002/grl.50243, 2013.
Biastoch, A., Böning, C. W., and Lutjeharms, J. R. E.: Agulhas leakage
dynamics affects decadal variability in Atlantic overturning circulation,
Nature, 456, 489–492, https://doi.org/10.1038/nature07426, 2008.
Biastoch, A., Böning, C. W., Schwarzkopf, F. U., and Lutjeharms, J. R.
E.: Increase in Agulhas leakage due to poleward shift of Southern Hemisphere
westerlies, Nature, 462, 495–498, https://doi.org/10.1038/nature08519, 2009.
Biastoch, A., Durgadoo, J. V., Morrison, A. K., Van Sebille, E., Weijer, W.,
and Griffies, S. M.: Atlantic multi-decadal oscillation covaries with
Agulhas leakage, Nat. Commun., 6, 10082, https://doi.org/10.1038/ncomms10082, 2015.
Brock, J. C. and McClain, C. R.: Interannual variability in phytoplankton
blooms observed in the northwestern Arabian Sea during the southwest
monsoon, J. Geophys. Res., 97, 733–750, https://doi.org/10.1029/91JC02225, 1992.
Brown, S. L., Landry, M. R., Barber, R. T., Campbell, L., Garrison, D. L.,
and Gowing, M. M.: Picophytoplankton dynamics and production in the Arabian
Sea during the 1995 Southwest Monsoon, Deep-Sea Res. Pt. II, 46, 1745–1768, https://doi.org/10.1016/S0967-0645(99)00042-9, 1999.
Bryden, H. and Beal, L.: Role of the Agulhas Current in Indian Ocean
circulation and associated heat and freshwater fluxes, Deep-Sea Res. Pt. I,
48, 1821–1845, 2001.
Buckley, J., Mingels, B., and Tandon, A.: The impact of lateral advection on SST and SSS in the northern Bay of Bengal during 2015, Deep-Sea Res. Pt. II, 172, 104653,
https://doi.org/10.1016/j.dsr2.2019.104653, 2020.
Burns, J., Bulusu, S., and Murty, V. S. N.: On the dynamics of the Sri Lanka Dome in the Bay of Bengal, J. Geophys. Res.-Oceans, 122, 7737–7750, https://doi.org/10.1002/2017jc012986, 2017.
Cai, W., Sullivan, A., and Cowan, T.: Shoaling of the off-equatorial south
Indian Ocean thermocline: Is it driven by anthropogenic forcing?, Geophys.
Res. Lett., 35, L12711, https://doi.org/10.1029/2008GL034174, 2008.
Cai, W., Cowan, T., and Sullivan, A.: Recent unprecedented skewness towards
positive Indian Ocean Dipole occurrences and their impact on Australian
rainfall, Geophys. Res. Lett., 36, L11705, https://doi.org/10.1029/2009GL037604,
2009a.
Cai, W., Pan, A., Roemmich, D., Cowan, T., and Guo, X.: Argo profiles a rare
occurrence of three consecutive positive Indian Ocean Dipole events,
2006–2008, Geophys. Res. Lett., 36, L08701, https://doi.org/10.1029/2008GL037038,
2009b.
Cai, W., Sullivan, A., and Cowan, T.: Climate change contributes to more
frequent consecutive positive Indian Ocean Dipole events, Geophys. Res.
Lett., 36, L23704, https://doi.org/10.1029/2009GL040163, 2009c.
Cai, W., Sullivan, A., and Cowan, T.: How rare are the 2006–2008 positive
Indian Ocean Dipole events? An IPCC AR4 climate model perspective, Geophys.
Res. Lett., 36, L08702, https://doi.org/10.1029/2009GL037982, 2009d.
Cai, W., Zheng, X.-T. , Weller, E., Collins, M., Cowan, T., Lengaigne, M.,
Yu, W., and Yamagata, T.: Projected response of the Indian Ocean Dipole to
greenhouse warming, Nat. Geosci., 6, 999–1007,
https://doi.org/10.1038/ngeo2009, 2013.
Cai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi,
G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., and England, M.
H.: Increasing frequency of extreme El Niño events due to greenhouse
warming, Nat. Clim. Change, 4, 111–116,
https://doi.org/10.1038/nclimate2100, 2014a.
Cai, W., Santoso, A., Wang, G., Weller, E., Wu, L., Ashok, K., Masumoto, Y.,
and Yamagata, T.: Increased frequency of extreme Indian Ocean Dipole events
due to greenhouse warming, Nature, 510, 254–258,
https://doi.org/10.1038/nature13327, 2014b.
Cai, W. Wang, G., Santoso, A., McPhaden, M. J., Wu, L., Jin, F. F.,
Timmermann, A., Collins, M., Vecchi, G., Lengaigne, M., and England, M. H.:
Increased frequency of extreme La Niña events under greenhouse warming,
Nat. Clim. Change, 5, 132–137, https://doi.org/10.1038/nclimate2492,
2015.
Cai, W., Wu, L., Lengaigne, M., Li, T., McGregor, S., Kug,
J.-S., Yu, J.-Y., Stuecker, M. F., Santoso, A., Li, X., Ham,
Y.-G., Chikamoto, Y., Ng, B., McPhaden, M. J., Du, Y., Dommenget,
D., Jia, F., Kajtar, J. B., Keenlyside, N., Lin, X., Luo,
J.-J., Martín-Rey, M., Ruprich-Robert, Y., Wang, G., Xie,
S.-P., Yang, Y., Kang, S. M., Choi, J.-Y., Gan, B., Kim, G.-I., Kim,
C.-E., Kim, S., Kim, J.-H., and Chang, P.: Pantropical climate interactions, Science, 363, 944,
https://doi.org/10.1126/science.aav4236, 2019.
Caley, T., Giraudeau, J., Malaizé, B., Rossignol, L., and Pierre, C.:
Agulhas leakage as a key process in the modes of Quaternary climate changes,
P. Natl. Acad. Sci. USA, 109, 6835–6839, https://doi.org/10.1073/pnas.1115545109, 2012.
Castellanos, P., Campos, E. J. D., Piera, J., Sato, O. T., and Silva Dias, M.
A. F.: Impacts of Agulhas leakage on the tropical Atlantic western boundary
systems, J. Climate, 30, 6645–6659, https://doi.org/10.1175/JCLI-D-15-0878.1, 2017.
Centurioni, L. R.: Drifter Technology and Impacts for Sea Surface Temperature, Sea Level Pressure, and Ocean Circulation Studies, in: Observing the Oceans in Real Time, edited by: Venkatesan, R., Tandon, A., D'Asaro, E., and Atmanand, M. A., 37–57, Springer International Publishing, Cham, 2018.
Cessi, P.: The Global Overturning Circulation, Annu. Rev. Marine
Sci., 11, 249–270, https://doi.org/10.1146/annurev-marine-010318-095241, 2019.
Cha, S.-C., Moon, J.-H., and Song, Y. T.: A recent shift toward an El
Niño-like ocean state in the tropical Pacific and the resumption of
ocean warming, Geophys. Res. Lett., 45, 11885–11894,
https://doi.org/10.1029/2018GL080651, 2018.
Chatterjee, A., Shankar, D., Shenoi, S. S. C., Reddy, G. V., Michael, G. S.,
Ravichandran, M., Gopalkrishna, V. V., Rao, E. P. R., Bhaskar, T. V. S. U.,
and Sanjeevan, V. N.: A new atlas of temperature and salinity for the North
Indian Ocean, J. Earth Syst. Sci., 121, 559–593,
https://doi.org/10.1007/s12040-012-0191-9, 2012.
Chatterjee, A., Shankar, D., McCreary, J. P., and Vinayachandran, P. N.:
Yanai waves in the western equatorial Indian Ocean, J. Geophys. Res.-Oceans,
118, 1556–1570, https://doi.org/10.1002/jgrc.20121, 2013.
Chatterjee, A., Shankar, D., McCreary, J. P., Vinayachandran, P. N., and
Mukherjee, A.: Dynamics of Andaman Sea circulation and its role in
connecting the equatorial Indian Ocean to the Bay of Bengal, J. Geophys. Res.-Oceans, 122, 3200–3218, https://doi.org/10.1002/2016JC012300, 2017.
Chatterjee, A., Kumar, B. P., Prakash, S., and Singh, P.: Annihilation of
the Somali upwelling system during summer monsoon, Sci. Rep-UK, 9,
7598, https://doi.org/10.1038/s41598-019-44099-1, 2019.
Chaudhuri, D., Sengupta, D., D'Asaro, E., Venkatesan, R., and Ravichandran,
M.: Response of the salinity-stratified bay of Bengal to Cyclone Phailin, J.
Phys. Oceanogr., 49, 1121–1140, https://doi.org/10.1175/JPO-D-18-0051.1, 2019.
Chaudhuri, A., Shankar, D., Aparna, S. G., Amol, P., Fernando, V.,
Kankonkar, A., Micheal, G. S., Satelkar, N. P., Khalap, S. T., Tari, A. P.,
Gaonkar, M. G., Ghatkar, S., and Khedekar, R. R.: Observed variability of the
West India Coastal Current on the continental slope from 2009–2018, J.
Earth Syst. Sci., 129, 57, https://doi.org/10.1007/s12040-019-1322-3, 2020.
Chen, G., Han, W., Li, Y., Wang, D., and McPhaden, M. J.:
Seasonal-to-interannual time-scale dynamics of the equatorial undercurrent
in the Indian Ocean, J. Phys. Oceanogr., 45, 1532–1553, https://doi.org/10.1175/JPO-D-14-0225.1, 2015.
Chen, G., Han, W., Shu, Y., Li, Y., Wang, D., and Xie, Q.: The role of
Equatorial Undercurrent in sustaining the Eastern Indian Ocean upwelling,
Geophys. Res. Lett., 43, 6444–6451, https://doi.org/10.1002/2016GL069433, 2016.
Chen, G., Han, W., Li, Y., Yao, J., and Wang, D.: Intraseasonal Variability
of the Equatorial Undercurrent in the Indian Ocean, J. Phys.
Oceanogr., 49, 85–101, 2019.
Cheng, X., McCreary, J. P., Qiu, B., Qi, Y., Du, Y., and Chen, X.: Dynamics
of Eddy Generation in the Central Bay of Bengal, J. Geophys. Res.-Oceans, 123, 6861–6875,
https://doi.org/10.1029/2018JC014100, 2018.
Cheng, Y., Putrasahan, D., Beal, L., and Kirtman, B.: Quantifying Agulhas
leakage in a high-resolution climate model, J. Climate, 29, 6881–6892,
https://doi.org/10.1175/JCLI-D-15-0568.1, 2016.
Cheng, Y., Beal, L. M., Kirtman, B. P., and Putrasahan, D.: Interannual
Agulhas Leakage Variability and Its Regional Climate Imprints, J. Climate,
31, 10105–10121, 2018.
Cherian, D. A., Shroyer, E. L., Wijesekera, H. W., and Moum, J. N.: The Seasonal Cycle of Upper-Ocean Mixing at 8∘ N in the Bay of Bengal, J. Phys. Oceanogr., 50, 323–342, https://doi.org/10.1175/jpo-d-19-0114.1, 2020.
Chi, N.-H., Lien, R.-C., D'Asaro, E. A., and Ma, B. B.: The surface mixed
layer heat budget from mooring observations in the central Indian Ocean
during Madden-Julian Oscillation events, J. Geophys. Res.-Oceans, 119,
4638–4652, https://doi.org/10.1002/2014JC010192, 2014.
Chowdary, J. S., Xie, S., Tokinaga, H., Okumura, Y. M., Kubota, H., Johnson,
N., and Zheng, X.: Interdecadal variations in ENSO teleconnection to the
Indo–Western Pacific for 1870–2007, J. Climate, 25, 1722–1744,
2012.
Chowdary, J. S., Bandgar, A. B., Gnanaseelan, C., and Luo, J. J.: Role of
tropical Indian Ocean air-sea interactions in modulating Indian summer
monsoon in a coupled model, Atmos. Sci. Lett., 16, 170–176,
https://doi.org/10.1002/asl2.561, 2015.
Church, J. A., Cresswell, G. R., and Godfrey, J. S.: The Leeuwin Current, in:
Poleward Flows Along Eastern Ocean Boundaries, Coastal and Estuarine Studies
(formerly Lecture Notes on Coastal and Estuarine Studies), vol 34, edited
by: Neshyba, S. J., Mooers, C. N. K., Smith, R. L., and Barber, R. T., Springer,
New York, 230–254, https://doi.org/10.1007/978-1-4613-8963-7_16, 1989.
Cirano, M. and Middleton, J. F.: Aspects of the mean wintertime circulation
along Australia's southern shelves: Numerical studies, J. Phys. Oceanogr.,
34, 668–684, https://doi.org/10.1175/2509.1, 2004.
Coles, V. J., Wilson, C., and Hood, R. R.: Remote sensing of new production
fuelled by nitrogen fixation, Geophys. Res. Lett., 31, L06301, https://doi.org/10.1029/2003gl019018,
2004.
Crétat, J., Terray, P., Masson, S., and Sooraj, K. P.: Intrinsic precursors and timescale of the tropical Indian Ocean Dipole: insights from partially decoupled numerical experiment, Clim. Dynam., 51, 1311–1332, https://doi.org/10.1007/s00382-017-3956-7, 2018.
Cullen, K. E. and Shroyer, E. L.: Seasonality and interannual variability of
the Sri Lanka dome, Deep-Sea Res. Pt. II, 168, 104642,
https://doi.org/10.1016/j.dsr2.2019.104642, 2019.
Currie, J. C., Lengaigne, M., Vialard, J., Kaplan, D. M., Aumont, O., Naqvi, S. W. A., and Maury, O.: Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean, Biogeosciences, 10, 6677–6698, https://doi.org/10.5194/bg-10-6677-2013, 2013.
Cuypers, Y., Le Vaillant, X., Bouruet-Aubertot, P., Vialard, J., and
McPhaden, M. J.: Tropical storm-induced near-inertial internal waves during
the Cirene experiment: energy fluxes and impact on vertical mixing, J. Geophys. Res., 118, 358–380,
https://doi.org/10.1029/2012JC007881, 2013.
Cyriac, A., McPhaden, M., Phillips, H., Bindoff, N., and Feng, M.: Surface layer
heat balance in the subtropical Indian Ocean, J. Geophys. Res.-Oceans, 124,
6459–6477, https://doi.org/10.1029/2018JC014559, 2019.
Cyriac, A., Phillips, H. E., Bindoff, N. L., Mao, H., and Feng, M.:
Observational estimates of turbulent mixing in the southeast Indian Ocean, J.
Phys. Oceanogr., 51, 2103–2128, https://doi.org/10.1175/jpo-d-20-0036.1, 2021.
D'Adamo, N., Fandry, C., Buchan, S., and Domingues, C.: Northern sources of the
Leeuwin Current and the “Holloway Current” on the North West Shelf, J.
Roy. Soc. Western Australia, 92, 53–66, 2009.
D'Addezio, J. M., Subrahmanyam, B., Nyadjro, E. S., and Murty, V. S. N.: Seasonal Variability of Salinity and Salt Transport in the Northern Indian Ocean, J. Phys. Oceanogr., 45, 1947–1966, 2015.
Daher, H., Beal, L. M., and Schwarzkopf, F. U.: A new improved estimation of
Agulhas Leakage using observations and simulations of Lagrangian floats and
drifters, J. Geophys. Res.-Oceans, 125, e2019JC015753,
https://doi.org/10.1029/2019JC015753, 2020.
David, D. T., Kumar, S. P., Byju, P., Sarma, M. S. S., Suryanarayana, A.,
and Murty, V. S. N.: Observational evidence of lower-frequency Yanai waves
in the central equatorial Indian Ocean, J. Geophys. Res., 116, C06009, https://doi.org/10.1029/2010JC006603, 2011.
De Boer, A. M., Graham, R. M., Thomas, M. D., and Kohfeld, K. E.: The
control of the Southern Hemisphere Westerlies on the position of the
Subtropical Front, J. Geophys. Res.-Oceans, 118, 5669–5675,
https://doi.org/10.1002/jgrc.20407, 2013.
DeMott, C. A., Klingaman, N. P., and Woolnough, S. J.: Atmosphere-ocean
coupled processes in the Madden-Julian oscillation, Rev. Geophys., 53,
1099–1154, https://doi.org/10.1002/2014RG000478, 2015.
Desbruyères, D. G., McDonagh, E. L., King, B. A., and Thierry, V.:
Global and Full-Depth Ocean Temperature Trends during the Early Twenty-First
Century from Argo and Repeat Hydrography, J. Climate, 30, 1985–1997,
https://doi.org/10.1175/JCLI-D-16-0396.1, 2017.
Deshpande, A., Gnanaseelan, C., Chowdary, J., and Rahul, S.: Interannual
spring Wyrtki jet variability and its regional impacts, Dyn. Atmos. Oceans,
78, 26–37, 2017.
de Vos, A., Pattiaratchi, C. B., and Wijeratne, E. M. S.: Surface circulation and upwelling patterns around Sri Lanka, Biogeosciences, 11, 5909–5930, https://doi.org/10.5194/bg-11-5909-2014, 2014.
Dhage, L. and Strub, P. T.: Intra-seasonal sea level variability along the
west coast of India, J. Geophys. Res.-Oceans, 121, 8172–8188,
https://doi.org/10.1002/2016JC011904, 2016.
Dileepkumar, M.: Biogeochemistry of the North Indian Ocean; IGBP-WCRP-SCOPE
Rep. Ser. 1, Indian Nat. Sci. Acad., New Delhi, India, 2006.
Dilmahamod, A. F.: Links between the Seychelles-Chagos thermocline
ridge and large scale climate modes and primary productivity and the annual
cycle of chlorophyll-a, PhD thesis, University of Cape Town, 2014.
Dilmahamod, A. F., Aguiar-González, B., Penven, P., Reason, C. J. C., De
Ruijter, W. P. M., Malan, N., and Hermes, J. C.: SIDDIES corridor: A major
east-west pathway of long-lived surface and subsurface eddies crossing the
subtropical south indian ocean, J. Geophys. Res.-Oceans,
123, 5406–5425, https://doi.org/10.1029/2018JC013828, 2018.
Dilmahamod, A. F., Penven, P., Aguiar-González, B., Reason, C. J. C.,
and Hermes, J. C.: A new definition of the South-East Madagascar Bloom and
analysis of its variability, J. Geophys. Res.-Oceans, 124,
1717–1735, https://doi.org/10.1029/2018JC014582, 2019.
Dilmahamod, A., Penven, P., Aguiar-Gonzalez, B., Reason, C. J. C., and Hermes, J. C.: A model investigation of the influences of the South-East Madagascar Current on the South-East Madagascar Bloom, J. Geophys. Res., 125, e2019JC015761, https://doi.org/10.1029/2019JC015761, 2020.
Divakaran, P., and Brassington, G. B.: Arterial ocean circulation of the
southeast Indian Ocean, Geophys. Res. Lett., 38, L01802,
https://doi.org/10.1029/2010GL045574, 2011.
Doi, T., Behera, S. K., and Yamagata, T.: Wintertime impacts of the 2019
super IOD on East Asia, Geophys. Res. Lett., 47, e2020GL089456, https://doi.org/10.1029/2020GL089456, 2020.
Domingues, C. M., Wijffels, S. E., Maltrud, M. E., Church, J. A., and
Tomczak, M.: Role of eddies in cooling the Leeuwin Current, Geophys. Res.
Lett., 33, L05603, https://doi.org/10.1029/2005GL025216, 2006.
Domingues, C. M., Maltrud, M. E., Wijffels, S. E., Church, J. A., Tomczak,
M.: Simulated Lagrangian pathways between the Leeuwin Current System and the
upper-ocean circulation of the southeast Indian Ocean, Deep-Sea Res. Pt. II, 54,
797–817, https://doi.org/10.1016/j.dsr2.2006.10.003, 2007.
Dong, L. and McPhaden, M. J.: Interhemispheric SST gradient trends in the
Indian Ocean prior to and during the recent global warming hiatus, J. Climate, 29,
9077–9095, 2016.
Dong, L., Zhou, T., Dai, A., Song, F., Wu, B., and Chen, X.: The footprint
of the inter-decadal Pacific oscillation in Indian Ocean sea surface
temperatures, Sci. Rep.-UK, 6, 21251, https://doi.org/10.1038/srep21251, 2016.
Drushka, K., Sprintall, J., Gille, S. T., and Brodjonegoro, I.: Vertical
structure of Kelvin waves in the Indonesian throughflow exit passages, J.
Phys. Oceanogr., 40, 1965–1987, https://doi.org/10.1175/2010JPO4380.1, 2010.
Drushka, K., Sprintall, J., Gille, S. T., and Wijffels, S.: In situ
observations of Madden-Julian oscillation mixed layer dynamics in the Indian
and western Pacific Oceans, J. Climate, 25, 2306–2328,
https://doi.org/10.1175/JCLI-D-11-00203.1, 2012.
Drushka, K., Sprintall, J., and Gille, S. T.: Subseasonal variations in salinity and barrier-layer thickness in the eastern equatorial Indian Ocean, J. Geophys. Res.-Oceans, 119, 805–823, https://doi.org/10.1002/2013JC009422, 2014.
Du, Y., Xie, S.-P., Huang, G., and Hu, K.: Role of air–sea interaction in
the long persistence of El Niño–induced north Indian Ocean warming, J.
Clim., 22, 2023–2038, https://doi.org/10.1175/2008JCLI2590.1, 2009.
Du, Y., Cai, W., and Wu, Y.: A new type of the Indian Ocean dipole since the
mid-1970s, J. Climate, 26, 959–972,
https://doi.org/10.1175/JCLI-D-12-00047.1, 2013.
Du, Y., Zhang, Y., Feng, M., Wang, T., Zhang, N., and Wijffels, S. S.: Decadal
trends of the upper ocean salinity in the tropical Indo-Pacific since
mid-1990s, Sci. Rep.-UK, 5, 16050, https://doi.org/10.1038/srep16050, 2015.
Du, Y., Zhang, Y., Zhang, L.-Y., Tozuka, T., Ng, B., and Cai, W.:
Thermocline warming induced extreme Indian Ocean dipole in 2019, Geophys.
Res. Lett., 47, e2020GL090079, https://doi.org/10.1029/2020GL090079,
2020.
Duan, Y., Hou, Y., Liu, H., and Liu, Y.: The water mass variability and southward shift of the Southern Hemisphere mid-depth supergyre, Acta Oceanologica Sinica, 32, 74–81, 2013.
Dufois, F., Hardman-Mountford, N. J., Greenwood, J., Richardson, A. J.,
Feng, M., Herbette, S., and Matear, R.: Impact of eddies on surface
chlorophyll in the South Indian Ocean, J. Geophys. Res.-Oceans, 119, 8061–8077,
https://doi.org/10.1002/2014JC010164, 2014.
Duncan, B. and Han, W.: Indian Ocean intraseasonal sea surface temperature variability during boreal summer: Madden‐Julian Oscillation versus submonthly forcing and processes, J. Geophys. Res.-Oceans, 114, C05022, https://doi.org/10.1029/2008JC004958, 2009.
Duncan, B. and Han, W.: Influence of atmospheric intraseasonal oscillations
on seasonal and interannual variability in the upper Indian Ocean, J. Geophys. Res.-Oceans, 117, 1–24, https://doi.org/10.1029/2012JC008190, 2012.
Duran, E. R.: An investigation of the Leeuwin Undercurrent source waters and
pathways. Honours thesis, University of Tasmania, 2015.
Duran, E. R., Phillips, H. E., Furue, R., Spence, P., and Bindoff, N. L.:
Southern Australia Current System based on a gridded hydrography and a
high-resolution model, Prog. Oceanogr., 181, 102254,
https://doi.org/10.1016/j.pocean.2019.102254, 2020.
Durand, F., Alory, G., Dussin, R., and Reul, N.: SMOS reveals the signature of Indian Ocean dipole events, Ocean Dynam., 63, 1203–1212, https://doi.org/10.1007/s10236-013-0660-y, 2013.
Durgadoo, J. V., Loveday, B. R., Reason, C. J. C., Penven, P., and Biastoch,
A.: Agulhas leakage predominantly responds to the southern hemisphere
westerlies, J. Phys. Oceanogr., 43, 2113–2131, https://doi.org/10.1175/JPO-D-13-047.1,
2013.
Durgadoo, J. V., Rühs, S., Biastoch, A., and Böning, C. W. B.: Indian
Ocean sources of Agulhas leakage, J. Geophys. Res.-Oceans, 122, 3481–3499,
https://doi.org/10.1002/2016JC012676, 2017.
Elipot, S. and Beal, L. M.: Characteristics, energetics, and origins of
Agulhas current meanders and their limited influence on ring shedding,
J. Phys. Oceanogr., 45, 2294–2314, https://doi.org/10.1175/JPO-D-14-0254.1,
2015.
Elipot, S. and Beal, L. M.: Observed Agulhas Current Sensitivity to
Interannual and Long-Term Trend Atmospheric Forcings, J. Climate, 31, 3077–3098, https://doi.org/10.1175/JCLI-D-17-0597.1,
2018.
Endo, S. and Tozuka, T.: Two flavors of the Indian Ocean dipole,
Clim. Dynam., 46, 3371–3385, https://doi.org/10.1007/s00382-015-2773-0,
2016.
England, M. H. and Huang, F.: On the interannual variability on the
Indonesian Throughflow and its linkage with ENSO, J. Climate, 18,
1435–1444, https://doi.org/10.1175/JCLI3322.1, 2005.
England, M. H., Ummenhofer, C. C., and Santoso, A.: Interannual rainfall
extremes over southwest Western Australia linked to Indian Ocean climate
variability, J. Climate, 9, 1948–1969, https://doi.org/10.1175/JCLI3700.1, 2006.
England, M., McGregor, S., Spence, P., Meehl, G., Timmerman, A., Cai, W.,
Sen Gupta, A., McPhaden, M., Purich, A., and Santoso, A.: Recent
intensification of wind-driven circulation in the Pacific and the ongoing
warming hiatus, Nat. Clim. Change, 4, 222–227, https://doi.org/10.1038/nclimate2106, 2014.
Fan, L., Liu, Q., Wang, C., and Guo, F.: Indian Ocean dipole modes
associated with different types of ENSO development, J. Climate, 30,
2233–2249, https://doi.org/10.1175/JCLI-D-16-0426.1, 2017.
Fang, F. and Morrow, R.: Evolution, movement and decay of warm-core Leeuwin
Current eddies, Deep-Sea Res. Pt. II, 50, 2245–2261, https://doi.org/10.1016/S0967-0645(03)00055-9, 2003.
Fang, G., Susanto, R. D., Wirasantosa, S., Qiao, F., Supangat, A., Fan, B.,
Wei, Z., Sulistiyo, B., and Li, S.: Volume, heat, and freshwater transports
from the South China Sea to Indonesian seas in the boreal winter of
2007–2008, J. Geophys. Res.-Oceans, 115, C12020, https://doi.org/10.1029/2010JC006225, 2010.
Felton, C. S., Subrahmanyam, B., Murty, V. S. N., and Shriver, J. F.: Estimation of the barrier layer thickness in the Indian Ocean using Aquarius Salinity, J. Geophys. Res.-Oceans, 119, 4200–4213, https://doi.org/10.1002/2013JC009759, 2014.
Feng, M. and Wijffels, S.: Intraseasonal variability in the South Equatorial
Current of the East Indian Ocean, J. Phys. Oceanogr., 32, 265–277, 2002.
Feng, M., Meyers, G., Pearce, A., and Wijffels, S.: Annual and interannual
variations of the Leeuwin Current at 32∘ S, J. Geophys. Res.,
108, 3355, https://doi.org/10.1029/2002JC001763, 2003.
Feng, M., Wijffels, S., Godfrey, S., and Meyers, G.: Do eddies play a role
in the momentum balance of the Leeuwin Current? J. Phys. Oceanogr., 35,
964–975, https://doi.org/10.1175/JPO2730.1, 2005.
Feng, M., Majewski, L. J., Fandry, C. B., and Waite, A. M.: Characteristics of two
counter-rotating eddies in the Leeuwin Current system off the Western
Australian coast, Deep-Sea Res. Pt. II, 54, 961–980, https://doi.org/10.1016/j.dsr2.2006.11.022, 2007.
Feng, M., Biastoch, A., Böning, C., Caputi, N., and Meyers, G.: Seasonal
and interannual variations of upper ocean heat balance off the west coast of
Australia, J. Geophys. Res., 113, C12025,
https://doi.org/10.1029/2008JC004908, 2008.
Feng, M., McPhaden, M. J., and Lee, T.: Decadal variability of the Pacific subtropical cells and their influence on the southeast Indian Ocean, Geophys. Res. Lett., 37, L09606, https://doi.org/10.1029/2010GL042796, 2010.
Feng, M., Böning, C. W., Biastoch, A., Behrens, E., Weller, E., and Masumoto,
Y.: The reversal of the multi-decadal trends of the equatorial Pacific
easterly winds, and the Indonesian Throughflow and Leeuwin Current
transports, Geophys. Res. Lett., 38, L11604, https://doi.org/10.1029/2011GL047291, 2011.
Feng, M., McPhaden, M. J., Xie, S. P., and Hafner, J.: La Niña forces
unprecedented Leeuwin Current warming in 2011, Sci. Rep-UK, 3, 1277,
https://doi.org/10.1038/srep01277, 2013.
Feng, M., Benthuysen, J., Zhang, N., and Slawinski, D.: Freshening anomalies
in the Indonesian throughflow and impacts on the Leeuwin Current during
2010–2011, Geophys. Res. Lett., 42, 8555–8562,
https://doi.org/10.1002/2015GL065848, 2015a.
Feng, M., Hendon, H. H., Xie, S.-P., Marshall, A. G., Schiller, A., Kosaka,
Y., Caputi, N., and Pearce, A.: Decadal increase in Ningaloo Niño since
the late 1990s, Geophys. Res. Lett., 42, 104–112,
https://doi.org/10.1002/2014GL062509, 2015b.
Feng, M., Zhang, X., Oke, P., Monselesan, D., Chamberlain, M., Matear, R.,
and Schiller, A.: Invigorating ocean boundary current systems around
Australia during 1979–2014: As simulated in a near-global eddy-resolving
ocean model. J. Geophys. Res.-Oceans, 121, 3395–3408,
https://doi.org/10.1002/2016JC011842, 2016.
Feng, M., Zhang, N., Liu, Q., and Wijffels, S.: The Indonesian throughflow,
its variability and centennial change, Geosci. Lett., 5, 3,
https://doi.org/10.1186/s40562-018-0102-2, 2018.
Feng, X. and Shinoda, T.: Air-sea heat flux variability in the southeast
Indian Ocean and its relation with Ningaloo Niño. Front. Mar. Sci., 6,
266, https://doi.org/10.3389/fmars.2019.00266, 2019.
Ffield, A., Toole, J., and Wilson, D.: Seasonal circulation in the South Indian Ocean, Geophys. Res. Lett., 24, 2773–2776, 1997.
Findlater, J.: A major low‐level air current near the Indian Ocean during the northern summer, Q. J. Roy. Meteor. Soc., 95, 362–380, 1969.
Foltz, G. R., Vialard, J., Kumar, B. P., and Mcphaden, M. J.: Seasonal mixed
layer heat balance of the southwestern tropical Indian Ocean, J. Climate, 23, 947–965,
https://doi.org/10.1175/2009JCLI3268.1, 2010.
Fournier, S., Vialard, J., Lengaigne, M., Lee, T., Gierach, M. M., and Chaitanya, A. V. S.: Modulation of the Ganges-Brahmaputra river plume by the Indian Ocean dipole and eddies inferred from satellite observations, J. Geophys. Res.-Oceans, 122, 9591–9604, https://doi.org/10.1002/2017JC013333, 2017.
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G.,
Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E.,
Krinner, G., A. Mix, A., Notz, D., Nowicki, S. Nurhati, I. S., Ruiz, L.,
Sallée, J-B., Slangen, A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea Level
Change, in: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang,
M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K.,
Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University
Press, in press, 2021.
Francis, P. A., Jithin, A. K., Effy, J. B., Chatterjee, A., Chakraborty, K., Paul, A., Balaji, B., Shenoi, S. S. C., Biswamoy, P., Mukherjee, A., Singh, P., Deepsankar, B., Siva Reddy, S., Vinayachandran, P. N., Girish Kumar, M. S., Udaya Bhaskar, T. V. S., Ravichandran, M., Unnikrishnan, A. S., Shankar, D., Prakash, A., Aparna, S. G., Harikumar, R., Kaviyazhahu, K., Suprit, K., Shesu, R. V., Kiran Kumar, N., Srinivasa Rao, N., Annapurnaiah, K., Venkatesan, R., Rao, A. S., Rajagopal, E. N., Prasad, V. S., Gupta, M. D., Balakrishnan Nair, T. M., Rao, E. P. R., and Satyanarayana, B. V.: High-resolution operational ocean forecast and reanalysis system for
the Indian Ocean, B. Am. Meteorol. Soc., 101, E1340–E1356,
2020.
Furnas, M.: Intra-seasonal and inter-annual variations in phytoplankton
biomass, primary production and bacterial production at North West Cape,
Western Australia: Links to the 1997–1998 El Niño event, Cont. Shelf
Res., 27, 958–980, https://doi.org/10.1016/j.csr.2007.01.002, 2007.
Furue, R., McCreary, J. P., Benthuysen, J., Phillips, H. E., and Bindoff, N.
L.: Dynamics of the Leeuwin Current: Part 1. Coastal flows in an inviscid,
variable-density, layer model, Dyn. Atmos. Oceans, 63, 24–59, https://doi.org/10.1016/j.dynatmoce.2013.03.003, 2013.
Furue, R., Guerreiro, K., Phillips, H. E., McCreary, J. P., and Bindoff, N.
L.: On the Leeuwin Current System and its linkage to zonal flows in the
South Indian Ocean as inferred from a gridded hydrography, J. Phys.
Oceanogr., 47, 583–602, https://doi.org/10.1175/JPO-D-16-0170.1, 2017.
Furue, R.: The three-dimensional structure of the Leeuwin Current System in
density coordinates in an eddy-resolving OGCM, Ocean Model., 138, 36–50,
https://doi.org/10.1016/j.ocemod.2019.03.001, 2019.
Gadgil, S.: The Indian Monsoon and Its Variability, Annu. Rev. Earth Planet. Sci., 31, 429–467, https://doi.org/10.1146/annurev.earth.31.100901.141251, 2003.
Gadgil, S., Joseph, P., and Joshi, N.: Ocean–atmosphere coupling over monsoon regions, Nature, 312, 141–143, https://doi.org/10.1038/312141a0, 1984.
Gandhi, N., Singh, A., Prakash, S., Ramesh, R., Raman, M., Sheshshayee, M.
and Shetye, S.: First direct measurements of N2 fixation during a
Trichodesmium bloom in the eastern Arabian Sea, Global Biogeochem. Cycles, 25, GB4014, https://doi.org/10.1029/2010GB003970,
2011.
Gao, Y., Hsu, P.-C., and Li, T.: Effects of high-frequency activity on latent heat flux of MJO, Clim. Dynam., 52, 1471–1485, https://doi.org/10.1007/s00382-018-4208-1, 2019.
Garrison, D. L., Gowing, M. M., Hughes, M. P., Campbell, L., Caron, D. A.,
Dennett, M. R., Shalapyonok, A., Olson, R. J., Landry, M. R., Brown, S. L.,
Liu, H. Bin, Azam, F., Steward, G. F., Ducklow, H. W., and Smith, D. C.:
Microbial food web structure in the Arabian Sea: A US JGOFS study, Deep-Sea
Res. Pt. II, 47, 1387–1422, https://doi.org/10.1016/S0967-0645(99)00148-4, 2000.
Gaube, P., Chelton, D. B., Strutton, P. G., and Behrenfeld, M. J.: Satellite
observations of chlorophyll, phytoplankton biomass, and Ekman pumping in
nonlinear mesoscale eddies, J. Geophys. Res.-Oceans, 118, 6349–6370,
https://doi.org/10.1002/2013JC009027, 2013.
George, J. V., Nuncio, M., Chacko, R., Anilkumar, N., Noronha, S. B., Patil,
S. M., Pavithran, S., Alappattu, D. P., Krishnan, K. P., and Achuthankutty,
C. T.: Role of physical processes in chlorophyll distribution in the western
tropical Indian Ocean, J. Mar. Syst., 113–114, 1–12, https://doi.org/10.1016/j.jmarsys.2012.12.001,
2013.
George, J. V., Vinayachandran, P. N., Vijith, V., Thusaraa, V., Nayaka, A.
A, Pargaonkara, S. K., Amol, P., Vijaykumar, K., and Matthews, A. J.:
Mechanisms of barrier layer formation and erosion from in situ observations
in the Bay of Bengal, J. Phys. Oceanogr., 49, 1183–1200,
https://doi.org/10.1175/JPO-D-18-0204.1, 2019.
Giddings, J., Heywood, K. J., Matthews, A. J., Joshi, M. M., Webber, B. G. M., Sanchez-Franks, A., King, B. A., and Vinayachandran, P. N.: Spatial and temporal variability of solar penetration depths in the Bay of Bengal and its impact on sea surface temperature (SST) during the summer monsoon, Ocean Sci., 17, 871–890, https://doi.org/10.5194/os-17-871-2021, 2021.
Gilmour, J. P., Cook, K. L., Ryan, N. M., Puotinen, M. L., Green, R. H.,
Shedrawi, G., Hobbs, J.-P. A., Thmson, D.P., Babcock, R.C., Buckee, J.,
Foster, T., Richards, Z. T., Wilson, S. K., Barnes, P. B., Coutts, T. B.,
Radford, B. T., Piggott, C. H., Depczynski, M., Evans, S. N., Schoepf, V.,
Evans, R. D., Halford, A. H., Nutt, C. D., Bancroft, K. P., Heyward, A. J., and
Oades, D.: The state of Western Australia's coral reefs, Coral Reefs, 38,
651–667, https://doi.org/10.1007/s00338-019-01795-8, 2019.
Girishkumar, M. S., Ravichandran, M., McPhaden, M. J., and Rao, R. R.: Intraseasonal variability in barrier layer thickness in the south central Bay of Bengal, J. Geophys. Res., 116, https://doi.org/10.1029/2010JC006657, 2011.
Girishkumar, M. S., Ravichandran, M., and McPhaden, M. J.: Temperature
inversions and their influence on the mixed layer heat budget during the
winters of 2006–07 and 2007–08 in the Bay of Bengal, J. Geophys. Res., 118, 118, 2426–2437,
https://doi.org/10.1002/jgrc.20192, 2013.
Girishkumar, M. S., Joseph, J., Thangaprakash, V. P., Pottapinjara, V., and
McPhaden, M. J.: Mixed Layer Temperature Budget for the Northward
Propagating Summer Monsoon Intraseasonal Oscillation (MISO) in the Central
Bay of Bengal, J. Geophys. Res.-Oceans, 122, 8841–8854,
https://doi.org/10.1002/2017JC013073, 2017.
Girishkumar, M. S., Ashin, K., McPhaden, M. J., Balaji, B., and Praveenkumar, B.:
Estimation of vertical heat diffusivity at the base of the mixed layer in
the Bay of Bengal, J. Geophys. Res., 125, e2019JC015402,
https://doi.org/10.1029/2019JC015402, 2020.
Gnanaseelan, C., Deshpande, A., and McPhaden, M. J.: Impact of Indian Ocean
Dipole and El Nio/Southern Oscillation wind-forcing on the Wyrtki jets, J. Geophys. Res.-Oceans, 117, C08005, https://doi.org/10.1029/2012JC007918, 2012.
Godfrey, J. S.: The effect of the Indonesian throughflow on ocean
circulation and heat exchange with the atmosphere: A review, J. Geophys. Res., 101,
12217–12237, 1996.
Godfrey, J. S. and Ridgway, K. R.: The large-scale environment of the
poleward-flowing Leeuwin Current, Western Australia: longshore steric height
gradients, wind stresses and geostrophic flow, J. Phys. Oceanogr., 15,
481–495, https://doi.org/10.1175/1520-0485(1985)015<0481:TLSEOT>2.0.CO;2, 1985.
Godfrey, J. S. and Weaver, A.: Why are there such strong steric height
gradients off Western Australia? In: Proceedings of the Western Pacific
International Meeting and Workshop on TOGA COARE, 24–30 May 1989, Noumea,
New Caledonia, 215–222, available at: https://www.documentation.ird.fr/hor/fdi:30209 (last access: 20 October 2021), 1989.
Godfrey, J. S. and Weaver, A. J.: Is the Leeuwin Current driven by Pacific
heating and winds?, Prog. Oceanogr., 27, 225–272,
https://doi.org/10.1016/0079-6611(91)90026-I, 1991.
Godfrey, J. S., Johnson, G. C., McPhaden, M. J., Reverdin, G., and Wijffels, S.: The tropical ocean circulation, Ocean Circulation and Climate, edited by: Siedler, G., Church, J., and Gould, W. J., Academic Press, 77, 215–246, https://doi.org/10.1016/S0074-6142(01)80121-2, 2001.
Goericke, R., Olson, R. J., and Shalapyonok, A.: A novel niche for
Prochlorococcus sp. in low-light suboxic environments in the Arabian Sea and
the Eastern Tropical North Pacific, Deep-Sea Res. Pt. I, 47, 1183–1205,
https://doi.org/10.1016/S0967-0637(99)00108-9, 2000.
Goes, J. I., Tian, H., Gomes, H. do R., Anderson, O. R., Al-Hashmi, K.,
deRada, S., Luo, H., Al-Kharusi, L., Al-Azri, A., and Martinson, D. G.:
Ecosystem state change in the Arabian Sea fuelled by the recent loss of snow
over the Himalayan-Tibetan Plateau region, Sci. Rep.-UK, 10, 7422,
https://doi.org/10.1038/s41598-020-64360-2, 2020.
Gomes, H., Goes, J. I., and Saino, T.: Influence of physical processes and freshwater discharge on the seasonality of phytoplankton regime in the Bay of Bengal, Cont. Shelf Res., 20, 313–330, 2000.
Gomes, H. D., Goes, J. I., Matondkar, S. G. P., Buskey, E. J., Basu, S.,
Parab, S., and Thoppil, P.: Massive outbreaks of Noctiluca scintillans blooms
in the Arabian Sea due to spread of hypoxia, Nat. Commun., 5, 4862,
https://doi.org/10.1038/ncomms5862, 2014.
Gordon, A., Shroyer, E., and Murty, V: An Intrathermocline Eddy and a
tropical cyclone in the Bay of Bengal, Sci. Rep.-UK, 7, 46218, https://doi.org/10.1038/srep46218, 2017.
Gordon, A. L., Susanto, R. D., and Vranes, K.: Cool Indonesian throughflow as
a consequence of restricted surface layer flow, Nature, 425, 824–828,
https://doi.org/10.1038/nature02038, 2003.
Gordon, A. L., Susanto, R. D., Ffield, A., Huber, B. A., Pranowo, W., and
Wirasantosa, S.: Makassar Strait throughflow, 2004 to 2006, Geophys. Res.
Lett., 35, L24605, https://doi.org/10.1029/2008GL036372, 2008.
Gordon, A. L., Sprintall, J., Van Aken, H. M., Susanto, R. D., Wijffels, S.,
Molcard, R., Ffield, A., Pranowo, W., and Wirasantosa, S.: The Indonesian
throughflow during 2004-2006 as observed by the INSTANT program, Dyn. Atmos.
Ocean., 50, 115–128, https://doi.org/10.1016/j.dynatmoce.2009.12.002, 2010.
Gordon, A. L., Huber, B. A., Metzger, E. J., Susanto, R. D., Hurlburt, H. E.
and Adi, T. R.: South China Sea throughflow impact on the Indonesian
throughflow, Geophys. Res. Lett., 39, L11602, https://doi.org/10.1029/2012GL052021, 2012.
Gordon, A. L., Shroyer, E. L., Mahadevan, A., Sengupta, D., and Freilich, M.:
Bay of Bengal: 2013 Northeast monsoon upper-ocean circulation, Oceanography, 29, 82–91,
https://doi.org/10.5670/oceanog.2016.41, 2016.
Gordon, A. L., Shroyer, E. L., Fernando, H. J. S., Tandon, A., Mathur, M., and Udaya Priyantha Jinadasa, S.: Introduction to “Atmosphere-Ocean Dynamics of Bay of Bengal” volume 1, Deep-Sea Res. Pt. II, 168, 104670, https://doi.org/10.1016/j.dsr2.2019.104670, 2019.
Gordon, A. L., Shroyer, E. L., Fernando, H. J. S., Tandon, A., Mathur, M., and Udaya Priyantha Jinadasa, S.: Introduction to “Atmosphere-Ocean Dynamics of Bay of Bengal”-Volume 2, Deep-Sea Res. Pt. II, 172, 104724, https://doi.org/10.1016/j.dsr2.2019.104724, 2020.
Goschen, W. S., Schumann, E. H., Bernard, K. S., Bailey, S. E., and Deyzel,
S. H. P.: Upwelling and ocean structures off Algoa Bay and the south-east
coast of South Africa, African J. Mar. Sci., 34, 525–536,
https://doi.org/10.2989/1814232X.2012.749810, 2012.
Goswami, B. N.: South Asian monsoon, in: Intraseasonal Variability in the Atmosphere-Ocean Climate System, edited by: Lau, W. K. M. and Waliser, D. E., Springer Praxis Books. Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-13914-7_2, 2012.
Goswami, B. B., Mukhopadhyay, P., Khairoutdinov, M., and Goswami, B. N.:
Simulation of Indian summer monsoon intraseasonal oscillations in a
superparameterized coupled climate model: Need to improve the embedded cloud
resolving model, Clim. Dynam., 41, 1497–1507,
https://doi.org/10.1007/s00382-012-1563-1, 2013.
Goswami, B. N., Rao, S. A., Sengupta, D., and Chakravorty, S.: Monsoons to mixing
in the Bay of Bengal: Multiscale air-sea interactions and monsoon
predictability, Oceanography, 29, 18–27, https://doi.org/10.5670/oceanog.2016.35, 2016.
Gründlingh, M. L.: On the Course of the Agulhas Current, S. Afr. Geogr. J., 65, 49–57, https://doi.org/10.1080/03736245.1983.10559671, 1983.
Grunseich, G., Subrahmanyam, B., Murty, V. S. N., and Giese, B. S.: Sea surface salinity variability during the Indian Ocean dipole and ENSO events in the tropical Indian Ocean, J. Geophys. Res., 116, C11013, https://doi.org/10.1029/2011JC007456, 2011.
Gu, W., Li, W. J., Chen, L. J., and Jia, X. L.: Interannual variations of autumn precipitation in China and their relations to the distribution of tropical Pacific sea surface temperature, Clim. Environ. Res., 17, 467–480, 2012.
Guan, B., Waliser, D. E., Lee, T., and Halkides, D. J.: Influence of the Madden-Julian oscillation on the Indian Ocean cross-equatorial heat transport, Geophys. Res. Lett., 41, 7314–7322, https://doi.org/10.1002/2014GL061789, 2014.
Gudka, M., Obura, D., Mwaura, J., Porter, S. Yahya, S., and Mabwa, R.:
Impact of the 3rd Global Coral Bleaching Event on the Western Indian Ocean
in 2016, Global Coral Reef Monitoring Network (GCRMN)/Indian Ocean
Commission, pp. 67, available at: https://wedocs.unep.org/handle/20.500.11822/25700 (last access: 22 October 2021), 2018.
Guemas, V., Corti, S., Garcia-Serrano, J., Doblas-Reyes, F. J., Balmaseda,
M., and Magnusson, L.: The Indian Ocean: The region of highest skill
worldwide in decadal climate prediction, J. Climate, 26, 726–739, 2013.
Gundersen, J. S., Gardner, W. D., Richardson, M. J., and Walsh, I. D.:
Effects of monsoons on the seasonal and spatial distributions of POC and
chlorophyll in the Arabian Sea, Deep-Sea Res. Pt. II, 45, 2103–2132,
https://doi.org/10.1016/S0967-0645(98)00065-4, 1998.
Guo, F., Liu, Q., Sun, S., and Yang, J.: Three types of Indian Ocean
dipoles, J. Climate, 28, 3073–3092, 2015.
Haarsma, R. J., Campos, E. J. D., Drijfhout, S., Hazeleger, W., and
Severijns, C.: Impacts of interruption of the Agulhas leakage on the
tropical Atlantic in coupled ocean-atmosphere simulations, Clim. Dynam., 36, 989–1003,
https://doi.org/10.1007/s00382-009-0692-7, 2011.
Halkides, D. J., Waliser, D. E., Lee, T., Menemenlis, D., and Guan, B.:
Quantifying the processes controlling intraseasonal mixed-layer temperature
variability in the tropical Indian Ocean, J. Geophys. Res.-Oceans, 120,
692–715, https://doi.org/10.1002/2014JC010139, 2015.
Han, W. Q.: Origins and dynamics of the 90-day and 30–60-day variations in the equatorial Indian Ocean, J. Phys. Oceanogr., 35, 708–728, 2005.
Han, W. and McCreary, J. P.: Modeling salinity distributions in the Indian Ocean, J. Geophys. Res.-Oceans, 106, 859–877, https://doi.org/10.1029/2000JC000316, 2001.
Han, W., McCreary, J. P., Anderson, D. L. T., and Mariano, A. J.: Dynamics of
the eastern surface jets in the equatorial Indian Ocean, J. Phys. Oceanogr., 29, 2191–2209,
https://doi.org/10.1175/1520-0485(1999)029<2191:DOTESJ>2.0.CO;2,
1999.
Han, W. Q., Lawrence, D. M., and Webster, P. J.: Dynamical response of equatorial Indian Ocean to intraseasonal winds: zonal flow, Geophys. Res. Lett., 28, 4215–4218, 2001.
Han, W., Webster, P., Lukas, R., Hacker, P., and Hu, A.: Impact of
atmospheric intraseasonal variability in the Indian Ocean: Low-frequency
rectification in equatorial surface current and transport, J. Phys.
Oceanogr., 34, 1350–1372, https://doi.org/10.1175/1520-0485(2004)034<1350:IOAIVI>2.0.CO;2, 2004.
Han, W., Yuan, D., Liu, W. T., and Halkides, D. J.: Intraseasonal variability
of Indian Ocean sea surface temperature during boreal winter: Madden-Julian
Oscillation versus submonthly forcing and processes, J. Geophys. Res.-Oceans, 112, 1–20, https://doi.org/10.1029/2006JC003791, 2007.
Han, W., Vialard, J., McPhaden, M. J., Lee, T., Masumoto, Y., Feng, M., and
De Ruijter, W. P. M.: Indian ocean decadal variability: A review, B. Am.
Meteorol. Soc., 95, 1679–1703, https://doi.org/10.1175/BAMS-D-13-00028.1, 2014.
Han, W., Meehl, G. A., Hu, A., Zheng, J., Kenigson, J., Vialard, J., and Rajagopalan, B.: Decadal Variability of the Indian and Pacific Walker Cells since the 1960s: Do They Covary on Decadal Time Scales?, J. Climate, 30, 8447–8468, 2017.
Hanson, C. E., Waite, A. M., Thompson, P. A., and Pattiaratchi, C. B.:
Phytoplankton community structure and nitrogen nutrition in Leeuwin Current
and coastal waters off the Gascoyne region of Western Australia, Deep-Sea Res.
Pt. II, 54, 902–924, https://doi.org/10.1016/j.dsr2.2006.10.002, 2007.
Hazra, A., Chaudhari, H. S., Saha, S. K., Pokhrel, S., and Goswami, B. N.:
Progress Towards Achieving the Challenge of Indian Summer Monsoon Climate
Simulation in a Coupled Ocean-Atmosphere Model, J. Adv. Model. Earth Syst., 9, 2268–2290,
https://doi.org/10.1002/2017MS000966, 2017.
Heffner, D. M., Subrahmanyam, B., and Shriver, J. F.: Indian Ocean Rossby waves detected in HYCOM sea surface salinity, Geophys. Res. Lett., 35, L03605, https://doi.org/10.1029/2007GL032760, 2008.
Hermes, J. C. and Reason, C. J. C.: Ocean model diagnosis of interannual
coevolving SST variability in the South Indian and South Atlantic Oceans, J.
Climate, 18, 2864–2882, https://doi.org/10.1175/JCLI3422.1, 2005.
Hermes, J. C. and Reason, C. J. C.: Annual cycle of the South Indian Ocean
(Seychelles-Chagos) thermocline ridge in a regional ocean model, J.
Geophys. Res., 113, C04035, https://doi.org/10.1029/2007JC004363, 2008.
Hermes, J. C., Masumoto, Y., Beal, L. M., Roxy, M. K., Vialard, J., Andres, M.,
Annamalai, H., Behera, S., D'Adamo, N., Doi, T., Feng, M., Han, W.,
Hardman-Mountford, N., Hendon, H., Hood, R., Kido, S., Lee, C., Lee, T., Lengaigne,
M., Li, J., Lumpkin, R., Navaneeth, K. N., Milligan, B., McPhaden, M. J.,
Ravichandran, M., Shinoda, T., Singh, A., Sloyan, B., Strutton, P. G.,
Subramanian, A. C., Thurston, S., Tozuka, T., Ummenhofer, C. C., Unnikrishnan, A.
S., Venkatesan, R., Wang, D., Wiggert, J., Yu, L., and Yu, W.: A Sustained Ocean
Observing System in the Indian Ocean for Climate Related Scientific
Knowledge and Societal Needs, Front. Marine Sci., 6, 1–21,
https://doi.org/10.3389/fmars.2019.00355, 2019.
Hernández-Guerra, A. and Talley, L. D.: Meridional overturning
transports at 30∘ S in the Indian and Pacific Oceans in 2002–2003
and 2009, Prog Oceanogr., 146, 89–120, 2016.
Hitchcock, G. L., Key, L. E., and Masters, J.: The fate of upwelled waters in
the Great Whirl, August 1995, Deep-Sea Res. Pt. II, 47, 1605–1621,
https://doi.org/10.1016/S0967-0645(99)00156-3, 2000.
Ho, C. R., Zheng, Q., and Kuo, N. J.: SeaWiFs observations of upwelling south
of Madagascar: Long-term variability and interaction with East Madagascar
Current, Deep-Sea Res. Pt. II, 51, 59–67,
https://doi.org/10.1016/j.dsr2.2003.05.001, 2004.
Holbrook, N. J., Scannell, H. A., Sen Gupta, A., Benthuysen, J. A., Feng, M.,
Oliver, E. C. J., Alexander, L. V., Burrow, M. T., Donat, M. G., Hobday, A. J.,
Moore, P. J., Perkins-Kirkpatrick, S. E., Smale, D. A., Straub, S. C., and
Wernberg, T.: A global assessment of marine heatwaves and their drivers,
Nat. Commun., 10, 2624, https://doi.org/10.1038/s41467-019-10206-z, 2019.
Holloway, P. E.: Leeuwin current observations on the Australian North West
Shelf, May–June 1993, Deep-Sea Res. Pt. I, 42, 285–305, https://doi.org/10.1016/0967-0637(95)00004-P,
1995.
Holloway, P. E. and Nye, H. C.: Leeuwin current and wind distributions on
the southern part of the australian north west shelf between january 1982
and july 1983, Mar. Freshw. Res., 36, 123–137, https://doi.org/10.1071/MF9850123, 1985.
Holton, L., Deshayes, J., Backeberg, B. C., Loveday, B. R., Hermes, J. C., and Reason,
C. J. C.: Spatio-temporal characteristics of Agulhas leakage: a model
inter-comparison study, Clim. Dynam., 48, 2107–2121, 2017.
Hood, R. R., Coles, V. J., and Capone, D. G.: Modeling the distribution of
Trichodesmium and nitrogen fixation in the Atlantic Ocean, J. Geophys. Res.-Oceans, 109, C06006, https://doi.org/10.1029/2002JC001753, 2004.
Hood, R. R., Bange, H. W., Beal, L., Beckley, L. E., Burkill, P., Cowie, G. L.,
D'Adamo, N., Ganssen, G., Hendon, H., Hermes, J., Honda, M., McPhaden, M.,
Roberts, M., Singh, S., Urban, E., and Yu, W.: Science Plan of the Second
International Indian Ocean Expedition (IIOE-2): A Basin-Wide Research
Program, Scientific Committee on Oceanic Research, Newark, Delaware, USA,
2015.
Hood, R. R., Beckley, L. E., and Wiggert, J. D.: Biogeochemical and
ecological impacts of boundary currents in the Indian Ocean, Prog.
Oceanogr., 156, 290–325, 2017.
Horii, T., Mizuno, K., Nagura, M., Miyama, T., and Ando, K.: Seasonal and
interannual variation in the cross-equatorial meridional currents observed
in the eastern Indian Ocean, J. Geophys. Res., 118, 6658–6671,
https://doi.org/10.1002/2013JC009291, 2013.
Hormann, V., Centurioni, L. R., and Gordon, A. L.: Freshwater export pathways
from the Bay of Bengal, Deep-Sea Res. Pt. II, 168, 104645,
https://doi.org/10.1016/j.dsr2.2019.104645, 2019.
Howden, S. D. and Murtugudde, R.: Effects of river inputs into the Bay of
Bengal, J. Geophys. Res.-Oceans, 106, 19825–19843,
https://doi.org/10.1029/2000jc000656, 2001.
Hu, D., Wu, L., Cai, W., Sen Gupta, A., Ganachaud, A., Qiu, B., Gordon, A.
L., Lin, X., Chen, Z., Hu, S., Wang, G., Wang, Q., Sprintall, J., Qu, T.,
Kashino, Y., Wang, F., and Kessler, W. S.: Pacific western boundary currents
and their roles in climate, Nature, 522, 299–308, https://doi.org/10.1038/nature14504, 2015.
Hu, K., Huang, G., Xie, S.-P., and Long, S. M.: Effect of the mean flow on the
anomalous anticyclone over the Indo-northwest Pacific in post-El Niño
summers, Clim. Dynam., 53, 5725–5741, 2019.
Hu, S. and Sprintall, J.: Interannual variability of the Indonesian
Throughflow: The salinity effect, J. Geophys. Res.-Oceans, 121, 2596–2615,
https://doi.org/10.1002/2015JC011495, 2016.
Hu, S. and Sprintall, J.: Observed strengthening of interbasin exchange via
the Indonesian Seas due to rainfall Intensification, Geophys. Res.
Lett., 44, 1448–1456, 2017a.
Hu, S. and Sprintall, J.: A stronger Indonesian Throughflow related to
enhanced regional rainfall, CLIVAR Exchanges, 71, 21–25, 2017b.
Huang, K., McPhaden, M., Wang, D., Wang, W., and Xie, Q.: Vertical Propagation of Middepth Zonal Currents Associated With Surface Wind Forcing in the Equatorial Indian Ocean, J. Geophys. Res.-Oceans, 123, 7290–7307, 2018.
Huhn, F., von Kameke, A., Pérez-Muñuzuri, V., Olascoaga, M. J., and
Beron-Vera, F. J.: The impact of advective transport by the South Indian
Ocean countercurrent on the Madagascar bloom, Geophys. Res. Lett., 39,
L06602, https://doi.org/10.1029/2012GL051246, 2012.
Hutchinson, K., Beal, L. M., Penven, P., Ansorge, I., and Hermes, J.: Seasonal phasing of Agulhas Current transport tied to a baroclinic
adjustment of near-field winds, J. Geophys. Res.-Oceans,
123, 123, 7067–7083, https://doi.org/10.1029/2018JC014319, 2018.
Ibrahim, N., Mohamed, M., Basheer, A., Ismail, H., Nistharan, F., Schmidt,
A., Naeem, R., Abdulla, A., and Grimsditch, G.: Status of Coral Bleaching in
the Maldives in 2016, Marine Research Centre, Malé, Maldives, 47 pp.,
available at: https://portals.iucn.org/library/node/46803 (last access: 21 November 2021), 2017.
Iskandar, I. and McPhaden, M. J.: Dynamics of wind-forced intraseasonal
zonal current variations in the equatorial Indian Ocean, J. Geophys. Res.-Oceans, 116, 1–16, https://doi.org/10.1029/2010JC006864, 2011.
Iskandar, I., Masumoto, Y., and Mizuno, K.: Subsurface equatorial zonal
current in the eastern Indian Ocean, J. Geophys. Res.-Oceans, 114, C06005,
https://doi.org/10.1029/2008JC005188, 2009.
Iskandar, I., Sasaki, H., Sasai, Y., Masumoto, Y., and Mizuno, K.: A
numerical investigation of eddy-induced chlorophyll bloom in the
southeastern tropical Indian Ocean during Indian Ocean Dipole – 2006, Ocean
Dynam., 60, 731–742, 2010.
Izumo, T., de Boyer Montegut, C., Luo, J. J., Behera, S. K., Masson, S., and
Yamagata, T.: The role of the western Arabian Sea upwelling in Indian monsoon
rainfall variability, J. Climate, 21, 5603–5623, https://doi.org/10.1175/2008JCLI2158.1,
2008.
Izumo, T., Vialard, J., Lengaigne, M., de Boyer Montegut, C., Behera, S. K.,
Luo, J.-J., Cravatte, S., Masson, S., and Yamagata, T.: Influence of the
state of the Indian Ocean Dipole on the following year's El Niño, Nat.
Geosci., 3, 168–172, https://doi.org/10.1038/ngeo760, 2010.
Jaeger, G. S. and Mahadevan, A.: Submesoscale-selective compensation of
fronts in a salinity-stratified ocean, Sci. Adv., 4, e1701504, https://doi.org/10.1126/sciadv.1701504, 2018.
Jain, V., Shankar, D., Vinayachandran, P. N., Kankonkar, A., Chatterjee, A.,
Amol, P., Almeida, A. M., Michael, G. S., Mukherjee, A., Chatterjee, M.,
Fernandes, R., Luis, R., Kamble, A., Hegde, A. K., Chatterjee, S., Das, U.,
and Neema, C. P.: Evidence for the existence of Persian Gulf Water and Red
Sea Water in the Bay of Bengal, Clim. Dynam., 48, 3207–3226, https://doi.org/10.1007/s00382-016-3259-4,
2017.
Jayakumar, A., Vialard, J., Lengaigne, M., Gnanaseelan, C., McCreary, J. P.,
and Kumar, B. P.: Processes controlling the surface temperature signature of
the Madden-Julian Oscillation in the thermocline ridge of the Indian Ocean,
Clim. Dynam., 37, 2217–2234, https://doi.org/10.1007/s00382-010-0953-5, 2011.
Jayakumar, A., Turner, A. G., Johnson, S. J., Rajagopal, E. N., Mohandas, S.,
and Mitra, A. K.: Boreal summer sub-seasonal variability of the South Asian
monsoon in the Met Office GloSea5 initialized coupled model, Clim. Dynam.,
49, 2035–2059, https://doi.org/10.1007/s00382-016-3423-x, 2017.
Jensen, T. G.: Arabian Sea and Bay of Bengal exchange of salt and tracers in
an ocean model, Geophys. Res. Lett., 28, 3967–3970,
https://doi.org/10.1029/2001GL013422, 2001.
Jensen, T. G., Wijesekera, H. W., Nyadjro, E. S., Thoppil, P. G., Shriver,
J., Sandeep, K. K., and Pant, V.: Modeling Salinity Exchanges Between the
Equatorial Indian Ocean and the Bay of Bengal, Oceanography, 29, 92–101,
https://doi.org/10.5670/oceanog.2016.42, 2016.
Jia, F., Wu, L., and Qiu, B.: Seasonal modulation of eddy kinetic energy and
its formation mechanism in the southeast Indian Ocean, J. Phys. Oceanogr.,
41, 657–665, https://doi.org/10.1175/2010JPO4436.1, 2011a.
Jia, F., Wu, L., and Qiu, B.: Interannual modulation of eddy kinetic energy
in the southeast Indian ocean by Southern Annular Mode, J. Geophys. Res.,
116, C02029, https://doi.org/10.1029/2010JC006699, 2011b.
Jin, D., Waliser, D. E., Jones, C., and Murtugudde, R.: Modulation of
tropical ocean surface chlorophyll by the Madden-Julian Oscillation, Clim.
Dynam., 40, 39–58, https://doi.org/10.1007/s00382-012-1321-4, 2013a.
Jin, D., Murtugudde, R. G., and Waliser, D. E.: Intraseasonal atmospheric
forcing effects on the mean state of ocean surface chlorophyll, J. Geophys. Res.-Oceans, 118, 184–196, https://doi.org/10.1029/2012JC008256, 2013b.
Jin, X., Kwon, Y.-O., Ummenhofer, C. C., Seo, H., Kosaka, Y., and Wright, J.
S.: Distinct mechanisms of decadal subsurface heat content variations in the
eastern and western Indian Ocean modulated by tropical Pacific SST, J.
Climate, 31, 7751–7769, 2018a.
Jin, X., Kwon, Y.-O., Ummenhofer, C. C., Seo, H., Schwarzkopf, F. U.,
Biastoch, A., Böning, C. W., and Wright, J. S.: Influences of Pacific
climate variability on decadal subsurface ocean heat content variations in
the Indian Ocean, J. Climate, 31, 4157–4174, 2018b.
Jinadasa, S. U. P., Lozovatsky, I., Planella-Morató, J., Nash, J. D.,
MacKinnon, J. A., Lucas, A. J., Wijesekera, H. W., and Fernando, H. J. S.:
Ocean turbulence and mixing around Sri Lanka and in adjacent waters of the
northern Bay of Bengal, Oceanography, 29, 170–179, https://doi.org/10.5670/oceanog.2016.49, 2016.
Jochum, M. and Murtugudde, R.: Internal Variability of Indian Ocean SST, J. Climate, 18, 3726–3738, 2005.
Johnson, G. C., Purkey, S. G., and Bullister, J. L.: Warming and freshening in
the abyssal southeastern Indian Ocean, J. Climate, 21, 5351–5363, https://doi.org/10.1175/2008JCLI2384.1, 2008.
José, Y. S., Aumont, O., Machu, E., Penven, P., Moloney, C. L., and
Maury, O.: Influence of mesoscale eddies on biological production in the
Mozambique Channel: Several contrasted examples from a coupled
ocean-biogeochemistry model, Deep-Sea Res. Pt II, 100, 79–93,
https://doi.org/10.1016/j.dsr2.2013.10.018, 2014.
Joseph, S., Wallcraft, A. J., Jensen, T. G., Ravichandran, M., Shenoi, S. S.
C., and Nayak, S.: Weakening of spring Wyrtki jets in the Indian Ocean during
2006–2011, J. Geophys. Res.-Oceans, 117, C04012, https://doi.org/10.1029/2011JC007581, 2012.
Jourdain, N. C., Gupta, A. S., Taschetto, A. S., Ummenhofer, C. C., Moise, A. F., and Ashok, K.: The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations, Clim. Dynam., 41, 3073–3102, 2013.
Jyothibabu, R., Madhu, N. V., Maheswaran, P. A., Jayalakshmy, K. V., Nair,
K. K. C., and Achuthankutty, C. T.: Seasonal variation of microzooplankton
(20–200 µm) and its possible implications on the vertical carbon flux
in the western Bay of Bengal, Cont. Shelf Res., 28, 737–755,
https://doi.org/10.1016/j.csr.2007.12.011, 2008.
Jyoti, J., Swapna, P., Krishnan, R., and Naidu, C. V.: Pacific modulation of
accelerated south Indian Ocean sea level rise during the early 21st Century,
Clim. Dynam., 53, 4413–4432, https://doi.org/10.1007/s00382-019-04795-0, 2019.
Kataoka, T., Tozuka, T., Masumoto, Y., and Yamagata, T.: The Indian Ocean
subtropical dipole mode simulated in the CMIP3 models, Clim. Dynam., 39,
1385–1399, https://doi.org/10.1007/s00382-011-1271-2, 2012.
Kataoka, T., Tozuka, T., Behera, S., and Yamagata, T.: On the Ningaloo
Niño/Niña, Clim. Dynam., 43, 1463–1482,
https://doi.org/10.1007/s00382-013-1961-z, 2014.
Kato, S., Loeb, N. G., Rose, F. G., Doelling, D. R., Rutan, D. A., Caldwell,
T. E., Yu, L., and Weller, R. A.: Surface irradiances consistent with
CERES-derived top-of-atmosphere shortwave and longwave irradiances, J.
Climate, 26, 2719–2740, https://doi.org/10.1175/JCLI-D-12-00436.1, 2013.
Keen, T. R., Kindle, J. C., and Young, D. K.: The interaction of southwest
monsoon upwelling, advection and primary production in the northwest Arabian
Sea, J. Mar. Syst., 13, 61–82, https://doi.org/10.1016/S0924-7963(97)00003-1, 1997.
Keerthi, M. G., Lengaigne, M., Drushka, K., Vialard, J., Montegut, C. D. B.,
Pous, S., Levy, M., and Muraleedharan, P. M.: Intraseasonal variability of
mixed layer depth in the tropical Indian Ocean, Clim. Dynam., 46,
2633–2655, https://doi.org/10.1007/s00382-015-2721-z, 2016.
Kessler, W. S., McPhaden, M. J., and Weickmann, K. M.: Forcing of intraseasonal
Kelvin Waves in the equatorial Pacific, J. Geophys. Res., 100,
10613–10631, 1995.
Kido, S. and Tozuka, T.: Salinity Variability Associated with the Positive
Indian Ocean Dipole and Its Impact on the Upper Ocean Temperature, J. Climate, 30, 7885–7907, 2017.
Kim, H. S., Flagg, C. N., and Howden, S. D.: Northern Arabian Sea variability
from TOPEX/Poseidon altimetry data: An extension of the US JGOFS/ONR
shipboard ADCP study, Deep-Sea Res. Pt II, 48, 1069–1096,
https://doi.org/10.1016/S0967-0645(00)00131-4, 2001.
Kindle, J. C. and Thompson, J. D.: The 26- and 50-day oscillations in the western Indian Ocean: Model results, J. Geophys. Res., 94, 4721–4736, https://doi.org/10.1029/JC094iC04p04721, 1989.
Kobashi, F. and Kubokawa, A.: Review on North Pacific Subtropical
Countercurrents and Subtropical Fronts: role of mode waters in ocean
circulation and climate, J. Oceanogr., 68, 21–43, https://doi.org/10.1007/s10872-011-0083-7, 2012.
Kosaka, Y. and Xie, S. P.: Recent global-warming hiatus tied to equatorial
Pacific surface cooling, Nature, 501, 403–407, https://doi.org/10.1038/nature12534, 2013.
Kosaka, Y., Takaya, Y., and Kamae, Y.: The Indo-western Pacific Ocean capacitor
effect, in: Tropical and Extratropical Air-Sea Interactions, Elsevier, Amsterdam, 141–169, 2021.
Koslow, J. A., Pesant, S., Feng, M., Pearce, A., Fearns, P., Moore, T.,
Matear, R., and Waite, A.: The effect of the Leeuwin Current on phytoplankton
biomass and production off Southwestern Australia, J. Geophys. Res.-Oceans, 113, C07050,
https://doi.org/10.1029/2007JC004102, 2008.
Krishnamohan, K. S., Vialard, J., Lengaigne, M., Masson, S., Samson, G.,
Pous, S., Neetu, S., Durand, F., Shenoi, S. S. C., and Madec, G.: Is there an
effect of Bay of Bengal salinity on the northern Indian Ocean climatological
rainfall?, Deep-Sea Res. Pt. II, 166, 19–33,
https://doi.org/10.1016/j.dsr2.2019.04.003, 2019.
Krishnamurthy, L. and Krishnamurthy, V.: Decadal and interannual
variability of the Indian Ocean SST. Clim. Dynam., 46, 57–70, 2016.
Krishnaswamy, J., Vaidyanathan, S., Rajagopalan, B., Bonell, M., Sankaran, M., Bhalla, R. S., and Badiger, S.: Non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain events, Clim. Dynam., 45, 175–184, https://doi.org/10.1007/s00382-014-2288-0, 2015.
Krug, M. and Tournadre, J. : Satellite observations of an annual cycle in
the Agulhas Current, Geophys. Res. Lett., 39, L15607, https://doi.org/10.1029/2012GL052335, 2012.
Krug, M., Swart, S., and Gula, J.: Submesoscale cyclones in the Agulhas current, Geophys. Res. Lett., 44, 346–354, https://doi.org/10.1002/2016GL071006, 2017.
Kubokawa, A.: Ventilated thermocline strongly affected by a deep mixed
layer: A theory for subtropical countercurrent. J. Phys. Oceanogr., 29,
1314–1333, https://doi.org/10.1175/1520-0485(1999)029<1314:VTSABA>2.0.CO;2, 1999.
Kubokawa, A. and Inui, T.: Subtropical countercurrent in an idealized ocean
GCM, J. Phys. Oceanogr., 29, 1303–1313, https://doi.org/10.1175/1520-0485(1999)029<1303:SCIAIO>2.0.CO;2, 1999.
Kumar, K. K., Rajagopalan, B., and Cane, M. A.: On the weakening
relationship between the Indian monsoon and ENSO,
Science,
284,
2156–2159, https://doi.org/10.1126/science.284.5423.2156, 1999.
Kumar, S. P., Madhupratap, M., Dileep Kumar, M., Gauns, M., Muraleedharan, P.
M., Sarma, V. V. S. S., and De Souza, S. N.: Physical control of primary
productivity on a seasonal scale in central and eastern Arabian Sea, Proc.
Indian Acad. Sci. Earth Planet. Sci., 109, 433–441, https://doi.org/10.1007/bf02708331, 2000.
Kumar, S. P., Muraleedharan, P. M., Prasad, T. G., Gauns, M., Ramaiah, N., De
Souza, S. N., Sardesai, S., and Madhupratap, M.: Why is the Bay of Bengal
less productive during summer monsoon compared to the Arabian Sea?, Geophys.
Res. Lett., 29, 2235, https://doi.org/10.1029/2002GL016013, 2002.
Kumar, S. P., Nuncio, M., Narvekar, J., Kumar, A., Sardesai, S., De Souza,
S. N., Gauns, M., Ramaiah, N., and Madhupratap, M.: Are eddies nature's
trigger to enhance biological productivity in the Bay of Bengal?, Geophys.
Res. Lett., 31, https://doi.org/10.1029/2003GL019274, 2004.
Kumar, S. P., Nuncio, M., Ramaiah, N., Sardesai, S., Narvekar, J., Fernandes,
V., and Paul, J. T.: Eddy-mediated biological productivity in the Bay of
Bengal during fall and spring intermonsoons, Deep-Sea Res. Pt. I, 514, 1619–1640, https://doi.org/10.1016/j.dsr.2007.06.002, 2007.
Kumar, S. P., David, T. D., Byju, P., Narvekar, J., Yoneyama, K., Nakatani, N., Ishida, A., Horii, T., Masumoto, Y., and Mizuno, K.: Bio‐physical coupling and ocean dynamics in the central equatorial Indian Ocean during 2006 Indian Ocean Dipole, Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL052609, 2012.
Kumar, P., Singh, A., Ramesh, R., and Nallathambi, T.: N2 Fixation in
the Eastern Arabian Sea: Probable Role of Heterotrophic Diazotrophs,
Front. Marine Sci., 4, 80, https://doi.org/10.3389/fmars.2017.00080, 2017.
Kundu, P. K. and McCreary, J. P.: On the dynamics of the throughflow from
the Pacific into the Indian Ocean, J. Phys. Oceanogr., 16, 2191–162198,
https://doi.org/10.1175/1520-0485(1986)016<2191:OTDOTT>2.0.CO;2, 1986.
Kunze, E., Firing, E., Hummon, J. M., Chereskin, T. K., and Thurnherr, A. M.: Global Abyssal Mixing Inferred from Lowered ADCP Shear and CTD Strain Profiles, J. Phys. Oceanogr., 36, 1553–1576, https://doi.org/10.1175/JPO2926.1, 2006.
Lakshmi, R. S., Chatterjee, A., Prakash, S., and Mathew, T.: Biophysical
interactions in driving the summer monsoon chlorophyll bloom off the Somalia
coast, J. Geophys. Res.-Oceans, 125, e2019JC015549,
https://doi.org/10.1029/2019JC015549, 2020.
Lambert, E., Le Bars, D., and de Ruijter, W. P. M.: The connection of the Indonesian Throughflow, South Indian Ocean Countercurrent and the Leeuwin Current, Ocean Sci., 12, 771–780, https://doi.org/10.5194/os-12-771-2016, 2016.
Lamont, T., Barlow, R. G., Morris, T., and van den Berg, M. A.:
Characterisation of mesoscale features and phytoplankton variability in the
Mozambique Channel, Deep-Sea Res. Pt. II, 100, 94–105,
https://doi.org/10.1016/j.dsr2.2013.10.019, 2014.
Latasa, M. and Bidigare, R. R.: A comparison of phytoplankton populations of
the Arabian Sea during the Spring Intermonsoon and Southwest Monsoon of 1995
as described by HPLC-analyzed pigments, Deep-Sea Res. Pt. II, 45, 2133–2170, https://doi.org/10.1016/S0967-0645(98)00066-6, 1998.
Lau, W. K.-M. and Waliser, D. E.: Intraseasonal Variability in the Atmosphere-Ocean Climate System, Springer, https://doi.org/10.1007/978-3-642-13914-7, 2012.
Lau, K.-M. and Wu, H. T.: Intrinsic coupled ocean–atmosphere modes of the Asian summer monsoon: A reassessment of monsoon–ENSO relationships, J. Climate, 14, 2880–2895, 2001.
Laurindo, L. C., Mariano, A. J., and Lumpkin, R.: An improved near-surface
velocity climatology for the global ocean from drifter observations, Deep-Sea
Res. Pt. I, 124, 73–92, https://doi.org/10.1016/j.dsr.2017.04.009, 2017.
Le Bars, D., Dijkstra, H. A., and De Ruijter, W. P. M.: Impact of the Indonesian Throughflow on Agulhas leakage, Ocean Sci., 9, 773–785, https://doi.org/10.5194/os-9-773-2013, 2013.
Le Bars, D., Durgadoo, J. V., Dijkstra, H. A., Biastoch, A., and De Ruijter, W. P. M.: An observed 20-year time series of Agulhas leakage, Ocean Sci., 10, 601–609, https://doi.org/10.5194/os-10-601-2014, 2014.
Lee, C. M., Jones, B. H., Brink, K. H., and Fischer, A. S.: The upper-ocean
response to monsoonal forcing in the Arabian Sea: Seasonal and spatial
variability, Deep-Sea Res. Pt. II, 47, 1177–1226,
https://doi.org/10.1016/S0967-0645(99)00141-1, 2000.
Lee, C. M., Jinadasa, S. U. P., Anutaliya, A., Centurioni, L. R., Fernando,
H. J. S., Hormann, V., Lankhorst, M., Rainville, L., Send, U., and
Wijesekera, H. W.: Collaborative observations of boundary currents, water
mass variability, and monsoon response in the southern Bay of Bengal,
Oceanography, 29, 102–111, https://doi.org/10.5670/oceanog.2016.43, 2016.
Lee, J. Y., Wang, B., Wheeler, M. C., Fu, X., Waliser, D. E., and Kang, I.
S.: Real-time multivariate indices for the boreal summer intraseasonal
oscillation over the Asian summer monsoon region, Clim. Dynam., 40,
493–509, https://doi.org/10.1007/s00382-012-1544-4, 2013.
Lee, S. K., Park, W., Baringer, M. O., Gordon, A. L., Huber, B., and Liu, Y.:
Pacific origin of the abrupt increase in Indian Ocean heat content during
the warming hiatus, Nat. Geosci., 8, 445–449, https://doi.org/10.1038/NGEO2438, 2015.
Lee, T.: Decadal weakening of the shallow overturning circulation in the
South Indian Ocean, Geophys. Res. Lett., 31, L18305, https://doi.org/10.1029/2004GL020884, 2004.
Lee, T. and McPhaden, M. J.: Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century, Geophys. Res. Lett., 35, L01605, https://doi.org/10.1029/2007GL032419, 2008.
Lee, T., Fournier, S., Gordon, A. L., and Sprintall, J.: Maritime Continent
water cycle regulates low-latitude chokepoint of global ocean circulation,
Nat. Commun., 10, 2103, https://doi.org/10.1038/s41467-019-10109-z, 2019.
Legeckis, R. and Cresswell, G.: Satellite observations of sea-surface
temperature fronts off the coast of western and southern Australia, Deep-Sea
Res. Pt. I, 28, 297–306, https://doi.org/10.1016/0198-0149(81)90069-8, 1981.
Levine, R. C. and Turner, A. G.: Dependence of Indian monsoon rainfall on moisture fluxes across the Arabian Sea and the impact of coupled model sea surface temperature biases, Clim. Dynam., 38, 2167–2190, https://doi.org/10.1007/s00382-011-1096-z, 2012.
Lewandowsky, S., Cowtan, K., Risbey, S., Mann, M., Steinman, B., Oreskes, N.,
and Rahmstorf, S.: The `pause' in global warming in historical context:
(II). Comparing models to observations, Environ. Res. Lett., 13, 123007, https://doi.org/10.1088/1748-9326/aaf372, 2018.
L'Hégaret, P., Beal, L. M., Elipot, S., and Laurindo, L.: Shallow cross‐equatorial gyres of the Indian Ocean driven by seasonally reversing monsoon winds, J. Geophys. Res.-Oceans, 123, 8902–8920, https://doi.org/10.1029/2018JC014553, 2018.
L'Heureux, M. L., Lee, S., and Lyon, B.: Recent multidecadal strengthening of the
Walker circulation across the tropical Pacific, Nat. Clim. Change, 3,
571–576, 2013.
Li, G., Xie, S., and Du, Y.: A robust but spurious pattern of climate change in
model projections over the tropical Indian Ocean, J. Climate, 29, 5589–5608,
2016.
Li, Y., Han, W., Ravichandran, M., Wang, W., Shinoda, T., and Lee, T.: Bay of
Bengal salinity stratification and Indian summer monsoon intraseasonal
oscillation: 1. Intraseasonal variability and causes, J. Geophys. Res.-Oceans, 122, 4291–4311, https://doi.org/10.1002/2017JC012691, 2017a.
Li, Y., Han, W., Wang, W., Ravichandran, M., Lee, T., and Shinoda, T.: Bay of
Bengal salinity stratification and Indian summer monsoon intraseasonal
oscillation: 2. Impact on SST and convection, J. Geophys. Res.-Oceans,
122, 4312–4328, https://doi.org/10.1002/2017JC012692, 2017b.
Li, Y., Han, W., Hu, A., Meehl, G. A., and Wang, F.: Multidecadal changes of
the upper Indian ocean heat content during 1965–2016, J. Climate, 31, 7863–7884,
https://doi.org/10.1175/JCLI-D-18-0116.1, 2018a.
Li, Y., Han, W., Wang, W., Zhang, L., and Ravichandran, M.: The Indian summer
monsoon intraseasonal oscillations in CFSv2 forecasts: Biases and importance
of improving air-sea interaction processes, J. Climate, 31, 5351–5370,
https://doi.org/10.1175/JCLI-D-17-0623.1, 2018b.
Lierheimer, L. J. and Banse, K.: Seasonal and interannual variability of phytoplankton pigment in the Laccadive (Lakshadweep) Sea as observed by the Coastal Zone Color Scanner, Proc. Indian Acad. Sci., 111, 163–185, 2002.
Liu, Q.-Y., Feng, M., Wang, D., and Wijffels, S.: Interannual variability of
the Indonesian Throughflow transport: A revisit based on 30 year expendable
bathythermograph data, J. Geophys. Res.-Oceans, 120, 8270–8282,
https://doi.org/10.1002/2015JC011351, 2015.
Llovel, W. and Lee, T.: Importance and origin of halosteric contribution to
sea level change in the southeast Indian Ocean during 2005–2013, Geophys.
Res. Lett., 42, 1148–1157, https://doi.org/10.1002/2014GL062611, 2015.
Longhurst, A.: A major seasonal phytoplankton bloom in the Madagascar Basin,
Deep-Sea Res. Pt. I, 48, 2413–2422, https://doi.org/10.1016/S0967-0637(01)00024-3,
2001.
Loschnigg, J., Meehl, G. A., Webster, P. J., Arblaster, J. M., and Compo, G. P.: The Asian monsoon, the tropospheric biennial oscillation, and the Indian Ocean zonal mode in the NCAR CSM, J. Climate, 16, 1617–1642, https://doi.org/10.1175/1520-0442(2003)016<1617:TAMTTB>2.0.CO;2, 2003.
Lotliker, A. A., Omand, M. M., Lucas, A. J., Laney, S. R., Mahadevan, A., and
Ravichandran, M.: Penetrative radiative flux in the Bay of Bengal,
Oceanography, 29, 214–221, https://doi.org/10.5670/oceanog.2016.53, 2016.
Lourey, M. J., Dunn, J. R., and Waring, J.: A mixed-layer nutrient
climatology of Leeuwin Current and Western Australian shelf waters: Seasonal
nutrient dynamics and biomass, J. Mar. Syst., 59, 25–51,
https://doi.org/10.1016/j.jmarsys.2005.10.001, 2006.
Lourey, M. J., Thompson, P. A., McLaughlin, M. J., Bonham, P., and Feng, M.:
Primary production and phytoplankton community structure during a winter
shelf-scale phytoplankton bloom off Western Australia, Mar. Biol., 160, 355–369,
https://doi.org/10.1007/s00227-012-2093-4, 2013.
Loveday, B. R., Durgadoo, J. V., Reason, C. J. C., Biastoch, A., and Penven,
P.: Decoupling of the Agulhas leakage from the Agulhas Current, J. Phys.
Oceanogr., 44, 1776–1797, https://doi.org/10.1175/JPO-D-13-093.1, 2014.
Lu, B. and Ren, H. L.: What caused the extreme Indian Ocean Dipole event in
2019?, Geophys. Res. Lett., 47, e2020GL087768, https://doi.org/10.1029/2020GL087768, 2020.
Lübbecke, J. F., Durgadoo, J. V., and Biastoch, A.: Contribution of
increased agulhas leakage to tropical Atlantic warming, J. Climate, 28, 9697–9706,
https://doi.org/10.1175/JCLI-D-15-0258.1, 2015.
Lucas, A. J., Shroyer, E. L., Wijesekera, H. W., Fernando, H. J. S., D'Asaro, E., Ravichandran, M., Jinadasa, S. U. P., MacKinnon, J. A., Nash, J. D., Sharma, R., Centurioni, L., Farrar, J. T., Weller, R., Pinkel, R., Mahadevan, A., Sengupta, D., and Tandon, A.: Mixing to monsoons: air-sea interactions in the Bay of Bengal, EOS, Transactions American Geophysical Union, 95, 269–270,
https://doi.org/10.1002/2014EO300001, 2014.
Lucas, A., Nash, J., Pinkel, R., MacKinnon, J., Tandon, A., Mahadevan, A.,
Omand, M., Freilich, M., Sengupta, D., Ravichandran, M., and Le Boyer, A.:
Adrift Upon a Salinity-Stratified Sea: A view of upper-ocean processes in
the Bay of Bengal during the Southwest Monsoon, Oceanography, 29, 134–145,
https://doi.org/10.5670/oceanog.2016.46, 2016.
Luis, A. J. and Kawamura, H.: Air-sea interaction, coastal circulation and
primary production in the eastern Arabian Sea: A review, J. Oceanogr., 60,
205–218, https://doi.org/10.1023/B:JOCE.0000038327.33559.34, 2004.
Lumpkin, R. and Speer, K.: Global ocean meridional overturning, J. Phys.
Oceanogr., 37, 2550–2562, https://doi.org/10.1175/JPO3130.1, 2007.
Lutjeharms, J. R. E.: The Agulhas Current, Springer: Berlin, Heidelbert, New
York, 2006.
Lutjeharms, J. R. E. and Machu, E.: An upwelling cell inshore of the East
Madagascar Current, Deep-Sea Res. Pt. I, 47, 2405–2411,
https://doi.org/10.1016/S0967-0637(00)00026-1, 2000.
Lutjeharms, J. R. E. and Van Ballegooyen, R. C.: The retroflection of the Agulhas Current, J. Phys. Oceanogr., 18, 1570–1583, 1988.
Ma, J., Feng, M., Sloyan, B. M., and Lan, J.: Pacific influences on the
meridional temperature transport of the Indian Ocean, J. Climate, 32, 1047–1061,
https://doi.org/10.1175/JCLI-D-18-0349.1, 2019.
Machu, E. and Garçon, V.: Phytoplankton seasonal distribution from sea
WiFS data in the Agulhas current system, J. Mar. Res., 59, 795–812,
https://doi.org/10.1357/002224001762674944, 2001.
MacKinnon, J., Nash, J., Alford, M., Lucas, A., Mickett, J., Shroyer, E., Waterhouse, A., Tandon, A., Sengupta, D., Mahadevan, A., Ravichandran, M., Pinkel, R., Rudnick, D., Whalen, C., Alberty, M., Lekha, J. S., Fine, E., Chaudhuri, D., and Wagner, G.: A Tale of Two Spicy Seas, Oceanography, 29, 50–61, https://doi.org/10.5670/oceanog.2016.38, 2016.
Madden, R. A. and Julian, P. R.: Detection of a 40–50 Day Oscillation in
the Zonal Wind in the Tropical Pacific, J. Atmos. Sci., 28, 702–708,
https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2,
1971.
Madden, R. A. and Julian, P. R.: Description of Global-Scale Circulation
Cells in the Tropics with a 40–50 Day Period, J. Atmos. Sci., 29, 1109–1123,
https://doi.org/10.1175/1520-0469(1972)029<1109:dogscc>2.0.co;2,
1972.
Madhupratap, M., Gauns, M., Ramaiah, N., Prasanna Kumar, S., Muraleedharan,
P. M., De Sousa, S. N., Sardessai, S., and Muraleedharan, U.: Biogeochemistry
of the Bay of Bengal: Physical, chemical and primary productivity
characteristics of the central and western Bay of Bengal during summer
monsoon 2001, Deep-Sea Res. Pt II, 50, 881–896,
https://doi.org/10.1016/S0967-0645(02)00611-2, 2003.
Maes, C., Grima, N., Blanke, B., Martinez, E., Paviet-Salomon, T., and Huck,
T.: A Surface “Superconvergence” Pathway Connecting the South Indian Ocean
to the Subtropical South Pacific Gyre, Geophys. Res. Lett., 45, 1915–1922,
https://doi.org/10.1002/2017GL076366, 2018.
Mahadevan, A.: Eddy effects on biogeochemistry, Nature, 506, 168–169,
https://doi.org/10.1038/nature13048, 2014.
Mahadevan, A., D'Asaro, E., Lee, C., and Perry, M. J.: Eddy-driven
stratification initiates North Atlantic spring phytoplankton blooms, Science,
80, 54–58, https://doi.org/10.1126/science.1218740, 2012.
Mahadevan, A., Paluszkiewicz, T., Ravichandran, M., Sengupta, D., and Tandon,
A.: Introduction to the Special Issue on the Bay of Bengal: From Monsoons to
Mixing, Oceanography, 29, 14–17, https://doi.org/10.5670/oceanog.2016.34, 2016a.
Mahadevan, A., Spiro Jaeger, G., Freilich, M., Omand, M., Shroyer, E., and
Sengupta, D.: Freshwater in the Bay of Bengal: Its Fate and Role in Air-Sea
Heat Exchange, Oceanography, 29, 72–81, https://doi.org/10.5670/oceanog.2016.40,
2016b.
Maher, N., England, M. H., Gupta, A. S., and Spence, P.: Role of Pacific trade winds in
driving ocean temperatures during the recent slowdown and projections under
a wind trend reversal, Clim. Dynam., 51, 321–336, https://doi.org/10.1007/s00382-017-3923-3, 2018.
Manatsa, D. and Behera, S. K.: On the epochal strengthening in the
relationship between rainfall of East Africa and IOD, J. Climate, 26,
5655–5673, https://doi.org/10.1175/JCLI-D-12-00568.1, 2013.
Manghnani, V., Morrison, J. M., Hopkins, T. S., and Böhm, E.: Advection
of upwelled waters in the form of plumes off Oman during the Southwest
Monsoon, Deep-Sea Res. Pt II, 45, 2027–2052,
https://doi.org/10.1016/S0967-0645(98)00062-9, 1998.
Marra, J., Dickey, T. D., Ho, C., Kinkade, C. S., Sigurdson, D. E., Weller,
R. A., and Barber, R. T.: Variability in primary production as observed from
moored sensors in the central Arabian Sea in 1995, Deep-Sea Res. Pt II, 45, 2253–2267, https://doi.org/10.1016/S0967-0645(98)00070-8, 1998.
Marsac, F. and Le Blanc, J.: Oceanographic changes during the 1997–1998 El
Niño in the Indian Ocean and their impact on the purse seine fishery,
IOTC Proc. no. 2, 1999.
Marin, M. and Feng, M.: Intra-annual variability of the North West Shelf of
Australia and its impact on the Holloway Current: Excitement and propagation
of coastally trapped waves, Cont. Shelf Res., 186, 88–103, https://doi.org/10.1016/j.csr.2019.08.001, 2019.
Marin, M., Feng, M., Phillips, H. E., and Bindoff, N. L.: A global,
multiproduct analysis of coastal marine heatwaves: distribution,
characteristics, and long-term trends, J. Geophys. Res.-Oceans, 126, e2020JC016708,
https://doi.org/10.1029/2020JC016708, 2021.
Marshall, A. G. and Hendon, H. H.: Impacts of the MJO in the Indian Ocean and
on the Western Australian coast, Clim. Dynam., 42, 579–595,
https://doi.org/10.1007/s00382-012-1643-2, 2014.
Marshall, A. G., Hendon, H. H., Feng, M., and Schiller, A.: Initiation and
amplification of the Ningaloo Niño, Clim. Dynam., 45, 2367–2385,
https://doi.org/10.1007/s00382-015-2477-5, 2015.
Martin, A. P. and Richards, K. J.: Mechanisms for vertical nutrient
transport within a North Atlantic mesoscale eddy, Deep-Sea Res. Pt II, 48, 757–773, https://doi.org/10.1016/S0967-0645(00)00096-5, 2001.
Masson, S., Menkes, C., Delecluse, P., and Boulanger, J.-P.: Impacts of salinity on the eastern Indian Ocean during the termination of the fall Wyrtki Jet, J. Geophys. Res., 108, 3067, https://doi.org/10.1029/2001JC000833, 2003.
Masumoto, Y. and Meyers, G.: Forced Rossby waves in the southern tropical
Indian Ocean, J. Geophys. Res.-Oceans, 103, 27589–27602, https://doi.org/10.1029/98JC02546, 1998.
Masumoto, Y., Hase, H., Kuroda, Y., Matsuura, H., and Takeuchi, K.:
Intraseasonal variability in the upper layer currents observed in the
eastern equatorial Indian Ocean, Geophys. Res. Lett., 32, L02607,
https://doi.org/10.1029/2004GL021896, 2005.
Matondkar, P. S. G., Gomes, H. D., Parab, S. G., Pednekar, S., and Goes, J. I.: Phytoplankton Diversity, Biomass and Production, in: The Mandovi and Zuari Estuaries, edited by: Shetye, S. R., Kumar, D., and Shankar, D., National Institute of Oceanography, Dona Paula, India, 2007.
Matthews, A. J., Singhruck, P., and Heywood, K. J.: Deep ocean impact of a
Madden-Julian oscillation observed by Argo floats, Science, 318,
1765–1769, https://doi.org/10.1126/science.1147312, 2007.
Matthews, A. J., Baranowski, D. B., Heywood, K. J., Flatau, P. J., and Schmidtko, S.: The surface diurnal warm layer in the Indian Ocean during CINDY/DYNAMO, J. Climate, 27, 9101–9122, https://doi.org/10.1175/JCLI-D-14-00222.1, 2014.
Maximenko, N., Niiler, P., Centurioni, L., Rio, M.-H., Melnichenko, O.,
Chambers, D., Zlotnicki, V., and Galperin, B.: Mean dynamic topography of the
ocean derived from satellite and drifting buoy data using three different
techniques, J. Atmos. Ocean. Tech. 26, 1910–1919, https://doi.org/10.1175/2009JTECHO672.1, 2009.
Mayer, M., Alonso Balmaseda, M., and Haimberger, L.: Unprecedented 2015/2016
Indo-Pacific Heat Transfer Speeds Up Tropical Pacific Heat Recharge,
Geophys. Res. Lett., 45, 3274–3284, https://doi.org/10.1002/2018GL077106, 2018.
McCreary, J. P.: Equatorial beams, J. Marine Res., 42, 395–430, https://doi.org/10.1357/002224084788502792, 1984.
McCreary, J. P., Fukamachi, Y., and Lu, P.: A nonlinear mechanism for
maintaining coastally trapped eastern boundary currents, J. Geophys. Res.,
97, 5677–5692, https://doi.org/10.1029/92JC00035, 1992.
McCreary, J. P., Kundu, P. K., and Molinari, R. L.: A numerical investigation
of dynamics, thermodynamics, and mixed layer processes in the Indian Ocean,
Prog. Oceanogr., 31, 181–224, 1993.
McCreary, J. P., Han, W., Shankar, D., and Shetye, S. R.: Dynamics of the East
India Coastal Current 2. Numerical solutions; J. Geophys. Res., 101,
13993–14010, 1996.
McCreary, J. P., Shetye, S. R., and Kundu, P. K.: Thermohaline forcing of
eastern boundary currents: With application to the circulation off the west
coast of Australia, J. Mar. Res., 44, 71–92, https://doi.org/10.1357/002224086788460184, 1986.
McCreary, J. P., Kohler, K. E., Hood, R. R., Smith, S., Kindle, J., Fischer,
A. S., and Weller, R. A.: Influences of diurnal and intraseasonal forcing on
mixed-layer and biological variability in the central Arabian Sea, J. Geophys. Res.-Oceans, 106, 7139–7155, https://doi.org/10.1029/2000jc900156, 2001.
McCreary, J. P., Murtugudde, R., Vialard, J., Vinayachandran, P. N., Wiggert,
J. D., Hood, R. R., Shankar, D., and Shetye, S.: Biophysical Processes in the
Indian Ocean, in: Indian Ocean Biogeochemical Processes and Ecological
Variability, edited by: Wiggert, J. D., Hood, R. R., Naqvi, S. A., Brink, K. H., and
Smith, S. L., American Geophysical Union, https://doi.org/10.1029/2008GM000768, 2009.
McCreary, J. P., Yu, Z., Hood, R. R., Vinayachandran P. N., Furue, R.,
Ishida, A., and Richards, K. J.: Dynamics of the Indian-Ocean oxygen minimum
zones, Prog. Oceanogr., 112, 15–37, 2013.
McDonagh, E. L., Bryden, H. L., King, B. A., and Sanders, R. J.: The
circulation of the Indian Ocean at 32∘ S, Prog. Oceanogr., 79,
20–36, 2008.
McGillicuddy, D. J., Anderson, L. A., Bates, N. R., Bibby, T., Buesseler, K.
O., Carlson, C. A., Davis, C. S., Ewart, C., Falkowski, P. G., Goldthwait,
S. A., Hansell, D. A., Jenkins, W. J., Johnson, R., Kosnyrev, V. K.,
Ledwell, J. R., Li, Q. P., Siegel, D. A., and Steinberg, D. K.: Eddy/Wind
interactions stimulate extraordinary mid-ocean plankton blooms, Science, 316, 1021–1026, https://doi.org/10.1126/science.1136256, 2007.
McPhaden, M. J.: Genesis and evolution of the 1997–98 El Niño, Science,
283, 950–954, 1999.
McPhaden, M. J. and Foltz, G. R.: Intraseasonal variations in the surface
layer heat balance of the central equatorial Indian Ocean: The importance of
zonal advection and vertical mixing, Geophys. Res. Lett., 40,
2737–2741, https://doi.org/10.1002/grl.50536, 2013.
McPhaden, M. J. and Nagura, M.: Indian Ocean Dipole interpreted in terms of
Recharge Oscillator theory, Clim. Dynam., 42, 1569–1586, https://doi.org/10.1007/s00382-013-1765-1,
2014.
McPhaden, M. J., Meyers, G., Ando, K., Masumoto, Y., Murty, V. S. N.,
Ravichandran, M., Syamsudin, F., Vialard, J., Yu, L., and Yu, W.: RAMA:
The Research Moored Array for African–Asian–Australian Monsoon Analysis
and Prediction, B. Am. Meteorol. Soc., 90,
459–480, 2009.
McPhaden, M. J., Wang, Y., and Ravichandran, M.: Volume transports of the
Wyrtki jets and their relationship to the Indian Ocean dipole, J. Geophys.
Res.-Oceans, 120, 5302–5317, 2015.
Meehl, G. A. and Arblaster, J. M.: Decadal variability of Asian-Australian monsoon-ENSO-TBO relationships, J. Climate, 24, 4925–4940, https://doi.org/10.1175/2011JCLI4015.1, 2011.
Menezes, V. V.: The structure and dynamics of the eastward flows of the
South Indian Ocean, PhD Thesis, University of Tasmania, 244 pp., available at: http://eprints.utas.edu.au/23392/ (last access: 7 November 2019), 2015.
Menezes, V. V., Phillips, H. E., Schiller, A., Domingues, C. M., and Bindoff,
N. L.: Salinity dominance on the Indian Ocean Eastern Gyral current, Geophys.
Res. Lett., 40, 5716–5721, https://doi.org/10.1002/2013GL057887, 2013.
Menezes, V. V., Phillips, H. E., Schiller, A., Bindoff, N. L., Domingues, C.
M., and Vianna, M. L.: South Indian Countercurrent and associated fronts, J.
Geophys. Res.-Oceans, 119, 6763–6791, https://doi.org/10.1002/2014JC010076, 2014a.
Menezes, V. V., Vianna, M. L., and Phillips, H. E.: Aquarius sea surface salinity in the South Indian Ocean: Revealing annual-period planetary waves, J. Geophys. Res.-Oceans, 119, 3883–3908, https://doi.org/10.1002/2014JC009935, 2014b.
Menezes, V. V., Phillips, H. E., Vianna, M. L., and Bindoff, N. L.:
Interannual variability of the South Indian Countercurrent, J. Geophys. Res.-Oceans, 121, 3465–3487, https://doi.org/10.1002/2015JC011417,
2016.
Menezes, V. V., Farrar, J. T., and Bower, A. S.: Evaporative Implications of Dry‐Air Outbreaks Over the Northern Red Sea, J. Geophys. Res.-Atmos., 124, 4829–4861,
https://doi.org/10.1029/2018JD028853, 2019.
Merle, J., Rotschi, H., and Voituriez, B.: Zonal circulation in the tropical
western South Pacific at 170∘ E. Bull. Japan Soc. Fish. Oceanogr.,
Special Issue (Prof. Uda's Commemorative Papers), 91–98, 1969.
Meuleners, M. J., Pattiaratchi, C. B., and Ivey, G. N.: Numerical modelling of
the mean flow characteristics of the Leeuwin Current System, Deep-Sea Res.
Pt. II, 54, 837–858, https://doi.org/10.1016/j.dsr2.2007.02.003, 2007.
Meuleners, M. J., Ivey, G. N., and Pattiaratchi, C. B.: A numerical study of
the eddying characteristics of the Leeuwin Current System, Deep-Sea Res. Pt. I,
55, 261–276, https://doi.org/10.1016/j.dsr.2007.12.004,
2008.
Meyers, G.: Variation of Indonesian throughflow and the El Niño Southern
Oscillation, J. Geophys. Res., 101, 12255–12263,
https://doi.org/10.1029/95JC03729, 1996.
Meyers, G., Bailey, R. J., and Worby, A. P.: Geostrophic transport
of Indonesian Throughflow, Deep-Sea Res. Pt. I, 42, 1163–1174, 1995.
Miyama, T., McCreary, J. P., Jensen, T. G., Loschnigg, J. L., Godfrey, S., and
Ishida, A.: Structure and dynamics of the Indian-Ocean cross-equatorial
cell, Deep-Sea Res. Pt. II, 50, 2023–2047, https://doi.org/10.1016/S0967-0645(03)00044-4, 2003.
Miyama, T., McCreary, J. P., Sengupta, D., and Senan, R.: Dynamics of biweekly
oscillations in the equatorial Indian Ocean, J. Phys. Oceanogr., 36,
827–846, https://doi.org/10.1175/JPO2897.1, 2006.
Moore, D. W.: Planetary-gravity waves in an equatorial ocean, PhD Thesis, Harvard Univ., Cambridge, Mass., 207 pp., 1968.
Moore, T. S., Matear, R. J., Marra, J., and Clementson, L.: Phytoplankton
variability off the Western Australian Coast: Mesoscale eddies and their
role in cross-shelf exchange, Deep-Sea Res. Pt II, 54, 943–960,
https://doi.org/10.1016/j.dsr2.2007.02.006, 2007.
Morel, A. and Antoine, D.: Heating Rate within the Upper Ocean in Relation
to its Bio-optical State, J. Phys. Oceanogr., 24, 1652–1665,
https://doi.org/10.1175/1520-0485(1994)024<1652:HRWTUO>2.0.CO;2,
1994.
Morioka, Y., Tozuka, T., and Yamagata, T.: Climate variability in the
southern Indian Ocean as revealed by self-organizing maps, Clim. Dynam.,
https://doi.org/10.1007/s00382-010-0843-x, 2010.
Morioka, Y., Tozuka, T., Masson, S., Terray, P., Luo, J. J., and Yamagata,
T.: Subtropical dipole modes simulated in a coupled general circulation
model, J. Climate, 25, 4029–4047, https://doi.org/10.1175/JCLI-D-11-00396.1, 2012.
Moum, J. N. and Nash, J. D.: Mixing Measurements on an Equatorial Ocean
Mooring, J. Atmos. Ocean. Tech., 26, 317–336, https://doi.org/10.1175/2008jtecho617.1, 2009.
Moum, J. N., de Szoeke, S. P., Smyth, W. D., Edson, J. B., DeWitt, H. L.,
Moulin, A. J., Thompson, E. J., Zappa, C. J., Rutledge, S. A., Johnson, R.
H., and Fairall, C. W.: Air–Sea Interactions from Westerly Wind Bursts
During the November 2011 MJO in the Indian Ocean, B. Am. Meteorol. Soc.,
95, 1185–1199, https://doi.org/10.1175/BAMS-D-12-00225.1, 2014.
Moum, J. N., Pujiana, K., Lien, R. C., and Smyth, W. D.: Ocean feedback to
pulses of the Madden-Julian Oscillation in the equatorial Indian Ocean, Nat.
Commun., 7, 1–7, https://doi.org/10.1038/ncomms13203, 2016.
Mukherjee, A., Shankar, D., Fernando, V., Amol, P., Aparna, S. G., Fernandes, R., Michael, G. S., Khalap, S. T., Satelkar, N. P., Agarvadekar, Y., Gaonkar, M. G., Tari, A. P., Kankonkar, A., and Vernekar, S.: Observed seasonal and
intraseasonal variability of the East India Coastal Current on the
continental slope, J. Earth Syst. Sci., 123, 1197–1232, https://doi.org/10.1007/s12040-014-0471-7, 2014.
Mukherjee, A., Shankar, D., Chatterjee, A., and Vinayachandran, P. N.:
Numerical simulation of the observed near surface East India Coastal Current
on the continental slope, Clim. Dynam., 50, 3949–3980,
https://doi.org/10.1007/s00382-017-3856-x, 2018.
Mukherjee, A., Chatterjee, A., and Francis, P.: Role of Andaman and Nicobar Islands in eddy formation along western boundary of the Bay of Bengal, Sci. Rep.-UK, 9, 10152, https://doi.org/10.1038/s41598-019-46542-9, 2019.
Mukhopadhyay, S. Shankar, D., Aparna, S. G., Mukherjee, A., Fernando, V.,
Kankonkar, A., Khalap, S. T., Satelkar, N. P., Gaonkar, M. G., Tari, A. P.,
Khedekar, R. R., and Ghatkar, S.: Observed variability of the East India Coastal
Current on the continental slope during 2009–2018, J. Earth Syst. Sci., 129, 77,
https://doi.org/10.1007/s12040-020-1346-8, 2020.
Mulholland, M. R., Bernhardt, P. W., Ozmon, I., Procise, L. A., Garrett, M.,
O'Neil, J. M., Heil, C. A., and Bronk, D. A.: Contribution of diazotrophy to
nitrogen inputs supporting Karenia brevis blooms in the Gulf of Mexico,
Harmful Algae, 38, 20–29, https://doi.org/10.1016/j.hal.2014.04.004, 2014.
Muraleedharan, K. R., Jasmine, P., Achuthankutty, C. T., Revichandran, C.,
Dinesh Kumar, P. K., Anand, P., and Rejomon, G.: Influence of basin-scale and
mesoscale physical processes on biological productivity in the Bay of Bengal
during the summer monsoon, Prog. Oceanogr., 72, 364–383,
https://doi.org/10.1016/j.pocean.2006.09.012, 2007.
Murtugudde, R. and Busalacchi, A. J.: Interannual variability of the
dynamics and thermodynamics of the tropical Indian Ocean, J. Climate, 12, 2300–2326,
https://doi.org/10.1175/1520-0442(1999)012<2300:ivotda>2.0.co;2,
1999.
Murtugudde, R., McCreary, J. P., and Busalacchi, A. J.: Oceanic processes
associated with anomalous events in the Indian Ocean with relevance to
1997–1998, J. Geophys. Res.-Oceans, 105, 3295–3306,
https://doi.org/10.1029/1999JC900294, 2000.
Murtugudde, R., Beauchamp, J., McClain, C. R., Lewis, M., and Busalacchi, A.
J.: Effects of penetrative radiation of the upper tropical ocean
circulation, J. Climate, 15, 470–486,
https://doi.org/10.1175/1520-0442(2002)015<0470:EOPROT>2.0.CO;2,
2002.
Murty, V. S. N., Sarma, Y. V. B., Rao, D. P., and Murty, C. S.: Water characteristics, mixing and circulation in the Bay of Bengal during southwest monsoon, J. Marine Res., 50, 207–228, https://doi.org/10.1357/002224092784797700, 1992.
Murty, V. S. N., Gupta, G. V. M., Sarma, V. V., Rao, B. P., Jyothi, D.,
Shastri, P. N. M., and Supraveena, Y.: Effect of vertical stability and
circulation on the depth of the chlorophyll maximum in the Bay of Bengal
during May-June, 1996, Deep-Sea Res. Pt. I, 47, 859–873,
https://doi.org/10.1016/S0967-0637(99)00071-0, 2000.
Nagura, M. and McPhaden, M. J.: Wyrtki jet dynamics: Seasonal variability,
J. Geophys. Res.-Oceans, 115, 1–17, 2010a.
Nagura, M. and McPhaden, M. J.: Dynamics of zonal current variations
associated with the Indian Ocean dipole, J. Geophys. Res.-Oceans, 115,
1–12, 2010b.
Nagura, M. and McPhaden, M. J.: The dynamics of wind-driven intraseasonal
variability in the equatorial Indian Ocean, J. Geophys. Res.-Oceans, 117,
1–16, https://doi.org/10.1029/2011JC007405, 2012.
Nagura, M. and McPhaden, M. J.: Zonal momentum budget along the equator in
the Indian Ocean from a high resolution ocean general circulation model, J. Geophys. Res.,
119, 4444–4461, https://doi.org/10.1002/2014JC009895, 2014.
Nagura, M. and McPhaden, M. J.: Zonal Propagation of Near-Surface Zonal
Currents in Relation to Surface Wind Forcing in the Equatorial Indian Ocean,
J. Phys. Ocean., 46, 3623–3638, https://doi.org/10.1175/JPO-D-16-0157.1, 2016.
Nagura, M. and McPhaden, M. J.: The Shallow Overturning Circulation in the
Indian Ocean, J. Phys. Oceanogr., 48, 413–434, 2018.
Nagura, M. and McPhaden, M. J.: Interannual variability in sea surface
height at Southern midlatitudes of the Indian Ocean, J. Phys. Oceanogr., 51,
1595–1609, 2021.
Naqvi, S. W., Narvekar, P. V., and Desa, E.: Coastal biogeochemical processes
in the North Indian Ocean (14, S-W), The Sea, 14, 723–780, 2006.
Naqvi, S. W. A., Jayakumar, D. A., Narvekar, P. V., Naik, H., Sarma, V. V.
S. S., D'Souza, W., Joseph, S., and George, M. D.: Increased marine
production of N2O due to intensifying anoxia on the Indian continental
shelf, Nature, 408, 346–349, https://doi.org/10.1038/35042551, 2000.
Narayanasetti, S., Swapna, P., Ashok, K., Jadhav, J., and Krishnan, R.:
Changes in biological productivity associated with Ningaloo
Niño/Niña events in the southern subtropical Indian Ocean in recent
decades, Sci. Rep.-UK, 6, 27467, https://doi.org/10.1038/srep27467,
2016.
Nethery, D. and Shankar, D.: Vertical propagation of baroclinic Kelvin
waves along the west coast of India, J. Earth. Syst. Sci., 116, 331–339,
https://doi.org/10.1007/s12040-007-0030-6, 2007.
Nicholson, S. E.: Long-term variability of the East African “short rains”
and its links to large-scale factors, Int. J. Climatol., 35, 3979–3990,
https://doi.org/10.1002/joc.4259, 2015.
Nidheesh, A. G., Lengaigne, M., Vialard, J., Unnikrishnan, A. S., and Dayan, H.: Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean, Clim. Dynam., 41, 381–402, 2013.
Nieves, V., Willis, J. K., and Patzert, W. C.: Recent hiatus caused by
decadal shift in Indo-Pacific heating, Science, 349, 532–535, https://doi.org/10.1126/science.aaa4521, 2015.
Niiler, P. P., Maximenko, N. A., and McWilliams, J. C.: Dynamically balanced
absolute sea level of the global ocean derived from near-surface velocity
observations, Geophys. Res. Lett., 30, 2164, https://doi.org/10.1029/2003GL018628, 2003.
Nof, D. and Olson, D. B.: How do western abyssal currents cross the
equator?, Deep-Sea Res. Pt. I, 40, 235–255, https://doi.org/10.1016/0967-0637(93)90002-K, 1993.
Nyadjro, E. and McPhaden, M. J.: Variability of zonal currents in the eastern
equatorial Indian Ocean on seasonal to interannual time scales, J. Geophys. Res., 119,
7969–7986, https://doi.org/10.1002/2014JC010380, 2014.
Nyadjro, E. S. and Subrahmanyam, B.: SMOS salinity mission reveals salinity structure of the Indian Ocean Dipole, IEEE Geosci. Remote Sens. Lett., 11, 1564–1568, https://doi.org/10.1109/LGRS.2014.2301594, 2014.
Nyadjro, E. S., Subrahmanyam, B., and Shriver, J. F.: Seasonal Variability of Salt Transport During the Indian Ocean Monsoons, J. Geophys. Res.-Oceans, 116, C08036, https://doi.org/10.1029/2011JC006993, 2011.
Nyadjro, E. S., Subrahmanyam, B., Murty, V. S. N., and Shriver, J. F.: The role of salinity on the dynamics of the Arabian Sea mini warm pool, J. Geophys. Res., 117, C09002, https://doi.org/10.1029/2012JC007978, 2012.
Nyadjro, E. S., Subrahmanyam, B., and Giese, B. S.: Variability of Salt Flux in the Indian Ocean During 1960–2008, Remote Sens. Environ., 134, 175–193, https://doi.org/10.1016/j.rse.2013.03.005, 2013.
Ogata, T. and Masumoto, Y.: Interannual modulation and its dynamics of the
mesoscale eddy variability in the southeastern tropical Indian Ocean, J. Geophys. Res., 116,
C05005, https://doi.org/10.1029/2010JC006490, 2011.
Ogata, T. and Xie, S.-P.: Semiannual cycle in zonal wind over the
equatorial Indian Ocean, J. Climate, 24, 6471–6485,
https://doi.org/10.1175/2011JCLI4243.1, 2011.
Oke, P. R., Griffin, D. A., Rykova, T., and de Oliveira, H. B.: Ocean
circulation in the Great Australian Bight in an eddy-resolving ocean
reanalysis: The eddy field, seasonal and interannual variability, Deep-Sea
Res. Pt. II, 157–158, 11–26,
https://doi.org/10.1016/j.dsr2.2018.09.012, 2018.
Oliver, E. C., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A.,
Alexander, L. V., Benthuysen, J. A., Feng, M., Sen Gupta, A., Hobday, A. J.,
Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Straub, S. C.,
and Wernberg, T.: Longer and more frequent marine heatwaves over the past
century, Nat. Commun., 9, 1324,
https://doi.org/10.1038/s41467-018-03732-9, 2018.
Oliver, E. C. J. and Thompson, K. R.: Madden-Julian oscillation and sea
level: Local and remote forcing, J. Geophys. Res.-Oceans, 115, 1–15,
https://doi.org/10.1029/2009JC005337, 2010.
Oliver, E. C. J., Herzfeld, M., and Holbrook, N. J.: Modelling the shelf
circulation offeastern Tasmania, Cont. Shelf Res., 130, 14–33, 2016.
Orsi, A. H., Whitworth, T., and Nowlin, W. D.: On the meridional extent and fronts of the Antarctic Circumpolar Current, Deep-Sea Res., 42, 641–673, https://doi.org/10.1016/0967-0637(95)00021-W, 1995.
Palastanga, V., van Leeuwen, P. J., Schouten, M. W., and de Ruijter, W. P.
M.: Flow structure and variability in the subtropical Indian Ocean:
instability of the South Indian Ocean Countercurrent, J. Geophys. Res., 112,
C01001, https://doi.org/10.1029/2005JC003395, 2007.
Palmer, T. N. and Mansfield, D. A.: Response of two atmospheric general circulation models to sea-surface temperature anomalies in the tropical east and west Pacific, Nature, 310, 483–488, 1984.
Papa, F., Durand, F., Rossow, W. B., A. Rahman, and Bala, S. K.: Satellite altimeter-derived monthly discharge of the Ganga-Brahmaputra River and its seasonal to interannual variations from 1993 to 2008, J. Geophys. Res., 115, C12013, https://doi.org/10.1029/2009JC006075, 2010.
Papa, F., Bala, S. K., Pandey, R. K., Durand, F., Gopalakrishna, V. V., Rahman, A., and Rossow, W. B.: Ganga-Brahmaputra river discharge from Jason-2 radar altimetry: An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal, J. Geophys. Res.-Oceans, 117, https://doi.org/10.1029/2012JC008158, 2012.
Parab, S. G., Prabhu Matondkar, S. G., Gomes, H. do R., and Goes, J. I.:
Monsoon driven changes in phytoplankton populations in the eastern Arabian
Sea as revealed by microscopy and HPLC pigment analysis, Cont. Shelf Res.,
26, 2538–2558, https://doi.org/10.1016/j.csr.2006.08.004, 2006.
Paris, M. L., Subrahmanyam, B., Trott, C. B., and Murty, V. S. N.: Influence
of ENSO Events on the Agulhas Leakage Region, Remote Sens. Earth Syst. Sci., 1, 79–88,
https://doi.org/10.1007/s41976-018-0007-z, 2018.
Paterson, H. L., Feng, M., Waite, A. M., Gomis, D., Beckley, L. E.,
Holliday, D., and Thompson, P. A.: Physical and chemical signatures of a
developing anticyclonic eddy in the Leeuwin Current, eastern Indian Ocean,
J. Geophys. Res.-Oceans, 113, C07049, https://doi.org/10.1029/2007JC004707, 2008.
Paterson, J. S., Nayar, S., Mitchell, J. G., and Seuront, L.:
Population-specific shifts in viral and microbial abundance within a cryptic
upwelling, J. Mar. Syst., 113–114, 52–61, https://doi.org/10.1016/j.jmarsys.2012.12.009, 2013.
Pathak, A., Ghosh, S., Kumar, P., and Murtugudde, R.: Role of Oceanic and Terrestrial Atmospheric Moisture Sources in Intraseasonal Variability of Indian Summer Monsoon Rainfall, Sci. Rep.-UK, 7, 12729, https://doi.org/10.1038/s41598-017-13115-7, 2017.
Pearce, A., Lenanton, R., Jackson, G., Moore, J., Feng, M., and Gaughan, D.:
The “marine heat wave” off Western Australia during the summer of 2010/11,
Fisheries Research Report No. 222, Department of Fisheries, Western
Australia, 40 pp., available at: http://fish.wa.gov.au/Documents/research_reports/frr222.pdf (last access: 22 October 2021), 2011.
Pearce, A. F. and Griffiths, R. W.: The mesoscale structure of the Leeuwin
Current: A comparison of laboratory model and satellite images, J. Geophys.
Res., 96, 16730–16757, https://doi.org/10.1029/91JC01712, 1991.
Peatman, S. C. and Klingaman, N. P.: The Indian summer monsoon in MetUM-GOML2.0: effects of air–sea coupling and resolution, Geosci. Model Dev., 11, 4693–4709, https://doi.org/10.5194/gmd-11-4693-2018, 2018.
Pham, H. T. and Sarkar, S.: The role of turbulence in strong submesoscale fronts of the Bay of Bengal, Deep-Sea Res. Pt. II, 168, 104644, https://doi.org/10.1016/j.dsr2.2019.104644, 2019.
Philander, S. G. H. and Yoon, J.-H.: Eastern boundary currents and coastal
upwelling, J. Phys. Oceanogr., 12, 862–879, https://doi.org/10.1175/1520-0485(1982)012<0862:EBCACU>2.0.CO;2, 1982.
Phillips, H. E., Wijffels, S. E., and Feng, M.: Interannual variability in the
freshwater content of the Indonesian-Australian Basin, Geophys. Res. Lett., 32, L03603,
https://doi.org/10.1029/2004GL021755, 2005.
Pirro, A., Fernando, H. J. S., Wijesekera, H. W., Jensen, T. G., Centurioni,
L. R., and Jinadasa, S. U. P.: Eddies and currents in the Bay of Bengal
during summer monsoons, Deep-Sea Res. Pt. II, 172, 104728,
https://doi.org/10.1016/j.dsr2.2019.104728, 2020a.
Pirro, A., Wijesekera, H. W., Jarosz, E., and Fernando, H. J. S.: Dynamics of
intraseasonal oscillations in the Bay of Bengal during summer monsoons
captured by mooring observations, Deep-Sea Res. Pt. II, 172, 104718,
https://doi.org/10.1016/j.dsr2.2019.104718, 2020b.
Pokhrel, S., Chaudhari, H. S., Saha, S. K., Dhakate, A., Yadav, R. K., Salunke, K., Mahapatra, S., and Rao, S. A.: ENSO, IOD and Indian summer monsoon in NCEP climate forecast system, Clim. Dynam., 39, 2143–2165, https://doi.org/10.1007/s00382-012-1349-5, 2012.
Poulton, A. J., Stinchcombe, M. C., and Quartly, G. D.: High numbers of
Trichodesmium and diazotrophic diatoms in the southwest Indian Ocean,
Geophys. Res. Lett., 36, L15610, https://doi.org/10.1029/2009GL039719, 2009.
Prerna, S., Chatterjee, A., Mukherjee, A., Ravichandran, M., and Shenoi, S.
S. C.: Wyrtki Jets: Role of intraseasonal forcing, J. Earth Syst. Sci., 128, 21,
https://doi.org/10.1007/s12040-018-1042-0, 2019.
Pujiana, K. and McPhaden, M. J.: Ocean's response to the convectively coupled
Kelvin waves in the eastern equatorial Indian Ocean, J. Geophys. Res., 123, 5727–5741, https://doi.org/10.1029/2018JC013858, 2018.
Pujiana, K. and McPhaden, M. J.: Intraseasonal Kelvin Waves in the
Equatorial Indian Ocean and Their Propagation into the Indonesian Seas, J.
Geophys. Res.-Oceans, 125, 1–18, https://doi.org/10.1029/2019JC015839, 2020.
Pujiana, K. and McPhaden, M. J.: Biweekly mixed Rossby-Gravity waves in the
equatorial Indian Ocean, J. Geophys. Res., 126, e2020JC016840, https://doi.org/10.1029/2020JC016840, 2021.
Pujiana, K., Gordon, A. L., and Sprintall, J.: Intraseasonal Kelvin wave in
Makassar strait, J. Geophys. Res.-Oceans, 118, 2023–2034, https://doi.org/10.1002/jgrc.20069, 2013.
Pujiana, K., McPhaden, M. J., Gordon, A. L., and Napitu, A. M.:
Unprecedented response of Indonesian throughflow to anomalous Indo-Pacific
climatic forcing in 2016, J. Geophys. Res., 124, 3737–3754, https://doi.org/10.1029/2018JC014574, 2019.
Purkey, S. G. and Johnson, G. C.: Global contraction of Antarctic Bottom
Water between the 1980s and 2000s, J. Climate, 25, 5830–5844, https://doi.org/10.1175/JCLI-D-11-00612.1,
2012.
Qiu, B. and Chen, S.: Seasonal modulations in the eddy field of the South
Pacific Ocean, J. Phys. Oceanogr., 34, 1515–1527, https://doi.org/10.1175/1520-0485(2004)034<1515:SMITEF>2.0.CO;2, 2004.
Qiu, Y., Li, L., and Yu, W.: Behavior of the Wyrtki jet observed with
surface drifting buoys and satellite altimeter, Geophys. Res. Lett., 36,
L18607, https://doi.org/10.1029/2009GL039120, 2009.
Qiu, Y., Han, W., Lin, X., West, J., Li, Y., Xing, W., Zhang, X.,
Arulananthan, K., and Guo, X.: Upper-ocean response to the super tropical
cyclone Phailin (2013) over the freshwater region of the Bay of Bengal, J.
Phys. Oceanogr., 49, 1201–1228, https://doi.org/10.1175/JPO-D-18-0228.1, 2019.
Qu, T., Fukumori, I., and Fine, R. A.: Spin-Up of the Southern Hemisphere
Super Gyre, J. Geophys. Res.-Oceans, 82, 217–229, https://doi.org/10.1029/2018JC014391, 2019.
Quadfasel, D. and Cresswell, G. R.: A note on the seasonal variability of
the South Java Current, J. Geophys. Res., 97, 3685–3688, https://doi.org/10.1029/91JC03056, 1992.
Quartly, G. D. and Srokosz, M. A.: Seasonal variations in the region of the Agulhas retroflection: studies with Geosat and FRAM, J. Phys. Oceanogr., 23, 2107–2124, 1993.
Quartly, G. D. and Srokosz, M. A.: Eddies in the southern Mozambique
Channel, Deep-Sea Res. Pt. II, 51, 69–83,
https://doi.org/10.1016/j.dsr2.2003.03.001, 2004.
Rahaman, H., Bharath Raj, G. N., and Ravichandran, M.: Coupled
Ocean–Atmosphere Summer Intraseasonal Oscillation over the Bay of Bengal,
Pure Appl. Geophys., 176, 5415–5429, https://doi.org/10.1007/s00024-019-02275-4, 2019.
Raj, R. P., Peter, B. N., and Pushpadas, D.: Oceanic and atmospheric
influences on the variability of phytoplankton bloom in the Southwestern
Indian Ocean, J. Mar. Syst., 82, 217–229, https://doi.org/10.1016/j.jmarsys.2010.05.009, 2010.
Ramachandran, S. and Tandon, A.: Generation of Submesoscale Temperature Inversions Below Salinity Fronts in the Bay of Bengal, J. Geophys. Res.-Oceans, 125, e2020JC016278, https://doi.org/10/ghmsfn, 2020.
Ramachandran, S., Tandon, A., Mackinnon, J., Lucas, A. J., Pinkel, R., Waterhouse, A. F., Nash, J., Shroyer, E., Mahadevan, A., Weller, R. A., and Farrar, J. T.: Submesoscale processes at shallow, salinity fronts in the Bay of Bengal: Observations during the winter monsoon, J. Phys. Oceanogr., 48, 479–509, https://doi.org/10.1175/JPO-D-16-0283.1, 2018.
Rao, R. R. and Sivakumar, R.: Seasonal variability of sea surface salinity
and salt budget of the mixed layer of the north Indian Ocean, J. Geophys.
Res., 108, 3009, https://doi.org/10.1029/2001JC000907, 2003.
Rao, R. R., Molinari, R. L., and Festa, J. F.: Evolution of the
climatological near-surface thermal structure of the tropical Indian Ocean.
1. Description of mean monthly mixed layer depth, and sea surface
temperature, surface current, and surface meteorological fields, J. Geophys.
Res., 94, 10801–10815, https://doi.org/10.1029/jc094ic08p10801, 1989.
Rasmusson, E. M. and Carpenter, T. H.: The Relationship between Eastern Equatorial Pacific Sea Surface Temperature and Rainfall over India and Sri Lanka, Mon. Weather Rev., 111, 517–528, 1983.
Rathore, S., Bindoff, N. L., Phillips, H. E., and Feng, M.: Recent
hemispheric asymmetry in global ocean warming induced by climate change and
internal variability, Nat. Commun., 11, 2008, https://doi.org/10.1038/s41467-020-15754-3, 2020.
Ratna, S. B., Cherchi, A., Osborn, T. J., Joshi, M., and Uppara, U.: The
extreme positive Indian Ocean Dipole of 2019 and associated Indian summer
monsoon rainfall response, Geophys. Res. Lett., 48, e2020GL091497,
https://doi.org/10.1029/2020GL091497, 2021.
Ravichandran, M., Girishkumar, M. S., and Riser, S.: Observed variability of
chlorophyll-a using Argo profiling floats in the southeastern Arabian Sea,
Deep-Sea Res. Pt. I, 65, 15–25, https://doi.org/10.1016/j.dsr.2012.03.003, 2012.
Reason, C. J. C.: Subtropical Indian Ocean SST dipole events and southern
African rainfall, Geophys. Res. Lett., 28, 2225–2227, https://doi.org/10.1029/2000GL012735, 2001.
Reason, C. J. C.: Sensitivity of the southern African circulation to dipole
sea-surface-temperature patterns in the south Indian Ocean, Int. J.
Climatol., 22, 377–393, https://doi.org/10.1002/joc.744, 2002.
Reppin, J., Schott, F. A., Fischer, J., and Quadfasel, D.: Equatorial
currents and transports in the upper central Indian Ocean: Annual cycle and
interannual variability, J. Geophys. Res.-Oceans, 104, 15495–15514, https://doi.org/10.1029/1999jc900093,
1999.
Resplandy, L., Vialard, J., Lévy, M., Aumont, O., and Dandonneau, Y.:
Seasonal and intraseasonal biogeochemical variability in the thermocline
ridge of the southern tropical Indian Ocean, J. Geophys. Res.-Oceans, 114, C07024,
https://doi.org/10.1029/2008JC005246, 2009.
Ridgway, K. R. and Condie, S. A.: The 5500-km-long boundary flow off
western and southern Australia, J. Geophys. Res., 109, C04017, https://doi.org/10.1029/2003JC001921, 2004.
Ridgway, K. and Dunn, J. R.: Observational evidence for a Southern Hemisphere oceanic supergyre, Geophys. Res. Lett., 34, https://doi.org/10.1029/2007GL030392, 2007.
Ridgway, K. R. and Godfrey, J.: The source of the Leeuwin Current seasonality,
J. Geophys. Res., 120, 6843–6864, https://doi.org/10.1002/2015JC011049, 2015.
Risbey, J. S., Pook, M. J., McIntosh, P. C., Wheeler, M. C., and Hendon, H. H.: On the Remote Drivers of Rainfall Variability in Australia, Mon. Weather Rev., 137, 3233–3253, 2009.
Rixen, T., Cowie, G., Gaye, B., Goes, J., do Rosário Gomes, H., Hood, R. R., Lachkar, Z., Schmidt, H., Segschneider, J., and Singh, A.: Reviews and syntheses: Present, past, and future of the oxygen minimum zone in the northern Indian Ocean, Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, 2020.
Roberts, M. J., van der Lingen, C. D., Whittle, C., and van den Berg, M.: Shelf currents, lee-trapped and transient eddies on the inshore boundary of the Agulhas Current, South Africa: their relevance to the KwaZulu-Natal sardine run, Afr. J. Marine Sci., 32, 423–447, https://doi.org/10.2989/1814232X.2010.512655, 2010.
Roberts, M. J., Ternon, J. F., and Morris, T.: Interaction of dipole eddies
with the western continental slope of the Mozambique Channel, Deep-Sea Res.
Pt. II, 100, 54–67, https://doi.org/10.1016/j.dsr2.2013.10.016, 2014.
Robinson, J., Guillotreau, P., Jiménez-Toribio, R., Lantz, F., Nadzon,
L., Dorizo, J., Gerry, C., and Marsac, F.: Impacts of climate variability on
the tuna economy of Seychelles, Clim. Res., 43, 149–162, https://doi.org/10.3354/cr00890, 2010.
Rochford, D. J.: Seasonal interchange of high and low salinity surface
waters off south-west Australia, Technical Paper, Division of Fisheries and
Oceanography, CSIRO, Australia, available at:
http://hdl.handle.net/102.100.100/321788?index=1 (last access: 22 October 2021), 1969.
Roemmich, D., Gould, W. J., and Gilson, J.: 135 years of global ocean warming
between the Challenger expedition and the Argo Programme, Nat. Clim.
Change, 2, 425–428, 2012.
Roman-Stork, H. L., Subrahmanyam, B., and Trott, C. B.: Monitoring
intraseasonal oscillations in the Indian Ocean using satellite observations,
J. Geophys. Res.-Oceans, 125, e2019JC015891,
https://doi.org/10.1029/2019JC015891, 2020.
Ropelewski, C. F. and Halpert, M. S.: Global and Regional Scale Precipitation Patterns Associated with the El Nino/Southern Oscillation, Mon. Weather Rev., 115, 1606–1626,
https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2, 1987.
Rosell-Fieschi, M., Rintoul, S. R., Gourrion, J., and Pelegrí, J. L.:
Tasman Leakage of intermediate waters as inferred from Argo floats, Geophys.
Res. Lett., 40, 5456–5460, https://doi.org/10.1002/2013GL057797, 2013.
Roxy, M. and Tanimoto, Y.: Role of SST over the Indian Ocean in Influencing the Intraseasonal Variability of the Indian Summer Monsoon, J. Meteorol. Soc. Japan Ser. II, 85, 349–358, https://doi.org/10.2151/jmsj.85.349, 2007.
Roxy, M., Tanimoto, Y., Preethi, B., Terray, P., and Krishnan, R.:
Intraseasonal SST-precipitation relationship and its spatial variability
over the tropical summer monsoon region, Clim. Dynam., 41, 45–61,
https://doi.org/10.1007/s00382-012-1547-1, 2013.
Roxy, M. K., Ritika, K., Terray, P., and Masson, S.: The curious case of
Indian Ocean warming, J. Climate, 27, 8501–8509, https://doi.org/10.1175/JCLI-D-14-00471.1, 2014.
Roxy, M. K., Modi, A., Murtugudde, R., Valsala, V., Panickal, S., Prasanna
Kumar, S., Ravichandran, M., Vichi, M., and Lévy, M.: A reduction in
marine primary productivity driven by rapid warming over the tropical Indian
Ocean, Geophys. Res. Lett., 43, 826–833, https://doi.org/10.1002/2015GL066979, 2016.
Roxy, M. K., Dasgupta, P., McPhaden, M. J., Suematsu, T., Zhang, C., and Kim, D.:
Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle,
Nature, 575, 647–651, https://doi.org/10.1038/s41586-019-1764-4, 2019.
Rouault, M., Penven, P., and Pohl, B.: Warming in the Agulhas Current system
since the 1980's, Geophys. Res. Lett., 36, L12602, https://doi.org/10.1029/2009GL037987, 2009.
Rühs, S., Durgado, J. V., Behrens, E., and Biastoch, A.: Advective timescales and pathways of Agulhas Leakage, Geophys. Res. Lett., 40, 3997–4000,
https://doi.org/10.1002/grl.50782, 2013.
Rydbeck, A. V. and Jensen, T. G.: Oceanic impetus for convective onset of
the Madden-Julian oscillation in the western Indian ocean, J. Climate, 30,
4299–4316, https://doi.org/10.1175/JCLI-D-16-0595.1, 2017.
Rydbeck, A. V., Jensen, T. G., and Nyadjro, E. S.: Intraseasonal sea surface
warming in the western Indian Ocean by oceanic equatorial Rossby waves,
Geophys. Res. Lett., 44, 4224–4232, https://doi.org/10.1002/2017GL073331, 2017.
Sabeerali, C. T., Ramu Dandi, A., Dhakate, A., Salunke, K., Mahapatra, S.,
and Rao, S. A.: Simulation of boreal summer intraseasonal oscillations in
the latest CMIP5 coupled GCMs, J. Geophys. Res.-Atmos., 118, 4401–4420,
https://doi.org/10.1002/jgrd.50403, 2013.
Sabu, P., Subeesh, M. P., George, J. V., Anilkumar, N. P., and Ravichandran, M.: Enhanced subsurface mixing due
to near-inertial waves: observation from Seychelles-Chagos Thermocline
Ridge, Ocean Dynam., 71, 391–409,
https://doi.org/10.1007/s10236-020-01430-z, 2021.
Sahoo, D., Saxena, H., Tripathi, N., Khan, A., Rahaman, A., Kumar, S.,
Sudheer, A., and Singh, A.: Non-Redfieldian C:N:P ratio in the inorganic and
organic pools of the Bay of Bengal during the summer monsoon, Mar. Ecol.
Prog. Ser., 653, 41–55, https://doi.org/10.3354/meps13498, 2020.
Sahoo, D., Saxena, H., Nazirahmed, S., Kumar, S., Sudheer, A., Bhushan, R.,
Sahay, A., and Singh, A.: Role of eddies and N2 fixation in regulating
proportions in the Bay of Bengal, Biogeochemistry, 155, 413–429, https://doi.org/10.1007/s10533-021-00833-4, 2021.
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T.: A
dipole mode in the tropical Indian Ocean, Nature, 401, 360–363,
https://doi.org/10.1038/43854, 1999.
Saji, N. H., Xie, S.-P., and Tam, C.-Y.: Satellite observations of intense
intraseasonal cooling events in the tropical south Indian Ocean, Geophys.
Res. Lett., 33, L14704, https://doi.org/10.1029/2006GL026525, 2006.
Sanchez-Franks, A., Kent, E. C., Matthews, A. J., Webber, B. G. M., Peatman,
S. C., and Vinayachandran, P. N.: Intraseasonal variability of air-sea fluxes
over the Bay of Bengal during the Southwest Monsoon, J. Climate, 31, 7087–7109,
https://doi.org/10.1175/JCLI-D-17-0652.1, 2018.
Sanchez-Franks, A., Webber, B. G. M., King, B. A., Vinayachandran, P. N.,
Matthews, A. J., Sheehan, P. M. F., Behara, A., and Neema, C. P.: The
railroad switch effect of seasonally reversing currents on the Bay of Bengal
high salinity core, Geophys. Res. Lett., 46, 6005–6014, https://doi.org/10.1029/2019gl082208, 2019.
Sarkar, S., Pham, H. T., Ramachandran, S., Nash, J. D., Tandon, A., Buckley, J., Lotliker,
A. A., and Omand, M. M.: The interplay between submesoscale
instabilities and turbulence in the surface layer of the Bay of Bengal,
Oceanography, 29, 146–157, https://doi.org/10.5670/oceanog.2016.47, 2016.
Sarma, V. V. and Aswanikumar, V.: Subsurface chlorophyll maxima in the
north-western Bay of Bengal, J. Plankton Res., 13, 339–352,
https://doi.org/10.1093/plankt/13.2.339, 1991.
Sarojini, Y. and Sarma, N. S.: Vertical distribution of phytoplankton around Andaman and Nicobar Islands, Bay of Bengal, Indian J. Mar. Sci., 30, 65–69, 2001.
Sasamal, S. K., Panigrahy, R. C., and Misra, S.: Asterionella blooms in the
northwestern Bay of Bengal during 2004, Int. J. Remote Sens., 26, 3853–3858,
https://doi.org/10.1080/01431160500185391, 2005.
Sawant, S. and Madhupratap, M.: Seasonally and composition of phytoplankton
in the Arabian Sea, Curr. Sci., 71, 869–873, 1996.
Schloesser, F.: A dynamical model for the Leeuwin Undercurrent, J. Phys.
Oceanogr., 44, 1798–1810, https://doi.org/10.1175/JPO-D-13-0226.1, 2014.
Schmitz Jr., W. J.: On the interbasin-scale thermohaline circulation, Rev. Geophys., 33, 151–173, https://doi.org/10.1029/95RG00879, 1995.
Schott, F. A. and McCreary, J. P.: The monsoon circulation of the Indian
Ocean, Progr. Oceanogr., 51, 1–123, 2001.
Schott, F., Dengler, M., and Schoenefeldt, R.: The shallow overturning
circulation of the Indian Ocean, Prog. Oceanogr., 53, 57–103,
2002.
Schott, F. A., McCreary, J. P., and Johnson, G. C.: Shallow Overturning
Circulations of the Tropical-Subtropical Oceans, in: Earth Climate: The
Ocean-Atmosphere Interaction, edited by: Wang, C., Xie, S.-P., and
Carton, J. A., 261–304. Geophysical Monograph, American Geophysical Union,
Washington, D.C., https://doi.org/10.1029/147GM15, 2004.
Schott, F. A., Xie, S.-P., and McCreary, J. P.: Indian Ocean circulation and
climate variability, Rev. Geophys., 47, RG1002,
https://doi.org/10.1029/2007RG000245, 2009.
Schwarzkopf, F. U. and Böning, C. W.: Contribution of Pacific wind stress to multi‐decadal variations in upper‐ocean heat content and sea level in the tropical south Indian Ocean. Geophys. Res. Lett., 38, L12602, https://doi.org/10.1029/2011GL047651, 2011.
Schumann, E. H., Churchill, J. R. S., and Zaayman, H. J.: Oceanic variability
in the western sector of Algoa Bay, South Africa, African J. Mar. Sci., 27, 65–80,
https://doi.org/10.2989/18142320509504069, 2005.
Sengupta, D. and Ravichandran, M.: Oscillations of Bay of Bengal sea surface temperature during the 1998 Summer Monsoon, Geophys. Res. Lett., 28, 2033–2036, https://doi.org/10.1029/2000GL012548, 2001.
Sengupta, D., Senan, R., and Goswami, B. N.: Origin of intraseasonal
variability of circulation in the tropical central Indian Ocean, Geophys.
Res. Lett., 28, 1267–1270, https://doi.org/10.1029/2000GL012251, 2001.
Sengupta, D., Senan, R., Murty, V. S. N., and Fernando V.: A biweekly mode in the equatorial Indian Ocean, J. Geophys. Res., 109, C10003, https://doi.org/10.1029/2004JC002329, 2004.
Sengupta, D., Bharath Raj, G. N., and Shenoi, S. S. C.: Surface freshwater
from Bay of Bengal runoff and Indonesian Throughflow in the tropical Indian
Ocean, Geophys. Res. Lett., 33, L22609, https://doi.org/10.1029/2006GL027573, 2006.
Sengupta, D., Senan, R., Goswami, B. N., and Vialard, J.: Intraseasonal
variability of equatorial Indian Ocean zonal currents, J.
Climate, 20, 3036–3055, 2007.
Sengupta, D., Goddalehundi, B. R., and Anitha, D. S.: Cyclone-induced mixing
does not cool SST in the post-monsoon north Bay of Bengal, Atmos. Sci.
Lett., 9, 1–6, https://doi.org/10.1002/asl.162, 2008.
Seo, H., Murtugudde, R., Jochum, M., and Miller, A. J.:
Modeling of mesoscale coupled ocean–atmosphere interaction and its feedback to ocean in the western Arabian Sea,
Ocean Model.,
25, 120–131,
https://doi.org/10.1016/j.ocemod.2008.07.003,
2008.
Shalapyonok, A., Olson, R. J., and Shalapyonok, L. S.: Arabian Sea
phytoplankton during Southwest and Northeast Monsoons 1995: Composition,
size structure and biomass from individual cell properties measured by flow
cytometry, Deep-Sea Res. Pt. II, 48, 1231–1261,
https://doi.org/10.1016/S0967-0645(00)00137-5, 2001.
Shankar, D. and Shetye, S. R.: On the dynamics of the Lakshadweep high and
low in southeastern Arabian Sea, J. Geophys. Res., 102, 12551–12562, 1997.
Shankar, D., McCreary, J. P., Han, W., and Shetye, S. R.: Dynamics of the
East India Coastal Current 1. Analytic solutions forced by interior Ekman
pumping and local alongshore winds, J. Geophys. Res., 101 13975–13991,
1996.
Shankar, D., Vinayachandran, P. N., and Unnikrishnan, A. S.: The monsoon
currents in the north Indian Ocean, Prog. Oceanogr., 52, 63–120,
https://doi.org/10.1016/S0079-6611(02)00024-1, 2002.
Shankar, D., Remya, R., Vinayachandran, P., Chatterjee, A., and Behera, A.:
Inhibition of mixed-layer deepening during winter in the northeastern
Arabian Sea by theWest India Coastal Current, Clim. Dynam., 47,
1049–1072, 2016.
Sharma, G. S.: Water characteristics and current structure at 65∘ E during the southwest monsoon, J. Oceanogr. Soc. Jpn., 32, 284–296,
https://doi.org/10.1007/BF02107985, 1976.
Sharma, G. S., Gouveia, A. D., and Satyendranath, S.: Incursion of the Pacific
Ocean Water into the Indian Ocean, Proc. Indian Acad. Sci., 87, 29–45, https://doi.org/10.1007/BF02839383, 1978.
Sharmila, S., Pillai, P. A., Joseph, S., Roxy, M., Krishna, R. P. M.,
Chattopadhyay, R., Abhilash, S., Sahai, A. K., and Goswami, B. N.: Role of
ocean-atmosphere interaction on northward propagation of Indian summer
monsoon intraseasonal oscillations (MISO), Clim. Dynam., 41, 1651–1669,
https://doi.org/10.1007/s00382-013-1854-1, 2013.
Sheehan, P. M. F., Webber, B. G. M., Sanchez-Franks, A., Matthews, A. J.,
Heywood, K. J., and Vinayachandran, P. N.: Injection of Oxygenated Persian
Gulf Water Into the Southern Bay of Bengal, Geophys. Res. Lett., 47, e2020GL087773,
https://doi.org/10.1029/2020GL087773, 2020.
Shenoi, S., Shankar, D., and Shetye, S. R.: Differences in heat budgets of the
near-surface Arabian Sea and Bay of Bengal: Implications for the summer
monsoon, J. Geophys. Res., 107, C6, https://doi.org/10.1029/2000JC000679, 2002.
Shetye, S. R. and Shenoi, S. S. C.: Seasonal cycle of surface circulation in
the coastal North Indian Ocean, Proc. Indian Acad. Sci.,
97, 53–62, 1988.
Shetye, S. R., Gouveia, A. D., Shenoi, S. S. C., Sundar, D., Michael, G. S.,
and Nampoothiri, G.: The western boundary current of the seasonal
subtropical gyre in the Bay of Bengal, J. Geophys. Res., 98, 945–954, 1993.
Shetye, S. R., Gouveia, A. D., and Shenoi, S. S. C.: Circulation and water masses of the Arabian Sea, Proc. Indian Acad. Sci., 103, 107–123, https://doi.org/10.1007/BF02839532, 1994.
Shetye, S. R., Gouveia, A. D., Shankar, D., Shenoi, S. S. C.,
Vinayachandran, P. N., Sundar, D., Michael, G. S., and Nampoothiri, G.:
Hydrography and circulation in the western Bay of Bengal during the
northeast monsoon, J. Geophys. Res.-Oceans, 101, 14011–14025, https://doi.org/10.1029/95JC03307, 1996.
Shinoda, T., Hendon, H. H., and Glick, J.: Intraseasonal Variability of
Surface Fluxes and Sea Surface Temperature in the Tropical Western Pacific
and Indian Oceans, J. Climate, 11, 1685–1702, 1998.
Shinoda, T., Kiladis, G. N., and Roundy, P. E.: Statistical representation of
equatorial waves and tropical instability waves in the Pacific Ocean, Atmos.
Res., 94, 37–44, https://doi.org/10.1016/j.atmosres.2008.06.002, 2009.
Shinoda, T., Han, W., Joseph Metzger, E., and Hurlburt, H. E.: Seasonal
variation of the Indonesian throughflow in Makassar Strait, J. Phys.
Oceanogr., 42, 1099–1123, https://doi.org/10.1175/JPO-D-11-0120.1, 2012.
Shroyer, E., Rudnick, D., Farrar, J. T., Lim, B., Venayagamoorthy, S. K.,
St. Laurent, L., Garanaik, A., and Moum, J.: Modification of Upper-Ocean
Temperature Structure by Subsurface Mixing in the Presence of Strong
Salinity Stratification, Oceanography, 29, 62–71,
https://doi.org/10.5670/oceanog.2016.39, 2016.
Shroyer, E. L., Gordon, A. L., Jaeger, G. S., Freilich, M., Waterhouse, A. F., and Farrar, J. T.: Upper layer thermohaline structure of the Bay of Bengal during the 2013 northeast monsoon, Deep-Sea Res. Pt. II, 172, 104630, https://doi.org/10.1016/j.dsr2.2019.07.018, 2019.
Siedler, G., Rouault, M., and Lutjeharms, J.: Structure and origin of the
subtropical South Indian Ocean Countercurrent, Geophys. Res. Lett., 33,
L24609, https://doi.org/10.1029/2006GL027399, 2006.
Siedler, G., Rouault, M., Biastoch, A., Backeberg, B. C., Reason, C. J. C.,
and Lutjeharms, J.: Modes of the southern extension of the East Madagascar
Current, J. Geophys. Res., 114, C01005,
https://doi.org/10.1029/2008JC004921, 2009.
Singh, A. and Ramesh, R.: Environmental controls on new and primary
production in the northern Indian Ocean, Prog. Oceanogr., 4, 456–461,
https://doi.org/10.1016/j.pocean.2014.12.006, 2015.
Singh, A., Gandhi, N., Ramesh, R., and Prakash, S.: Role of cyclonic eddy in
enhancing primary and new production in the Bay of Bengal, J. Sea Res., 131, 138–145,
https://doi.org/10.1016/j.seares.2014.12.002, 2015.
Singh, D., Tsiang, M., Rajaratnam, B., and Diffenbaugh, N. S.: Observed
changes in extreme wet and dry spells during the south Asian summer monsoon
season, Nat. Clim. Change, 4, 456–461, https://doi.org/10.1038/nclimate2208, 2014.
Smith, R. L., Huyer, A., Godfrey, J. S., and Church, J. A.: The Leeuwin
Current off Western Australia, 1986–1987, J. Phys. Oceanogr., 21, 323–345,
https://doi.org/10.1175/1520-0485(1991)021<0323:TLCOWA>2.0.CO;2, 1991.
Smyth, W. D., Durland, T. S., and Moum, J. N.: Energy and heat fluxes due to vertically propagating Yanai waves observed in the equatorial Indian Ocean, J. Geophys. Res.-Oceans, 120, 1–15, https://doi.org/10.1002/2014JC010152, 2015.
Song, Q., Gordon, A. L., and Visbeck, M.: Spreading of the Indonesian Throughflow in the Indian Ocean, J. Phys. Oceanogr., 34, 772–792, 2004.
Sorokin, Y., Kopylov, A., and Mamaeva, N.: Abundance and dynamics of
microplankton in the central tropical Indian Ocean, Mar. Ecol. Prog. Ser., 97, 5–13,
https://doi.org/10.3354/meps024027, 1985.
Speich, S., Blanke, B., and Cai, W.: Atlantic meridional overturning
circulation and the Southern Hemisphere supergyre, Geophys. Res. Lett., 34, L23614,
https://doi.org/10.1029/2007GL031583, 2007.
Sperber, K. R. and Annamalai, H.: Coupled model simulations of boreal summer
intraseasonal (30–50 day) variability, Part 1: Systematic errors and caution
on use of metrics, Clim. Dynam., 31, 345–372,
https://doi.org/10.1007/s00382-008-0367-9, 2008.
Sprintall, J. and Révelard, A.: The Indonesian Throughflow response to
Indo-Pacific climate variability, J. Geophys. Res.-Oceans, 119, 1161–1175,
https://doi.org/10.1002/2013JC009533, 2014.
Sprintall, J., Chong, J., Syamsudin, F., Morawitz, W., Hautala, S., Bray, N.,
and Wijffels, S.: Dynamics of the South Java current in the Indo-Australian
Basin, Geophys. Res. Lett., 26, 2493–2496, 1999.
Sprintall, J., Wijffels, S. E., Molcard, R., and Jaya, I.: Direct estimates
of the Indonesian Throughflow entering the Indian Ocean: 2004–2006, J. Geophys. Res.-Oceans, 114, C07001, https://doi.org/10.1029/2008JC005257, 2009.
Sprintall, J., Gordon, A. L., Koch-Larrouy, A., Lee, T., Potemra, J. T.,
Pujiana, K., and Wijffels, S. E.: The Indonesian seas and their role in the
coupled ocean-climate system, Nat. Geosci., 7, 487–492, https://doi.org/10.1038/ngeo2188, 2014.
Sprintall, J., Gordon, A. L., Wijffels, S. E., Feng, M., Hu, S.,
Koch-Larrouy, A., Phillips, H., Nugroho, D., Napitu, A., Pujiana, K., Dwi
Susanto, R., Sloyan, B., Yuan, D., Riama, N. F., Siswanto, S., Kuswardani,
A., Arifin, Z., Wahyudi, A. J., Zhou, H., Nagai, T., Ansong, J. K.,
Bourdalle-Badié, R., Chanut, J., Lyard, F., Arbic, B. K., Ramdhani, A.,
and Setiawan, A.: Detecting change in the Indonesian seas, Front. Mar. Sci., 6, 257,
https://doi.org/10.3389/fmars.2019.00257, 2019.
Sree Lekha, J.:
Space-time variability of near-surface salinity in the Bay of Bengal, PhD thesis, Indian Institute of Science, available at:
https://etd.iisc.ac.in/handle/2005/4649 (last access: 19 November 2021), 2020.
Sree Lekha, J., Buckley, J. M., Tandon, A., and Sengupta, D.: Subseasonal
Dispersal of Freshwater in the Northern Bay of Bengal in the 2013 Summer
Monsoon Season, J. Geophys. Res.-Oceans, 123, 6330–6348, https://doi.org/10.1029/2018JC014181, 2018.
Srokosz, M. A. and Quartly, G. D.: The Madagascar bloom: A serendipitous
study, J. Geophys. Res.-Oceans, 118, 14–25, https://doi.org/10.1029/2012JC008339, 2013.
Srokosz, M. A., Quartly, G. D., and Buck, J. J. H.: A possible plankton wave
in the Indian Ocean, Geophys. Res. Lett., 31, L13301, https://doi.org/10.1029/2004GL019738, 2004.
Srokosz, M. A., Robinson, J., McGrain, H., Popova, E. E., and Yool, A.:
Could the Madagascar bloom be fertilized by Madagascan iron?, J. Geophys. Res.-Oceans, 120, 5790–5803, https://doi.org/10.1002/2015JC011075, 2015.
St. Laurent, L. and Merrifield, S. T.: Measurements of Near-Surface Turbulence and Mixing from Autonomous Ocean Gliders, Oceanography, 30, 116–125, https://doi.org/10.5670/oceanog.2017.231, 2017.
Stramma, L., Bange, H. W., Czeschel, R., Lorenzo, A., and Frank, M.: On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru, Biogeosciences, 10, 7293–7306, https://doi.org/10.5194/bg-10-7293-2013, 2013.
Strutton, P. G., Coles, V. J., Hood, R. R., Matear, R. J., McPhaden, M. J., and Phillips, H. E.: Biogeochemical variability in the central equatorial Indian Ocean during the monsoon transition, Biogeosciences, 12, 2367–2382, https://doi.org/10.5194/bg-12-2367-2015, 2015.
Stuecker, M. F., Timmermann, A. , Jin, F. F., Chikamoto, Y. , Zhang, W.,
Wittenberg, A. T., Widiasih, E., and Zhao, S.: Revisiting ENSO/Indian Ocean
Dipole phase relationships, Geophys. Res. Lett., 44, 2481–2492, 2017.
Subrahmanyam, B., Trott, C. B., and Murty, V. S. N.: Detection of intraseasonal oscillations in SMAP salinity in the Bay of Bengal, Geophys. Res. Lett., 45, 7057–7065, https://doi.org/10.1029/2018GL078662, 2018.
Suhas, E., Neena, J. M., and Goswami, B. N.: An Indian monsoon intraseasonal
oscillations (MISO) index for real time monitoring and forecast
verification, Clim. Dynam., 40, 2605–2616,
https://doi.org/10.1007/s00382-012-1462-5, 2013.
Sun, S., Lan, J., Fang, Y., Tana, and Gao, X.: A triggering mechanism for
the Indian Ocean dipoles independent of ENSO, J. Climate, 28, 5063–5076,
https://doi.org/10.1175/JCLI-D-14-00580.1, 2015.
Suresh, I., Vialard, J., Lengaigne, M., Han, W., McCreary, J., Durand, F., and
Muraleedharan, P. M.: Origins of wind-driven intraseasonal sea level
variations in the north Indian Ocean coastal waveguide, Geophys. Res. Lett.,
40, 5740–5744, https://doi.org/10.1002/2013GL058312, 2013.
Suresh, I., Vialard, J., Izumo, T., Lengaigne, M., Han, W., McCreary, J. P.,
and Muraleedharan, P. M.: Dominant role of winds near Sri Lanka in driving
seasonal sea level variations along the west coast of India, Geophys. Res.
Lett., 43, 7028–7035, https://doi.org/10.1002/2016GL069976, 2016.
Susanto, R. D., Gordon, A. L., and Zheng, Q. N.: Upwelling along the coasts of
Java and Sumatra sand its relation to ENSO, Geophys. Res. Lett., 28,
1599–1602, 2001.
Susanto, R. D., Wei, Z., Adi, R. T., Fan, B., Li, S., and Fang, G.:
Observations of the Karimata Strait throughflow from December 2007 to
November 2008, Acta Oceanol. Sin., 32, 1–6, https://doi.org/10.1007/s13131-013-0307-3, 2013.
Suzuki, R., Behera, S. K., Iizuka, S., and Yamagata, T.: Indian Ocean
subtropical dipole simulated using a coupled general circulation model, J. Geophys. Res.-Oceans, 109, C09001, https://doi.org/10.1029/2003JC001974, 2004.
Takaya, Y., Ishikawa, I., Kobayashi, C., Endo, H., and Ose, T.: Enhanced
Meiyu-Baiu rainfall in early summer 2020: Aftermath of the 2019 super IOD
event, Geophys. Res. Lett., 47, e2020GL090671,
https://doi.org/10.1029/2020GL090671, 2020.
Takeuchi, K.: Numerical study of the Subtropical Front and the Subtropical
Countercurrent, J. Oceanogr. Soc. Japan, 40, 371–381,
https://doi.org/10.1007/BF02303341, 1984.
Talley, L. D.: Freshwater transport estimates and the global overturning
circulation: Shallow, deep and throughflow components, Prog.
Oceanogr., 78, 257–303, https://doi.org/10.1016/j.pocean.2008.05.001, 2008.
Talley, L. D.: Closure of the global overturning circulation through the
Indian, Pacific, and Southern Oceans: Schematics and transports,
Oceanography, 26, 80–97, https://doi.org/10.5670/oceanog.2013.07, 2013.
Talley, L. D. and Sprintall., J.: Deep expression of the Indonesian
Throughflow: Indonesian Intermediate Water in the South Equatorial Current,
J. Geophys. Res.-Oceans, 110, C10009, https://doi.org/10.1029/2004JC002826,
2005.
Talley, L. D., Pickard, G. L., Emery, W. J., and Swift, J. H.: Descriptive
Physical Oceanography: An Introduction, 6th Edition, Academic Press,
Elsevier Ltd., New York, 983 pp., 2011.
Talley, L. D., Feely, R. A., Sloyan, B. M., Wanninkhof, R., Baringer, M. O., Bullister, J. L., Carlson, C. A., Doney, S. C., Fine, R. A., Firing, E., Gruber, N., Hansell, D. A., Ishii, M., Johnson, G. C., Katsumata, K., Key, R. M., Kramp, M., Langdon, C., Macdonald, A. M., Mathis, J. T., McDonagh, E. L., Mecking, S., Millero, F. J., Mordy, C. W., Nakano, T., Sabine, C. L., Smethie, W. M., Swift, J. H., Tanhua, T., Thurnherr, A. M., Warner, M. J., and Zhang, J.-Z.: Changes in ocean heat, carbon content, and
ventilation: A review of the first decade of GO-SHIP global repeat
hydrography, Annu. Rev. Mar. Sci., 8, 185–215, https://doi.org/10.1146/annurev-marine-052915-100829, 2016.
Talley, L., Johnson, G. C., Purkey, S., Feely, R. A., and Wanninkhof, R.:
Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP)
provides key climate-relevant deep ocean observations, US CLIVAR Variations,
15, 8–14, 2017.
Tarran, G. A., Burkill, P. H., Edwards, E. S., and Woodward, E. M. S.:
Phytoplankton community structure in the Arabian Sea during and after the SW
monsoon, 1994, Deep-Sea Res. Pt II, 46, 655–676,
https://doi.org/10.1016/S0967-0645(98)00122-2, 1999.
Taylor, B. M., Benkwitt, C. E., Choat, H., Clements, K. D., Graham, N. A.,
and Meekan, M. G.: Synchronous biological feedbacks in parrotfishes
associated with pantropical coral bleaching, Global Change Biol., 26,
1285–1294, https://doi.org/10.1111/gcb.14909, 2019.
Terray, P., Delecluse, P., Labattu, S., and Terray, L.: Sea surface
temperature associations with the late Indian summer monsoon, Clim. Dynam., 21, 593–618,
https://doi.org/10.1007/s00382-003-0354-0, 2003.
Thadathil, P., Muraleedharan, P. M., Rao, R. R., Somayajulu, Y. K., Reddy,
G. V., and Revichandran, C.: Observed seasonal variability of barrier layer
in the Bay of Bengal, J. Geophys. Res.-Oceans, 112, C02009,
https://doi.org/10.1029/2006JC003651, 2007.
Thadathil, P., Suresh, I., Gautham, S., Prasanna Kumar, S., Lengaigne, M.,
Rao, R. R., Neetu, S., and Hegde, A.: Surface layer temperature inversion in
the Bay of Bengal: Main characteristics and related mechanisms, J. Geophys. Res.-Oceans, 121, 5682–5696, https://doi.org/10.1002/2016JC011674, 2016.
Thakur, R., Shroyer, E. L., Govindarajan, R., Farrar, J. T., Weller, R. A., and Moum, J. N.: Seasonality and Buoyancy Suppression of Turbulence in the Bay of Bengal, Geophys. Res. Lett., 46, 4346–4355, https://doi.org/10/gf3w8j, 2019.
Thangaprakash, V. P., Girishkumar, M. S., Suprit, K., Kumar, N. S.,
Chaudhuri, D., Dinesh, K., Kumar, A., Shivaprasad, S., Ravichandran, M.,
Farrar, J. T., Sundar, R., and Weller, R.: What Controls Seasonal Evolution
of Sea Surface Temperature in the Bay of Bengal? Mixed Layer Heat Budget
Analysis Using Moored Buoy Observations Along 90∘ E, Oceanography,
29, 202–213, https://doi.org/10.5670/oceanog.2016.52, 2016.
Thompson, P. A., Pesant, S., and Waite, A. M.: Contrasting the vertical
differences in the phytoplankton biology of a dipole pair of eddies in the
south-eastern Indian Ocean, Deep-Sea Res. Pt. II, 54, 1003–1028,
https://doi.org/10.1016/j.dsr2.2006.12.009, 2007.
Thompson, P. A., Wild-Allen, K., Lourey, M., Rousseaux, C., Waite, A. M.,
Feng, M., and Beckley, L. E.: Nutrients in an oligotrophic boundary current:
evidence of a new role for the Leeuwin Current, Prog. Oceanogr., 91,
345–359, 2011.
Thompson, R. O. R. Y.: Observations of the Leeuwin Current off Western
Australia, J. Phys. Oceanogr., 14, 623–628, https://doi.org/10.1175/1520-0485(1984)014<0623:OOTLCO>2.0.CO;2, 1984.
Thompson, R. O. R. Y.: Continental-shelf-scale model of the Leeuwin Current,
J. Mar. Res., 45, 813–827, https://doi.org/10.1357/002224087788327190, 1987.
Todd, R. E., Chavez, F. P., Clayton, S., Cravatte, S., Goes, M., Graco, M.,
Lin, X., Sprintall, J., Zilberman, N. V., Archer, M., Arístegui, J.,
Balmaseda, M., Bane, J. M., Baringer, M. O., Barth, J. A., Beal, L. M.,
Brandt, P., Calil, P. H. R., Campos, E., Centurioni, L. R., Chidichimo, M.
P., Cirano, M., Cronin, M. F., Curchitser, E. N., Davis, R. E., Dengler, M.,
deYoung, B., Dong, S., Escribano, R., Fassbender, A. J., Fawcett, S. E.,
Feng, M., Goni, G. J., Gray, A. R., Gutiérrez, D., Hebert, D., Hummels,
R., Ito, S., Krug, M., Lacan, F., Laurindo, L., Lazar, A., Lee, C. M.,
Lengaigne, M., Levine, N. M., Middleton, J., Montes, I., Muglia, M., Nagai,
T., Palevsky, H. I., Palter, J. B., Phillips, H. E., Piola, A., Plueddemann,
A. J., Qiu, B., Rodrigues, R. R., Roughan, M., Rudnick, D. L., Rykaczewski,
R. R., Saraceno, M., Seim, H., Sen Gupta, A., Shannon, L., Sloyan, B. M.,
Sutton, A. J.,Thompson, L., van der Plas, A. K., Volkov, D., Wilkin, J.,
Zhang, D., and Zhang, L.: Global perspectives on observing ocean boundary
current systems. OceanObs'19 white paper, Front. Marine Sci.,
6, 423, https://doi.org/10.3389/fmars.2019.00423, 2019.
Tozuka, T., Kataoka, T., and Yamagata, T.: Locally and remotely forced
atmospheric circulation anomalies of Ningaloo Niño/Niña, Clim. Dynam.,
43, 2197–2205, https://doi.org/10.1007/s00382-013-2044-x,
2014.
Trott, C., Bulusu, S., and Washburn, C. E.: Investigating the response of
temperature and salinity in the Agulhas Current region to ENSO events,
Remote Sens., 13, 1829, https://doi.org/10.3390/rs13091829, 2021.
Turner, A. G., Joshi, M., Robertson, E. S., and Woolnough, S. J.: The effect
of Arabian Sea optical properties on SST biases and the South Asian summer
monsoon in a coupled GCM, Clim. Dynam., 39, 811–826,
https://doi.org/10.1007/s00382-011-1254-3, 2012.
Ummenhofer, C. C., Biastoch, A., and Böning, C. W.: Multidecadal Indian
Ocean variability linked to the Pacific and implications for preconditioning
Indian Ocean dipole events, J. Climate, 30, 1739–1751, 2017.
Uz, B. M.: What causes the sporadic phytoplankton bloom southeast of
Madagascar?, J. Geophys. Res.-Oceans, 112, C09010, https://doi.org/10.1029/2006JC003685, 2007.
Valsala, K. V. and Ikeda, M.: Pathways and effects of the Indonesian throughflow water in the Indian Ocean using particle trajectory and tracers in an OGCM, J. Climate, 20, 2994–3017, 2007.
Van Sebille, E., Biastoch, A., Van Leeuwen, P. J., and De Ruijter, W. P. M.:
A weaker Agulhas current leads to more Agulhas leakage, Geophys. Res. Lett., 36, L03601,
https://doi.org/10.1029/2008GL036614, 2009.
Van Sebille, E., Van Leeuwen, P. J., Biastoch, A., and De Ruijter, W. P. M.:
On the fast decay of Agulhas rings, J. Geophys. Res.-Oceans, 115,
https://doi.org/10.1029/2009JC005585, 2010a.
Van Sebille, E., van Leeuwen, P. J., Biastoch, A., and de Ruijter, W. P. M.:
Flux comparison of Eulerian and Lagrangian estimates of Agulhas leakage: A
case study using a numerical model, Deep-Sea Res. Pt. I, 57, 319–327,
https://doi.org/10.1016/j.dsr.2009.12.006, 2010b.
Van Sebille, E., Beal, L. M., and Johns, W. E.: Advective Time Scales of
Agulhas Leakage to the North Atlantic in Surface Drifter Observations and
the 3D OFES Model, J. Phys. Oceanogr., 41, 1026–1034, https://doi.org/10.1175/2011jpo4602.1, 2011.
Van Sebille, E., Sprintall, J., Schwarzkopf, F. U., Sen Gupta, A., Santoso,
A., England, M. H., Biastoch, A., and Böning, C. W.: Pacific-to-Indian
Ocean connectivity: Tasman leakage, Indonesian Throughflow, and the role of
ENSO, J. Geophys. Res.-Oceans, 119, 1365–1382, https://doi.org/10.1002/2013JC009525, 2014.
Vargas-Hernandez, J. M., Wijffels, S., Meyers, G., and Holbrook, N. J.: Slow westward movement of salinity anomalies across the tropical South Indian Ocean, J. Geophys. Res.-Oceans, 120, 5436–5456, https://doi.org/10.1002/2015JC010933, 2015.
Varna, M., Singh, A., Sahoo, D., and Sengupta, D.: Strengthening of
basin-scale ocean currents in winter drives decadal salinity decline in the
eastern Arabian Sea, Geophys. Res. Lett., 48, e2021GL094516, https://doi.org/10.1029/2021GL094516, 2021.
Vecchi, G. A. and Harrison, D. E.: Monsoon Breaks and Subseasonal Sea
Surface Temperature Variability in the Bay of Bengal, J. Climate, 15,
1485–1493, https://doi.org/10.1175/1520-0442(2002)015<1485:MBASSS>2.0.CO;2, 2002.
Vecchi, G. A. and Soden, B. J.: Global warming and the weakening of the
tropical circulation, J. Climate, 20, 4316–4340, 2007.
Vecchi, G. A., Xie, S., and Fischer, A. S.: Ocean–Atmosphere Covariability in the Western Arabian Sea, J. Climate, 17, 1213–1224, 2004.
Venkatesan, R., Vedachalam, N., Arul Muthiah, M., Sundar, R., Kesavakumar,
B., Ramasundaram, S., and Jossia Joseph, K.: Reliability metrics from two
decades of Indian ocean moored buoy observation network, Mar. Technol. Soc.
J., 52, 71–90, https://doi.org/10.4031/MTSJ.52.3.14, 2018.
Venrick, E. L.: Mid-ocean ridges and their influence on the large-scale
patterns of chlorophyll and production in the North Pacific, Deep-Sea Res. Pt.
I, 38, S83–S102, https://doi.org/10.1016/s0198-0149(12)80006-9, 1991.
Vialard, J., Foltz, G. R., McPhaden, M. J., Duvel, J. P., and de Boyer
Montégut, C.: Strong Indian Ocean sea surface temperature signals
associated with the Madden-Julian Oscillation in late 2007 and early 2008,
Geophys. Res. Lett., 35, 1–5, https://doi.org/10.1029/2008GL035238, 2008.
Vialard, J., Duvel, J. P., Mcphaden, M. J., Bouruet-Aubertot, P., Ward, B.,
Key, E., Bourras, D., Weller, R., Minnett, P., Weill, A., Cassou, C.,
Eymard, L., Fristedt, T., Basdevant, C., Dandonneau, Y., Duteil, O., Izumo,
T., de Boyer Montégut, C., Masson, S., Marsac, F., Menkes, C., and
Kennan, S.: Cirene: Air-sea interactions in the Seychelles-Chagos
thermocline ridge region, B. Am. Meteorol. Soc., 90, 45–62,
https://doi.org/10.1175/2008BAMS2499.1, 2009a.
Vialard, J., Shenoi, S. S. C., McCreary, J. P., Shankar, D., Durand, F.,
Fernando, V., and Shetye, S. R.: Intraseasonal response of the northern
Indian Ocean coastal waveguide to the Madden-Julian Oscillation, Geophys.
Res. Lett., 36, 1–5, https://doi.org/10.1029/2009GL038450, 2009b.
Vialard, J., Jayakumar, A., Gnanaseelan, C., Lengaigne, M., Sengupta, D., and
Goswami, B. N.: Processes of 30–90 days sea surface temperature variability
in the northern Indian Ocean during boreal summer, Clim. Dynam., 38,
1901–1916, https://doi.org/10.1007/s00382-011-1015-3, 2012.
Vic, C., Roullet, G., Xavier, C., and Capet, X.: Mesoscale dynamics in the
Arabian Sea and a focus on the Great Whirl life cycle: A numerical
investigation using ROMS, J. Geophys. Res.-Oceans, 119,
6422–6443, https://doi.org/10.1002/2014JC009857, 2014.
Vijith, V., Vinayachandran, P., Thushara, V., Amol, P., Shankar, D., and
Anil, A.: Consequences of inhibition of mixed-layer deepening by the West
India Coastal Current for winter phytoplankton bloom in the northeastern
Arabian Sea, J. Geophys. Res.-Oceans, 121, 6583–6603,
https://doi.org/10.1002/2016JC012004, 2016.
Vinayachandran, P. N.: Impact of Physical Processes on Chlorophyll Distribution in the Bay of Bengal,
Geophysical Monograph Series, AGU, Washington, D.C., 71–86, https://doi.org/10.1029/2008GM000705, 2009.
Vinayachandran, P. N. and Mathew, S.: Phytoplankton bloom in the Bay of Bengal during the northeast monsoon and its intensification by cyclones, Geophys. Res. Lett., 30, 1572, https://doi.org/10.1029/2002GL016717, 2003.
Vinayachandran, P. N. and Yamagata, T.: Monsoon Response of the Sea around Sri Lanka: Generation of Thermal Domes and anti-Cyclonic Vortices, J. Phys. Oceanogr., 28, 1946–1960, 1998.
Vinayachandran, P. N., Shetye, S. R., Sengupta, D., and Gadgil, S.: Forcing
mechanisms of the Bay of Bengal circulation, Curr. Sci., 71, 753–763, 1996.
Vinayachandran, P. N., Saji, N. H., and Yamagata, T.: Response of the
equatorial Indian Ocean to an anomalous wind event during 1994, Geophys.
Res. Lett., 26, 1613–1615, 1999.
Vinayachandran, P. N., Murty, V. S. N., and Babu, V. R.: Observations of barrier layer formation in the Bay of Bengal during summer mon-soon, J. Geophys. Res., 107, 8018, https://doi.org/10.1029/2001JC000831, 2002.
Vinayachandran, P. N., Chauhan, P., Mohan,
M., and Nayak, S.: Biological response of the sea
around Sri Lanka to summer monsoon, Geophys. Res. Lett., 310,
L01302, https://doi.org/10.1029/2003GL018533, 2004.
Vinayachandran, P. N., Kagimoto, T., Masumoto, T. Y., Chauhan, P., Nayak, S.
R., and Yamagata, T.: Bifurcation of the East India Coastal Current east of
Sri Lanka, Geophys. Res. Lett., 32, L15606, https://doi.org/10.1029/2005GL022864, 2005.
Vinayachandran, P. N., Shankar, D., Vernekar, S., Sandeep, K. K., Amol, P.,
Neema, C. P., and Chatterjee, A.: A summer monsoon pump to keep the Bay of
Bengal salty, Geophys. Res. Lett., 40, 1777–1782, https://doi.org/10.1002/grl.50274,
2013.
Vinayachandran, P. N., Matthews, A. J., Vijay KuMar, K., Sanchez-Franks, A.,
Thushara, V., George, J., Vijith, V., Webber, B. G. M., Queste, B. Y., Roy,
R., Sarkar, A., Baranowski, D. B., Bhat, G. S., Klingaman, N. P., Peatman,
S. C., Parida, C., Heywood, K. J., Hall, R., King, B., Kent, E. C., Nayak,
A. A., Neema, C. P., Amol, P., Lotliker, A., Kankonkar, A., Gracias, D. G.,
Vernekar, S., D'Souza, A. C., Valluvan, G., Pargaonkar, S. M., Dinesh, K.,
Giddings, J., and Joshi, M.: BoBBLE: Ocean–Atmosphere interaction and its
impact on the South Asian monsoon, B. Am. Meteorol. Soc., 99, 1569–1587,
https://doi.org/10.1175/BAMS-D-16-0230.1, 2018.
Vinogradova, N., Lee, T., Boutin, J., Drushka, K., Fournier, S., Sabia, R., Stammer, D., Bayler, E., Reul, N., Gordon, A., Melnichenko, O., Li, L., Hackert, E., Martin, M., Kolodziejczyk, N., Hasson, A., Brown, S., Misra, S., and Lindstrom, E.: Satellite Salinity Observing System: Recent Discoveries and the Way Forward, Front. Marine Sci., 6, 243, https://doi.org/10.3389/fmars.2019.00243, 2019.
Vivekanandan, E. and Krishnakumar, P. K.: Spatial and temporal differences in
the coastal fisheries along the east coast of India, Indian J.
Marine Sci., 39, 380–387, 2010.
Volkov, D. L., Lee, S.-K., Gordon, A. L., and Rudko, M.: Unprecedented reduction
and quick recovery of the South Indian Ocean heat content and sea level in
2014–2018, Sci. Adv., 6, eabc1151, https://doi.org/10.1126/sciadv.abc1151, 2020.
Wacongne, S. and Pacanowski, R. C.: Seasonal heat transport in a primitive
equation model of the tropical Indian Ocean, J. Phys. Oceanogr., 26,
2666–2699, 1996.
Wainwright, C. M., Finney, D. L., Kilavi, M., Black, E., and Marsham, J. H.:
Extreme rainfall in East Africa, October 2019–January 2020 and context
under future climate change, Weather, 76, 26–31,
https://doi.org/10.1002/wea.3824, 2021.
Waite, A. M., Pesant, S., Griffin, D. A., Thompson, P. A., and Holl, C. M.:
Oceanography, primary production and dissolved inorganic nitrogen uptake in
two Leeuwin Current eddies, Deep-Sea Res. Pt. II, 54, 981–1002,
https://doi.org/10.1016/j.dsr2.2007.03.001, 2007a.
Waite, A. M., Thompson, P. A., Pesant, S., Feng, M., Beckley, L. E.,
Domingues, C. M., Gaughan, D., Hanson, C. E., Holl, C. M., Koslow, T.,
Meuleners, M., Montoya, J. P., Moore, T., Muhling, B. A., Paterson, H.,
Rennie, S., Strzelecki, J., and Twomey, L.: The Leeuwin Current and its
eddies: An introductory overview, Deep-Sea Res. Pt. II, 54, 789–796,
https://doi.org/10.1016/j.dsr2.2006.12.008, 2007b.
Waite, A. M., Beckley, L. E., Guidi, L., Landrum, J. P., Holliday, D.,
Montoya, J., Paterson, H., Feng, M., Thompson, P. A., and Raes, E. J.:
Cross-shelf transport, oxygen depletion, and nitrate release within a
forming mesoscale eddy in the eastern Indian Ocean, Limnol. Oceanogr., 61, 103–121,
https://doi.org/10.1002/lno.10218, 2016.
Waliser, D. E., Lau, K. M., and Kim, J.-H.: The influence of coupled sea surface temperatures on the Madden–Julian oscillation: A model perturbation experiment, J. Atmos. Sci., 56, 333–358, 1999.
Waliser, D. E., Murtugudde, R., and Lucas, L. E.: Indo-Pacific Ocean response
to atmospheric intraseasonal variability: 1. Austral summer and the
Madden-Julian Oscillation, J. Geophys. Res., 108, 3160,
https://doi.org/10.1029/2002JC001620, 2003.
Waliser, D. E., Murtugudde, R., Strutton, P., and Li, J.-L.: Subseasonal organization of ocean chlorophyll: prospects for prediction based on the Madden–Julian Oscillation, Geophys. Res. Lett., 32, https://doi.org/10.1029/2005GL024300, 2005.
Wang, B., Liu, F., and Chen, G.: A trio-interaction theory for Madden–Julian Oscillation, Geosci. Lett., 3, 34, https://doi.org/10.1186/s40562-016-0066-z, 2016.
Wang, G. and Cai, W.: Two-year consecutive concurrences of positive Indian
Ocean Dipole and Central Pacific El Niño preconditioned the 2019/2020
Australian “black summer” bushfires, Geosci. Lett., 7, 19,
https://doi.org/10.1186/s40562-020-00168-2, 2020.
Wang, H., McClean, J. L., Talley, L. D., and Yeager, S.: Seasonal cycle and
annual reversal of the Somali Current in an eddy-resolving global ocean
model, J. Geophys. Res.-Oceans, 123, 6562–6580,
https://doi.org/10.1029/2018JC013975, 2018.
Wang, H., Kumar, A., Murtugudde, R., Narapusetty, B., and Selp, K. L.:
Covariations between the Indian Ocean dipole and ENSO: a modeling study,
Clim. Dynam., 53, 5743–5761, https://doi.org/10.1007/s00382-019-04895-x, 2019.
Wang, Y. and McPhaden, M. J.: Seasonal cycle of cross-equatorial flow in the
Central Indian Ocean, J. Geophys. Res., 122, 3817–3827, https://doi.org/10.1002/2016JC012537, 2017.
Warner, S. J., Becherer, J., Pujiana, K., Shroyer, E. L., Ravichandran, M.,
Thangaprakash, V. P., and Moum, J. N.: Monsoon mixing cycles in the Bay of
Bengal: A year-long subsurface mixing record, Oceanography, 29, 158–169,
https://doi.org/10.5670/oceanog.2016.48, 2016.
Weaver, A. J. and Middleton, J. H.: On the dynamics of the Leeuwin Current,
J. Phys. Oceanogr., 19, 626–648,
https://doi.org/10.1175/1520-0485(1989)019<0626:OTDOTL>2.0.CO;2, 1989.
Weaver, A. J. and Middleton, J. H.: An analytic model for the Leeuwin Current
off western Australia, Cont. Shelf Res., 10, 105–122,
https://doi.org/10.1016/0278-4343(90)90025-H, 1990.
Webber, B. G. M., Matthews, A. J., and Heywood, K. J.: A dynamical ocean
feedback mechanism for the Madden-Julian Oscillation, Q. J. Roy. Meteor.
Soc., 136, 740–754, https://doi.org/10.1002/qj.604, 2010.
Webber, B. G. M., Matthews, A. J., Heywood, K. J., and Stevens, D. P.: Ocean
Rossby waves as a triggering mechanism for primary Madden-Julian events, Q.
J. Roy. Meteor. Soc., 138, 514–527, https://doi.org/10.1002/qj.936, 2012a.
Webber, B. G. M., Stevens, D. P., Matthews, A. J., and Heywood, K. J.:
Dynamical ocean forcing of the Madden-Julian oscillation at lead times of up
to five months, J. Climate, 25, 2824–2842, https://doi.org/10.1175/JCLI-D-11-00268.1,
2012b.
Webber, B. G. M., Matthews, A. J., Heywood, K. J., Kaiser, J., and Schmidtko,
S.: Seaglider observations of equatorial Indian Ocean Rossby waves
associated with the Madden-Julian Oscillation, J. Geophys. Res.-Oceans,
119, 3714–3731, https://doi.org/10.1002/2013JC009657, 2014.
Webber, B. G. M., Matthews, A. J., Vinayachandran, P. N., Neema, C. P.,
Sanchez-Franks, A., Vijith, V., Amol, P., and Baranowski, D. B.: The Dynamics
of the Southwest Monsoon Current in 2016 from High-Resolution In Situ
Observations and Models, J. Phys. Oceanogr., 48, 2259–2282,
https://doi.org/10.1175/JPO-D-17-0215.1, 2018.
Webster, P. J., Moore, A., Loschnigg, J. P., and R., L. R.: Coupled
oceanic-atmoshperic dynamics in the Indian Ocean during 1997–1998, Nature,
401, 356–360, 1999.
Weijer, W. and van Sebille, E.: Impact of Agulhas leakage on the Atlantic
overturning circulation in the CCSM4, J. Climate, 27, 101–110,
https://doi.org/10.1175/JCLI-D-12-00714.1, 2014.
Weller, R. A., Farrar, J. T., Buckley, J., Mathew, S., Venkatesan, R.,
Lekha, J. S., Chaudhuri, D., Suresh Kumar, N., and Praveen Kumar, B.: Air-sea
interaction in the Bay of Bengal, Oceanography, 29, 28–37, https://doi.org/10.5670/oceanog.2016.36,
2016.
Whalen, C. B., Talley, L. D., and MacKinnon, J. A.: Spatial and temporal variability of global ocean mixing inferred from Argo profiles, Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL053196, 2012.
Wiggert, J. D., Jones, B. H., Dickey, T. D., Brink, K. H., Weller, R. A.,
Marra, J., and Codispoti, L. A.: The Northeast Monsoon's impact on mixing,
phytoplankton biomass and nutrient cycling in the Arabian Sea, Deep-Sea Res.
Pt. II, 47, 1353–1385, https://doi.org/10.1016/S0967-0645(99)00147-2, 2000.
Wiggert, J. D., Hood, R. R., Banse, K., and Kindle, J. C.: Monsoon-driven
biogeochemical processes in the Arabian Sea, Prog. Oceanogr., 65, 176–213,
https://doi.org/10.1016/j.pocean.2005.03.008, 2005.
Wiggert, J. D., Murtugudde, R. G., and Christian, J. R.: Annual ecosystem
variability in the tropical Indian Ocean: Results of a coupled bio-physical
ocean general circulation model, Deep-Sea Res. Pt. II,
53, 644–676, https://doi.org/10.1016/j.dsr2.2006.01.027, 2006.
Wiggert, J. D., Vialard, J., and Behrenfeld, M. J.: Basin-wide modification
of dynamical and biogeochemical processes by the positive phase of the
Indian Ocean Dipole during the SeaWiFS era, in: Indian Ocean biogeochemical
Processes and Ecological Variability, Geophysical Monograph Series, 185,
385–407, https://doi.org/10.1029/2008GM000776, 2009.
Wijesekera, H. W., Jensen, T. G., Jarosz, E., Teague, W. J., Metzger, E. J.,
Wang, D. W., Jinadasa, S. U. P., Arulananthan, K., Centurioni, L. R., and
Fernando, H. J. S.: Southern Bay of Bengal currents and salinity intrusions
during the northeast monsoon, J. Geophys. Res.-Oceans, 120, 6897–6913,
https://doi.org/10.1002/2015JC010744, 2015.
Wijesekera, H. W., Shroyer, E., Tandon, A., Ravichandran, M., Sengupta, D.,
Jinadasa, S. U. P., Fernando, H. J. S., Agrawal, N., Arulananthan, K., Bhat,
G. S., Baumgartner, M., Buckley, J., Centurioni, L., Conry, P., Thomas
Farrar, J., Gordon, A. L., Hormann, V., Jarosz, E., Jensen, T. G., Johnston,
S., Lankhorst, M., Lee, C. M., Leo, L. S., Lozovatsky, I., Lucas, A. J.,
MacKinnon, J., Mahadevan, A., Nash, J., Omand, M. M., Pham, H., Pinkel, R.,
Rainville, L., Ramachandran, S., Rudnick, D. L., Sarkar, S., Send, U.,
Sharma, R., Simmons, H., Stafford, K. M., Laurent, L. S., Venayagamoorthy,
K., Venkatesan, R., Teague, W. J., Wang, D. W., Waterhouse, A. F., Weller,
R., and Whalen, C. B.: ASIRI: An ocean-atmosphere initiative for Bay of
Bengal, B. Am. Meteorol. Soc., 97, 1859–1884, https://doi.org/10.1175/BAMS-D-14-00197.1, 2016a.
Wijesekera, H., Teague, W., Jarosz, E., Wang, D., Jensen, T., Jinadasa, S.
U. P., Fernando, H., Centurioni, L., Hallock, Z., Shroyer, E., and Moum, J.:
Observations of Currents Over the Deep Southern Bay of Bengal – With a
Little Luck, Oceanography, 29, 112–123, https://doi.org/10.5670/oceanog.2016.44,
2016b.
Wijesekera, H. W., Teague, W. J., Wang, D. W., Jarosz, E., Jensen, T. G.,
Jinadasa, S. U. P., Fernando, H. J. S., and Hallock, Z. R.: Low-frequency
currents from deep moorings in the southern bay of Bengal, J. Phys.
Oceanogr., 46, 3209–3238, https://doi.org/10.1175/JPO-D-16-0113.1, 2016c.
Wijffels, S. and Meyers, G.: An intersection of oceanic waveguides:
Variability in the Indonesian throughflow region, J. Phys. Oceanogr., 34, 1232–1253, 2004.
Wijffels, S., Meyers, G., and Godfrey, J. S.: A 20-yr average of the
Indonesian throughflow: Regional currents and the interbasin exchange, J. Phys. Oceanogr., 38,
1965–1978, 2008.
Wijffels, S., Roemmich, D., Monselesan, D., Church, J., and Gilson, J.: Ocean
temperatures chronicle the ongoing warming of Earth, Nat. Clim. Change, 6, 116–118,
https://doi.org/10.1038/nclimate2924, 2016.
Williams, A. P. and Funk, C.: A westward extension of the warm pool leads to
a westward extension of the Walker circulation, drying eastern Africa, Clim.
Dynam., 37, 2417–2435, 2011.
Wilson, C. and Qiu, X.: Global distribution of summer chlorophyll blooms in
the oligotrophic gyres, Prog. Oceanogr., 78, 107–134, https://doi.org/10.1016/j.pocean.2008.05.002,
2008.
Wilson, E. A. and Riser, S. C.: An Assessment of the Seasonal Salinity Budget for the Upper Bay of Bengal, J. Phys. Oceanogr., 46, 1361–1376, 2016.
Woo, L. M. and Pattiaratchi, C. B.: Hydrography and water masses off the
western Australian coast, Deep-Sea Res. Pt. I, 55, 1090–1104,
https://doi.org/10.1016/j.dsr.2008.05.005, 2008.
Woo, M., Pattiaratchi, C., and Schroeder, W.: Summer surface circulation
along the Gascoyne continental shelf, Western Australia, Cont. Shelf Res., 26,
132–152, 2006.
Wyrtki, K.: An equatorial jet in the Indian Ocean, Science, 181,
262–264, https://doi.org/10.1126/science.181.4096.262, 1973.
Xi, J., Zhou, L., Murtugudde, R., and Jiang, L.: Impacts of intraseasonal SST
anomalies on precipitation during Indian summer monsoon, J. Climate, 28,
4561–4575, https://doi.org/10.1175/JCLI-D-14-00096.1, 2015.
Xie, S., Hu, K., Hafner, J., Tokinaga, H., Du, Y., Huang, G., and Sampe, T.:
Indian Ocean Capacitor Effect on Indo–Western Pacific Climate during the
Summer following El Niño, J. Climate, 22, 730–747,
https://doi.org/10.1175/2008JCLI2544.1, 2009.
Xie, S.-P., Annamalai, H., Schott, F. A., and McCreary, J. P.: Structure and
mechanisms of South Indian Ocean climate variability, J. Climate, 15,
864–878, 2002.
Xie, S.-P., Du, Y., Huang, G., Zheng, X.-T., Tokinaga, H., Hu, K. M., and
Liu, Q. Y.: Decadal shift in El Niño influences on Indo–Western Pacific
and East Asian climate in the 1970s, J. Climate, 23, 3352–3368, 2010.
Xie, S.-P., Kosaka, Y., Du, Y., Hu, K., Chowdary, J. S., and Huang, G.:
Indo-western Pacific ocean capacitor and coherent climate anomalies in
post-ENSO summer: A review, Adv. Atmos. Sci., 33, 411–432,
https://doi.org/10.1007/s00376-015-5192-6, 2016.
Yamagami, Y. and Tozuka, T.: Interdecadal changes of the Indian Ocean
subtropical dipole mode, Clim. Dynam., 44, 3057–3066, https://doi.org/10.1007/s00382-014-2202-9, 2015.
Yanai, M. and Maruyama, T.: Stratospheric wave disturbances propagating
over the equatorial pacific, J. Meteorol. Soc. Jap., 44, 291–294, 1966.
Yang, J., Liu, Q., Xie, S.-P., Liu, Z., and Wu, L.: Impact of the Indian Ocean
SST basin mode on the Asian summer monsoon, Geophys. Res. Lett., 34,
L02708, https://doi.org/10.1029/2006GL028571, 2007.
Yang, L., Murtugudde, R., Zhou, L., and Liang, P.: A potential link between
the Southern Ocean warming and the South Indian Ocean heat balance, J. Geophys. Res.-Oceans, 125, e2020JC016132, https://doi.org/10.1029/2020JC016132, 2020.
Yang, Y., Xie, S.-P., Wu, L., Kosaka, Y., Lau, N. C., and Vecchi, G. A.:
Seasonality and predictability of the Indian Ocean dipole mode: ENSO forcing
and internal variability, J. Climate, 28, 8021–8036, 2015.
Yit Sen Bull, C. and van Sebille, E.: Sources, fate, and pathways of
Leeuwin Current water in the Indian Ocean and Great Australian Bight: A
Lagrangian study in an eddy-resolving ocean model, J. Geophys. Res.-Oceans,
121, 1626–1639, https://doi.org/10.1002/2015JC011486, 2016.
Yoshida, K. and Kidokoro, T.: A subtropical countercurrent II: A prediction
of eastward flows at lower subtropical latitudes, J. Oceanogr. Soc. Japan,
23, 231–246, 1967.
Yu, L.: Global Air–Sea Fluxes of Heat, Fresh Water, and Momentum: Energy Budget Closure and Unanswered Questions, Annu. Rev. Mar. Sci., 11, 227–248, 2019.
Yu, Z. and Potemra, J.: Generation mechanism for the intraseasonal variability in the Indo-Australian basin, J. Geophys. Res., 111, C01013, https://doi.org/10.1029/2005JC003023, 2006.
Yu, L., Jin, X., and Weller, R. A.: Annual, seasonal, and interannual
variability of air-sea heat fluxes in the Indian Ocean, J.
Climate, 20, 3190–3209, 2007.
Yuan, Y. and Yang, S.: Impacts of different types of El Niño on East Asian climate: focus on ENSO cycles, J. Climate, 25, 7702–7722,
https://doi.org/10.1175/JCLI-D-11-00576.1, 2012.
Yuan, D., Zhou, H., and Zhao, X.: Interannual climate variability over the
tropical pacific ocean induced by the indian ocean dipole through the
Indonesian Throughflow, J. Climate, 26, 2845–2861, https://doi.org/10.1175/JCLI-D-12-00117.1, 2013.
Zang, N., Sprintall, J., Ienny, R., and Wang, F.: Seasonality of the Somali
Current/Undercurrent System, Deep-Sea Res. Pt. II, 191–192, 104953, https://doi.org/10.1016/j.dsr2.2021.104953, 2021.
Zhang, C.: Madden-Julian Oscillation, Rev. Geophys., 43, RG2003,
https://doi.org/10.1029/2004RG000158, 2005.
Zhang, D., McPhaden, M. J., and Lee, T.: Observed Interannual Variability of
Zonal Currents in the Equatorial Indian Ocean Thermocline and Their Relation
to Indian Ocean Dipole, Geophys. Res. Lett., 41, 7933–7941, https://doi.org/10.1002/2014GL061449, 2014.
Zhang, L., Han, W., Li, Y., and Maloney, E. D.: Role of North Indian Ocean
air-sea interaction in summer monsoon intraseasonal oscillation, J. Climate,
31, 7885–7908, https://doi.org/10.1175/JCLI-D-17-0691.1, 2018.
Zhang, L., Han, W., Li, Y., and Lovenduski, N. S.: Variability of Sea Level and Upper-Ocean Heat Content in the Indian Ocean: Effects of Subtropical Indian Ocean Dipole and ENSO, J. Climate, 32, 7227–7245, 2019.
Zhang, N., Feng, M., Du, Y., Lan, J., and Wijffels, S. E.: Seasonal and interannual variations of mixed layer salinity in the southeast tropical Indian Ocean, J. Geophys. Res.-Oceans, 121, 4716–4731, https://doi.org/10.1002/2016JC011854, 2016.
Zhang, N., Feng, M., Hendon, H. H., Hobday, A. J., and Zinke, J.: Opposite
polarities of ENSO drive distinct patterns of coral bleaching potentials in
the southeast Indian Ocean, Sci. Rep.-UK, 7, 1–10,
https://doi.org/10.1038/s41598-017-02688-y, 2017.
Zhang, W., Wang, Y., Jin, F.-F., Stuecker, M. F., and Turner, A. G.: Impact
of different El Niño types on the El Niño/IOD relationship. Geophys.
Res. Lett., 42, 8570–8576, 2015.
Zhang, Y., Feng, M., Du, Y., Phillips, H. E., Bindoff, N. L., McPhaden, M.
J.: Strengthened Indonesian Throughflow drives decadal warming in the
Southern Indian Ocean, Geophys Res. Lett., 45, 6167–6175, 2018.
Zheng, S., Feng, M., Du, Y., Meng, X., and Yu, W.: Interannual variability
of eddy kinetic energy in the subtropical southeast Indian Ocean associated
with the El Niño-Southern Oscillation, J. Geophys. Res.-Oceans, 123,
1048–1061, https://doi.org/10.1002/2017JC013562, 2018.
Zheng, X.-T., Xie, S.-P., Du, Y., Liu, L., Huang, G., and Liu, Q. Y.: Indian
Ocean Dipole response to global warming in the CMIP5 multimodel ensemble, J.
Climate, 26, 6067–6080, 2013.
Zhou, L. and Murtugudde, R.: Ocean–Atmosphere Coupling on Different Spatiotemporal Scales: A Mechanism for Intraseasonal Instabilities, J. Atmos. Sci., 66, 1834–1844, 2009.
Zhou, L., Murtugudde, R., Chen, D., and Tang, Y.: A Central Indian Ocean mode
and heavy precipitation during Indian Summer Monsoon, J. Climate, 30, 2055–2067, https://doi.org/10.1175/JCLI-D-16-0347.1, 2017a.
Zhou, L., Murtugudde R., Chen, D., and Tang, Y.: Seasonal and interannual
variabilities of the Central Indian Ocean, J. Climate, 30, 6505–6520, https://doi.org/10.1175/JCLI-D-16-0616.1, 2017b.
Zhou, X., Alves, O. Marsland, S. J., Bi, D., and Hirst, A. C.: Multi-decadal
variations of the south Indian Ocean subsurface temperature influenced by
Pacific Decadal Oscillation, Tellus, 69A, 1308055,
https://doi.org/10.1080/16000870.2017.1308055, 2017.
Zhou, Z.-Q., Zhang, R., and Xie, S.-P.: Interannual variability of summer
surface air temperature over central India: Implications for monsoon onset,
J. Climate, 32, 1693–1706, 2019.
Zhou, Z.-Q., Xie, S.-P., and Zhang, R,: Historic Yangtze flooding of 2020
tied to extreme Indian Ocean conditions, P. Natl. Acad. Sci. USA, 118, e2022255118, https://doi.org/10.1073/pnas.2022255118, 2021.
Zhuang, W., Feng, M., Du, Y., Schiller, A., and Wang, D.: Low-frequency sea
level variability in the southern Indian Ocean and its impacts on the
oceanic meridional transports, J. Geophys. Res.-Oceans, 118, 1302–1315,
https://doi.org/10.1002/jgrc.20129, 2013.
Zinke, J., Rountrey, A., Feng, M., Xie, S.-P., Dissard, D., Rankenburg, K.,
Lough, J. M., and McCulloch, M. T.: Corals record long-term Leeuwin current
variability including Ningaloo Niño/Niña since 1795, Nat. Commun.,
5, 3607, https://doi.org/10.1038/ncomms4607, 2014.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(27154 KB) - Full-text XML
Short summary
Over the past decade, understanding of the Indian Ocean has progressed through new observations and advances in theory and models of the oceanic and atmospheric circulation. This review brings together new understanding of the ocean–atmosphere system in the Indian Ocean, describing Indian Ocean circulation patterns, air–sea interactions, climate variability, and the critical role of the Indian Ocean as a clearing house for anthropogenic heat.
Over the past decade, understanding of the Indian Ocean has progressed through new observations...