Articles | Volume 16, issue 1
https://doi.org/10.5194/os-16-149-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-149-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Temporal evolution of temperatures in the Red Sea and the Gulf of Aden based on in situ observations (1958–2017)
Miguel Agulles
CORRESPONDING AUTHOR
Instituto Mediterráneo de Estudios Avanzados (UIB-CSIC), Esporles,
Spain
Gabriel Jordà
Instituto Mediterráneo de Estudios Avanzados (UIB-CSIC), Esporles,
Spain
Centre Oceanogràfic de Balears. Instituto Español de
Oceanografía. Palma, Spain
Burt Jones
Red Sea Research Center (RSRC), King Abdullah University of Science
and Technology, Thuwal 23955, Saudi Arabia
Susana Agustí
Red Sea Research Center (RSRC), King Abdullah University of Science
and Technology, Thuwal 23955, Saudi Arabia
Carlos M. Duarte
Red Sea Research Center (RSRC), King Abdullah University of Science
and Technology, Thuwal 23955, Saudi Arabia
Computational Bioscience Research Center (CBRC), King Abdullah
University of Science and Technology, Thuwal 23955, Saudi Arabia
Related authors
No articles found.
Jessica Breavington, Alexandra Steckbauer, Chuancheng Fu, Mongi Ennasri, and Carlos M. Duarte
Biogeosciences, 22, 117–134, https://doi.org/10.5194/bg-22-117-2025, https://doi.org/10.5194/bg-22-117-2025, 2025
Short summary
Short summary
Mangrove carbon storage in the Red Sea is lower than average due to challenging growth conditions. We collected mangrove soil cores over multiple seasons to measure greenhouse gas (GHG) flux of carbon dioxide and methane. GHG emissions are a small offset to mangrove carbon storage overall but punctuated by periods of high emission. This variation is linked to environmental and soil properties, which were also measured. The findings aid understanding of GHG dynamics in arid mangrove ecosystems.
Lina Eyouni, Zoi Kokkini, Nikolaos D. Zarokanellos, and Burton H. Jones
EGUsphere, https://doi.org/10.5194/egusphere-2024-3319, https://doi.org/10.5194/egusphere-2024-3319, 2024
Short summary
Short summary
This study examines how multiple processes in the Northern Red Sea form the Red Sea Outflow Water and affect biogeochemical fluxes. Using glider data, wind and air-sea flux reanalysis, and satellite observations, it highlights seasonal evolution. Eddy-driven upwelling exposes cool water to heat loss and evaporation, fueling primary productivity. Circulation patterns block inflows, extend cooling, and subduct water into the ocean interior, influencing regional dynamics.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Afrah Alothman, Daffne López-Sandoval, Carlos M. Duarte, and Susana Agustí
Biogeosciences, 20, 3613–3624, https://doi.org/10.5194/bg-20-3613-2023, https://doi.org/10.5194/bg-20-3613-2023, 2023
Short summary
Short summary
This study investigates bacterial dissolved inorganic carbon (DIC) fixation in the Red Sea, an oligotrophic ecosystem, using stable-isotope labeling and spectroscopy. The research reveals that bacterial DIC fixation significantly contributes to total DIC fixation, in the surface and deep water. The study demonstrates that as primary production decreases, the role of bacterial DIC fixation increases, emphasizing its importance with photosynthesis in estimating oceanic carbon dioxide production.
Gabriel Jordà and Javier Soto-Navarro
Ocean Sci., 19, 485–498, https://doi.org/10.5194/os-19-485-2023, https://doi.org/10.5194/os-19-485-2023, 2023
Short summary
Short summary
We develop a forecasting system for marine-litter concentration (MLC) in the Mediterranean based on a simple statistical method. The idea is that similar meteorological situations yield similar MLC patterns. We train our model with a historical meteorological dataset and MLCs from numerical simulations to recognize these situations and patterns and use them to forecast the future MLC. The results are promising; the approach has potential to become a suitable, cost-effective forecasting method.
Jorge Ramos-Alcántara, Damià Gomis, and Gabriel Jordà
Ocean Sci., 18, 1781–1803, https://doi.org/10.5194/os-18-1781-2022, https://doi.org/10.5194/os-18-1781-2022, 2022
Short summary
Short summary
In a context of climate change, having sea level data all along the coast is essential. However, tide gauges yield pointwise observations, and satellite altimetry has limitations at the coast. We present a method that, learning from a years-long model output and using tide gauge observations only, is able to reconstruct sea level all along the coast. The accuracy of the reconstruction has been validated against independent observations and proven to be better than that of satellite altimetry.
Lohitzune Solabarrieta, Ismael Hernández-Carrasco, Anna Rubio, Michael Campbell, Ganix Esnaola, Julien Mader, Burton H. Jones, and Alejandro Orfila
Ocean Sci., 17, 755–768, https://doi.org/10.5194/os-17-755-2021, https://doi.org/10.5194/os-17-755-2021, 2021
Short summary
Short summary
High-frequency radar technology measures coastal ocean surface currents. The use of this technology is increasing as it provides near-real-time information that can be used in oil spill or search-and-rescue emergencies to forecast the trajectories of floating objects. In this work, an analog-based short-term prediction methodology is presented, and it provides surface current forecasts of up to 48 h. The primary advantage is that it is easily implemented in real time.
Ivan Manso-Narvarte, Erick Fredj, Gabriel Jordà, Maristella Berta, Annalisa Griffa, Ainhoa Caballero, and Anna Rubio
Ocean Sci., 16, 575–591, https://doi.org/10.5194/os-16-575-2020, https://doi.org/10.5194/os-16-575-2020, 2020
Short summary
Short summary
Our main aim is to study the feasibility of reconstructing oceanic currents by extending the data obtained from coastal multiplatform observatories to nearby areas in 3D in the SE Bay of Biscay. To that end, two different data-reconstruction methods with different approaches were tested, providing satisfactory results. This work is a first step towards the real applicability of these methods in this study area, and it shows the capabilities of the methods for a wide range of applications.
Nadia Burgoa, Francisco Machín, Ángeles Marrero-Díaz, Ángel Rodríguez-Santana, Antonio Martínez-Marrero, Javier Arístegui, and Carlos Manuel Duarte
Ocean Sci., 16, 483–511, https://doi.org/10.5194/os-16-483-2020, https://doi.org/10.5194/os-16-483-2020, 2020
Short summary
Short summary
The main objective of the study is to analyze the export of carbon to the open ocean from the rich waters of the upwelling system of North Africa. South of the Canary Islands, permanent upwelling interacts with other physical processes impacting the main biogeochemical processes. Taking advantage of data from two cruises combined with the outputs of models, important conclusions from the differences observed between seasons are obtained, largely related to changes in the CVFZ in this area.
Celina Burkholz, Neus Garcias-Bonet, and Carlos M. Duarte
Biogeosciences, 17, 1717–1730, https://doi.org/10.5194/bg-17-1717-2020, https://doi.org/10.5194/bg-17-1717-2020, 2020
Short summary
Short summary
Seagrass meadows store carbon in their biomass and sediments, but they have also been shown to be sources of carbon dioxide (CO2) and methane (CH4). We experimentally investigated the effect of warming and prolonged darkness on CO2 and CH4 fluxes in Red Sea seagrass (Halophila stipulacea) communities. Our results indicated that sublethal warming may lead to increased emissions of greenhouse gases from seagrass meadows which may contribute to further enhance global warming.
Kimberlee Baldry, Vincent Saderne, Daniel C. McCorkle, James H. Churchill, Susana Agusti, and Carlos M. Duarte
Biogeosciences, 17, 423–439, https://doi.org/10.5194/bg-17-423-2020, https://doi.org/10.5194/bg-17-423-2020, 2020
Short summary
Short summary
The carbon cycling of coastal ecosystems over large spatial scales is not well measured relative to the open ocean. In this study we measure the carbonate system in the three habitats, to measure ecosystem-driven changes compared to offshore waters. We find (1) 70 % of seagrass meadows and mangrove forests show large ecosystem-driven changes, and (2) mangrove forests show strong and consistent trends over large scales, while seagrass meadows display more variability.
Susana Agustí, Jeffrey W. Krause, Israel A. Marquez, Paul Wassmann, Svein Kristiansen, and Carlos M. Duarte
Biogeosciences, 17, 35–45, https://doi.org/10.5194/bg-17-35-2020, https://doi.org/10.5194/bg-17-35-2020, 2020
Short summary
Short summary
We found that 24 % of the total diatoms community in the Arctic water column (450 m depth) was located below the photic layer. Healthy diatom communities in active spring–bloom stages remained in the photic layer. Dying diatom communities exported a large fraction of the biomass to the aphotic zone, fuelling carbon sequestration and benthic ecosystems in the Arctic. The results of the study conform to a conceptual model where diatoms grow during the bloom until silicic acid stocks are depleted.
Daffne C. López-Sandoval, Katherine Rowe, Paloma Carillo-de-Albonoz, Carlos M. Duarte, and Susana Agustí
Biogeosciences, 16, 2983–2995, https://doi.org/10.5194/bg-16-2983-2019, https://doi.org/10.5194/bg-16-2983-2019, 2019
Short summary
Short summary
We addressed how the intertwined effect of temperature and nutrients modulates the metabolic response of planktonic communities in the Red Sea, one of the warmest seas on earth. Our study unveiled that photosynthesis increases at a faster pace than respiration rates for this group of organisms formed by microalgae, bacteria, and drifting animals. This anomaly is likely due to the nature of the basin where the warmest waters are frequently enriched with nutrients, which favours microalgae growth.
Susann Rossbach, Vincent Saderne, Andrea Anton, and Carlos M. Duarte
Biogeosciences, 16, 2635–2650, https://doi.org/10.5194/bg-16-2635-2019, https://doi.org/10.5194/bg-16-2635-2019, 2019
Short summary
Short summary
Giant clams including the species Tridacna maxima are unique among bivalves as they live in symbiosis with unicellular algae and generally function as net photoautotrophs. Light is therefore crucial for these species to thrive. We show that net calcification and photosynthetic rates of T. maxima are light dependent, with maximum rates at conditions comparable to 4 m water depth, reflected also in the depth-related distribution in the Red Sea with maximum abundances in shallow sunlit coral reefs.
Neus Garcias-Bonet, Raquel Vaquer-Sunyer, Carlos M. Duarte, and Núria Marbà
Biogeosciences, 16, 167–175, https://doi.org/10.5194/bg-16-167-2019, https://doi.org/10.5194/bg-16-167-2019, 2019
Short summary
Short summary
We assess the impact of warming on nitrogen fixation in three key Mediterranean macrophytes by experimentally measuring sediment nitrogen fixation rates at current and projected seawater temperature by 2100 under a scenario of moderate greenhouse gas emissions. The temperature dependence of nitrogen fixation could potentially increase rates by 37 % by the end of the century, with important consequences for primary production in coastal ecosystems.
Neus Garcias-Bonet, Marco Fusi, Muhammad Ali, Dario R. Shaw, Pascal E. Saikaly, Daniele Daffonchio, and Carlos M. Duarte
Biogeosciences, 15, 7333–7346, https://doi.org/10.5194/bg-15-7333-2018, https://doi.org/10.5194/bg-15-7333-2018, 2018
Short summary
Short summary
Nitrogen (N) loads are detrimental for coastal ecosystems. We measured the balance between N losses and gains in a Red Sea seagrass. The N loss was higher than N2 fixed, pointing out the importance of seagrasses in removing N from the system. N2 losses increased with temperature. Therefore, the forecasted warming could increase the N2 flux to the atmosphere, potentially impacting seagrass productivity and their capacity to mitigate climate change but also enhancing their potential N removal.
Ariane Arias-Ortiz, Pere Masqué, Jordi Garcia-Orellana, Oscar Serrano, Inés Mazarrasa, Núria Marbà, Catherine E. Lovelock, Paul S. Lavery, and Carlos M. Duarte
Biogeosciences, 15, 6791–6818, https://doi.org/10.5194/bg-15-6791-2018, https://doi.org/10.5194/bg-15-6791-2018, 2018
Short summary
Short summary
Efforts to include tidal marsh, mangrove and seagrass ecosystems in existing carbon mitigation strategies are limited by a lack of estimates of carbon accumulation rates (CARs). We discuss the use of 210Pb dating to determine CARs in these habitats, which are often composed of heterogeneous sediments and affected by sedimentary processes. Results show that obtaining reliable geochronologies in these systems is ambitious, but estimates of mean 100-year CARs are mostly secure within 20 % error.
Jeffrey W. Krause, Carlos M. Duarte, Israel A. Marquez, Philipp Assmy, Mar Fernández-Méndez, Ingrid Wiedmann, Paul Wassmann, Svein Kristiansen, and Susana Agustí
Biogeosciences, 15, 6503–6517, https://doi.org/10.5194/bg-15-6503-2018, https://doi.org/10.5194/bg-15-6503-2018, 2018
Short summary
Short summary
Diatoms can dominate the Arctic Ocean spring bloom, the key annual event for regional food webs. Diatom growth requires silicon and this nutrient has been declining in the European Arctic. This study communicates an unprecedented combination of silicon-cycling measurements around Svalbard during the spring and shows that dissolved silicon can limit diatom production. These results suggest an important coupling of silicon and carbon cycling during the spring bloom in the European Arctic.
Elizabeth N. Teel, Xiao Liu, Bridget N. Seegers, Matthew A. Ragan, William Z. Haskell, Burton H. Jones, and Naomi M. Levine
Biogeosciences, 15, 6151–6165, https://doi.org/10.5194/bg-15-6151-2018, https://doi.org/10.5194/bg-15-6151-2018, 2018
Short summary
Short summary
Time-series sites have been instrumental in providing insight into how the ocean functions. However, to extrapolate the results from a single site to a larger region, the dynamics at the site must be placed into the context of regional-scale dynamics. We develop a framework for determining the spatial domain of a time-series site using high-resolution data. This framework quantifies the representativeness of the site and can be used to improve sampling to better capture the dynamics at the site.
Mallory A. Sea, Neus Garcias-Bonet, Vincent Saderne, and Carlos M. Duarte
Biogeosciences, 15, 5365–5375, https://doi.org/10.5194/bg-15-5365-2018, https://doi.org/10.5194/bg-15-5365-2018, 2018
Short summary
Short summary
Mangroves are capable of storing carbon in their roots, leaves, and in the sediment; however they can also emit carbon as greenhouse gases (GHG) to the atmosphere. In this study, we collected sediment cores and calculated GHG flux rates from mangrove forests along the Red Sea coastline. Using flux rates reported in this study, we determined that Red Sea mangroves are net carbon sinks, storing more carbon than they emit. This study provides rationale to conserve and expand Red Sea mangroves.
Aisling Fontanini, Alexandra Steckbauer, Sam Dupont, and Carlos M. Duarte
Biogeosciences, 15, 3717–3729, https://doi.org/10.5194/bg-15-3717-2018, https://doi.org/10.5194/bg-15-3717-2018, 2018
Short summary
Short summary
Invertebrate species of the Gullmar Fjord (Sweden) were exposed to four different treatments (high/low oxygen and low/high CO2) and respiration measured. Respiration responses of species of contrasting habitats and life-history strategies to single and multiple stressors was evaluated. Results show that the responses of the respiration were highly species specific as we observed both synergetic as well as antagonistic responses, and neither phylum nor habitat explained trends in respiration.
Nikolaos D. Zarokanellos and Burton H. Jones
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-544, https://doi.org/10.5194/bg-2017-544, 2018
Manuscript not accepted for further review
Short summary
Short summary
This is the first in-situ study that describes the temporal-spatial variability in the Red Sea during the winter/spring transition. In situ oceanographic glider data and remotely sensed chlorophyll are used to demonstrate how physical processes control biogeochemical variability in the central Red Sea. We believe that continuing to study these processes in the globally extreme Red Sea will help us to better understand the climate effects.
Francesca Iuculano, Carlos Maria Duarte, Núria Marbà, and Susana Agustí
Biogeosciences, 14, 5069–5075, https://doi.org/10.5194/bg-14-5069-2017, https://doi.org/10.5194/bg-14-5069-2017, 2017
Carlos M. Duarte
Biogeosciences, 14, 301–310, https://doi.org/10.5194/bg-14-301-2017, https://doi.org/10.5194/bg-14-301-2017, 2017
Short summary
Short summary
Vegetated coastal habitats (mangroves, seagrass meadows, salt marshes and macroalgal beds) are key contributors to the marine carbon budget, but remain hidden in the representation of the coastal carbon budget. While they have been acknowledged to play an important role in carbon burial, this is small compared to the export flow, which may lead to carbon sequestration beyond these habitats. The carbon fluxes supported by vegetated coastal habitats are globally relevant.
Alexandra Coello-Camba and Susana Agustí
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-424, https://doi.org/10.5194/bg-2016-424, 2016
Revised manuscript not accepted
Short summary
Short summary
We demonstrated that the effects of increased temperature and pCO2
on the silicification process in diatoms are interactive, showing a temperature dependent capacity of increased pCO2 to buffer the negative effects of warming. Therefore, as long as the increase in temperature does not surpass the buffering capacity of pCO2, the increase of this latter stressor will help diatoms to retain their sinking properties, preserving their role in the biogeochemical
cycles of silica and carbon.
Oscar Serrano, Paul S. Lavery, Carlos M. Duarte, Gary A. Kendrick, Antoni Calafat, Paul H. York, Andy Steven, and Peter I. Macreadie
Biogeosciences, 13, 4915–4926, https://doi.org/10.5194/bg-13-4915-2016, https://doi.org/10.5194/bg-13-4915-2016, 2016
Short summary
Short summary
We explored the relationship between organic carbon and mud (i.e. silt and clay) contents in seagrass ecosystems to address whether mud can be used to predict soil C content, thereby enabling robust scaling up exercises at a low cost as part of blue carbon stock assessments. We show that mud is not a universal proxy for blue carbon content in seagrass ecosystems, but it can be used to estimate soil Corg content when low biomass seagrass species (i.e. Zostera, Halodule and Halophila) are present.
Oscar Serrano, Aurora M. Ricart, Paul S. Lavery, Miguel Angel Mateo, Ariane Arias-Ortiz, Pere Masque, Mohammad Rozaimi, Andy Steven, and Carlos M. Duarte
Biogeosciences, 13, 4581–4594, https://doi.org/10.5194/bg-13-4581-2016, https://doi.org/10.5194/bg-13-4581-2016, 2016
Short summary
Short summary
The recent focus on carbon (C) trading has intensified interest in "Blue Carbon" – C sequestered by coastal vegetation. However, the factors influencing C storage are poorly understood. The patterns found in this study support that C storage in Posidonia seagrass soils is influenced by interactions of biological, chemical and physical factors within the meadow. We conclude that there is a need to improve global estimates accounting for biogeochemical factors driving variability within habitats.
Mathieu Hamon, Jonathan Beuvier, Samuel Somot, Jean-Michel Lellouche, Eric Greiner, Gabriel Jordà, Marie-Noëlle Bouin, Thomas Arsouze, Karine Béranger, Florence Sevault, Clotilde Dubois, Marie Drevillon, and Yann Drillet
Ocean Sci., 12, 577–599, https://doi.org/10.5194/os-12-577-2016, https://doi.org/10.5194/os-12-577-2016, 2016
Short summary
Short summary
The paper describes MEDRYS, a MEDiterranean sea ReanalYsiS at high resolution for the period 1992–2013. The NEMOMED12 ocean model is forced at the surface by a new high resolution atmospheric forcing dataset (ALDERA). Altimeter data, satellite SST and temperature and salinity vertical profiles are jointly assimilated. The ability of the reanalysis to represent the sea surface high-frequency variability, water mass characteristics and transports through the Strait of Gibraltar is shown.
D. Krause-Jensen, C. M. Duarte, I. E. Hendriks, L. Meire, M. E. Blicher, N. Marbà, and M. K. Sejr
Biogeosciences, 12, 4895–4911, https://doi.org/10.5194/bg-12-4895-2015, https://doi.org/10.5194/bg-12-4895-2015, 2015
Short summary
Short summary
The Arctic Ocean is considered the most vulnerable ecosystem to ocean acidification (OA), but very little information is available on natural variability of pH in the Arctic coastal zone. We report pH variability at various scales in a Greenland fjord. Variability ranged up to 0.2-0.3 pH units horizontally and vertically in the fjord, between seasons and on diel basis in kelp forests and was extreme in tidal pools. Overall, primary producers played a fundamental role in producing mosaics of pH.
A. N. Schwier, C. Rose, E. Asmi, A. M. Ebling, W. M. Landing, S. Marro, M.-L. Pedrotti, A. Sallon, F. Iuculano, S. Agusti, A. Tsiola, P. Pitta, J. Louis, C. Guieu, F. Gazeau, and K. Sellegri
Atmos. Chem. Phys., 15, 7961–7976, https://doi.org/10.5194/acp-15-7961-2015, https://doi.org/10.5194/acp-15-7961-2015, 2015
Short summary
Short summary
The effect of ocean acidification and changing water conditions on primary (and secondary) marine aerosol emissions is not well understood on a regional or a global scale. To investigate this effect, we deployed mesocosms in the Mediterranean Sea for several weeks during both winter pre-bloom and summer oligotrophic conditions and subjected them to various levels of CO2. We observed larger effects due to the differences between a pre-bloom and oligotrophic environment than due to CO2 levels.
S. Lasternas and S. Agustí
Biogeosciences, 11, 6377–6387, https://doi.org/10.5194/bg-11-6377-2014, https://doi.org/10.5194/bg-11-6377-2014, 2014
L. S. García-Corral, E. Barber, A. Regaudie-de-Gioux, S. Sal, J. M. Holding, S. Agustí, N. Navarro, P. Serret, P. Mozetič, and C. M. Duarte
Biogeosciences, 11, 4529–4540, https://doi.org/10.5194/bg-11-4529-2014, https://doi.org/10.5194/bg-11-4529-2014, 2014
S. Ruiz-Halpern, M. Ll. Calleja, J. Dachs, S. Del Vento, M. Pastor, M. Palmer, S. Agustí, and C. M. Duarte
Biogeosciences, 11, 2755–2770, https://doi.org/10.5194/bg-11-2755-2014, https://doi.org/10.5194/bg-11-2755-2014, 2014
I. E. Hendriks, Y. S. Olsen, L. Ramajo, L. Basso, A. Steckbauer, T. S. Moore, J. Howard, and C. M. Duarte
Biogeosciences, 11, 333–346, https://doi.org/10.5194/bg-11-333-2014, https://doi.org/10.5194/bg-11-333-2014, 2014
S. Lasternas, M. Piedeleu, P. Sangrà, C. M. Duarte, and S. Agustí
Biogeosciences, 10, 2129–2143, https://doi.org/10.5194/bg-10-2129-2013, https://doi.org/10.5194/bg-10-2129-2013, 2013
R. Vaquer-Sunyer, C. M. Duarte, J. Holding, A. Regaudie-de-Gioux, L. S. García-Corral, M. Reigstad, and P. Wassmann
Biogeosciences, 10, 1451–1469, https://doi.org/10.5194/bg-10-1451-2013, https://doi.org/10.5194/bg-10-1451-2013, 2013
M. Alcaraz, R. Almeda, E. Saiz, A. Calbet, C. M. Duarte, S. Agustí, R. Santiago, and A. Alonso
Biogeosciences, 10, 689–697, https://doi.org/10.5194/bg-10-689-2013, https://doi.org/10.5194/bg-10-689-2013, 2013
Cited articles
Bell, M. J., Forbes, R. M., and Hines, A.: Assessment of the FOAM global data
assimilation system for real-time operational ocean forecasting, J. Mar.
Syst., 25, 1–22, https://doi.org/10.1016/S0924-7963(00)00005-1, 2000.
Bongaerts, P., Ridgway, T., Sampayo, E. M., and Hoegh-Guldberg, O.: Assessing
the “deep reef refugia” hypothesis: Focus on Caribbean reefs, Coral Reefs,
29, 1–19, https://doi.org/10.1007/s00338-009-0581-x, 2010.
Cabanes, C., Grouazel, A., von Schuckmann, K., Hamon, M., Turpin, V., Coatanoan, C., Paris, F., Guinehut, S., Boone, C., Ferry, N., de Boyer Montégut, C., Carval, T., Reverdin, G., Pouliquen, S., and Le Traon, P.-Y.: The CORA dataset: validation and diagnostics of in-situ ocean temperature and salinity measurements, Ocean Sci., 9, 1–18, https://doi.org/10.5194/os-9-1-2013, 2013.
Camus, P., Mendez, F. J., Medina, R., and Cofiño, A. S.: Analysis of
clustering and selection algorithms for the study of multivariate wave
climate, Coast. Eng., 58, 453–462, https://doi.org/10.1016/j.coastaleng.2011.02.003,
2011.
Chaidez, V., Dreano, D., Agusti, S., Duarte, C. M., and Hoteit, I.: Decadal
trends in Red Sea maximum surface temperature, Sci. Rep., 7, 1–8,
https://doi.org/10.1038/s41598-017-08146-z, 2017.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M.,
Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: Configuration
and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Eladawy, A., Nadaoka, K., Negm, A., Abdel-Fattah, S., Hanafy, M., and
Shaltout, M.: Characterization of the northern Red Sea's oceanic features
with remote sensing data and outputs from a global circulation model,
Oceanologia, 59, 213–237, https://doi.org/10.1016/j.oceano.2017.01.002, 2017.
Ferry, N., Parent, L., Garric, G., Barnier, B., and Jourdain, N.: Mercator global eddy permitting ocean reanalysis GLORYS1V1: Description and results, Mercat, Ocean Q. Newsl., 36, 15–27, 2010.
Gandin, L. S.: Objective analysis of meteorological fields. By L. S. Gandin. Translated from the Russian. Jerusalem (Israel Program for Scientific Translations), 1965. Pp. vi, 242: 53 Figures; 28 Tables. £4 1s. 0d, Q. J. Roy. Meteor. Soc., 92, 447–447, doi:10.1002/qj.49709239320, 1966.
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res.-Oceans, 118, 6704–6716,
https://doi.org/10.1002/2013JC009067, 2013.
Harada, Y., Ebita, A., Ota, Y., Onogi, K., Takahashi, K., Endo, H., Miyaoka,
K., Kobayashi, S., Onoda, H., Moriya, M., Kamahori, H., and Kobayashi, C.:
The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J.
Meteorol. Soc. Jpn. Ser. II, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001,
2015.
Ishii, M. and Kimoto, M.: Reevaluation of historical ocean heat content
variations with time-varying XBT and MBT depth bias corrections, J.
Oceanogr., 65, 287–299, https://doi.org/10.1007/s10872-009-0027-7, 2009.
Jordà, G.: Detection time for global and regional sea level trends and accelerations, J. Geophys. Res.-Ocean., 119, 2121–2128, doi:10.1002/2014JC010005, 2014.
Jordà, G. and Gomis, D.: Accuracy of SMOS level 3 SSS products related
to observational errors, IEEE T. Geosci. Remote Sens., 48,
1694–1701, https://doi.org/10.1109/TGRS.2009.2034259, 2010.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M., and Potter, G. L.: NCEP-DOE AMIP-II Renalalysys (R-2), B. Am. Meteorol. Soc., 83, 1631–1643, doi:10.1175/BAMS-83-11 -1631, 2002.
Karnauskas, K. B. and Jones, B. H.: The Interannual Variability of Sea
Surface Temperature in the Red Sea From 35 Years of Satellite and In Situ
Observations, J. Geophys. Res.-Oceans, 123, 5824–5841,
https://doi.org/10.1029/2017JC013320, 2018.
Krokos, G., Papadopoulos, V. P., Sofianos, S. S., Ombao, H., Dybczak, P., and
Hoteit, I.: Natural Climate Oscillations may Counteract Red Sea Warming Over
the Coming Decades, Geophys. Res. Lett., 46, 3454–3461,
https://doi.org/10.1029/2018GL081397, 2019.
Larsen, J., Høyer, J. L., and She, J.: Validation of a hybrid optimal
interpolation and Kalman filter scheme for sea surface temperature
assimilation, J. Mar. Syst., 65, 122–133,
https://doi.org/10.1016/j.jmarsys.2005.09.013, 2007.
Lima, F. P. and Wethey, D. S.: Three decades of high-resolution coastal sea
surface temperatures reveal more than warming, Nat. Commun., 3, 1–13,
https://doi.org/10.1038/ncomms1713, 2012.
Llasses, J., Jordà, G., and Gomis, D.: Skills of different hydrographic
networks in capturing changes in the Mediterranean Sea at climate scales,
Clim. Res., 63, 1–18, https://doi.org/10.3354/cr01270, 2015.
Neumann, A. C. and McGill, D. A.: Circulation of the Red Sea in early
summer, Deep-Sea Res., 8, 223–235, https://doi.org/10.1016/0146-6313(61)90023-5,
1961.
Patzert, W. C.: Wind-induced reversal in Red Sea circulation, Deep. Res.
Oceanogr. Abstr., 21, 109–121, https://doi.org/10.1016/0011-7471(74)90068-0, 1974.
Poloczanska, E. S., Burrows, M. T., Brown, C. J., García Molinos, J.,
Halpern, B. S., Hoegh-Guldberg, O., Kappel, C. V., Moore, P. J., Richardson,
A. J., Schoeman, D. S., and Sydeman, W. J.: Responses of Marine Organisms to
Climate Change across Oceans, Front. Mar. Sci., 3, 1–21,
https://doi.org/10.3389/fmars.2016.00062, 2016.
Raitsos, D. E., Hoteit, I., Prihartato, P. K., Chronis, T., Triantafyllou,
G., and Abualnaja, Y.: Abrupt warming of the Red Sea, Geophys. Res. Lett.,
38, 1–5, https://doi.org/10.1029/2011GL047984, 2011.
Roberts-Jones, J., Fiedler, E. K., and Martin, M. J.: Daily, global,
high-resolution SST and sea ice reanalysis for 1985-2007 using the OSTIA
system, J. Climate, 25, 6215–6232, https://doi.org/10.1175/JCLI-D-11-00648.1, 2012.
Sofianos, S. and Johns, W. E.: Water Mass Formation, Overturning Circulation, and the Exchange of the Red Sea with the Adjacent Basins, Nature, 93, 163–164, doi:10.1007/978-3-662-45201-1_20, 2015.
Thorne, K. S., Wheeler, J. A., Francisco, S., Wieman, C. E., Ertmer, W.,
Schleich, W. P., Rasel, E. M., Diego, S., Chung, K. Y., Chu, S., Scully, M.
O., Physics, A., Grynberg, G., Stora, R., Pavlis, E. C., and Wheeler, J. A.:
References and Notes 1, Science, 327, 1543–1548,
https://doi.org/10.1126/science.1206034, 2010.
Werner, F. and Lange, K.: A bathymetric survey of the sill area between the Red Sea and the Gulf of Aden, Geologisches Jahrbuch D, 13, 125–130, 1975.
Short summary
The Red Sea holds one of the most diverse marine ecosystems in the world, although fragile and vulnerable to ocean warming. To better understand the long-term variability and trends of temperature in the whole water column, we produce a 3-D gridded temperature product (TEMPERSEA) for the period 1958–2017, based on a large number of in situ observations, covering the Red Sea and the Gulf of Aden.
The Red Sea holds one of the most diverse marine ecosystems in the world, although fragile and...