Articles | Volume 15, issue 4
https://doi.org/10.5194/os-15-997-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-997-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Novel metrics based on Biogeochemical Argo data to improve the model uncertainty evaluation of the CMEMS Mediterranean marine ecosystem forecasts
Stefano Salon
CORRESPONDING AUTHOR
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Via Beirut 4, 34151 Trieste, Italy
Gianpiero Cossarini
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Via Beirut 4, 34151 Trieste, Italy
Giorgio Bolzon
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Via Beirut 4, 34151 Trieste, Italy
Laura Feudale
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Via Beirut 4, 34151 Trieste, Italy
Paolo Lazzari
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Via Beirut 4, 34151 Trieste, Italy
Anna Teruzzi
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Via Beirut 4, 34151 Trieste, Italy
Cosimo Solidoro
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Via Beirut 4, 34151 Trieste, Italy
Alessandro Crise
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Via Beirut 4, 34151 Trieste, Italy
Related authors
Anna Teruzzi, Ali Aydogdu, Carolina Amadio, Emanuela Clementi, Simone Colella, Valeria Di Biagio, Massimiliano Drudi, Claudia Fanelli, Laura Feudale, Alessandro Grandi, Pietro Miraglio, Andrea Pisano, Jenny Pistoia, Marco Reale, Stefano Salon, Gianluca Volpe, and Gianpiero Cossarini
State Planet, 4-osr8, 15, https://doi.org/10.5194/sp-4-osr8-15-2024, https://doi.org/10.5194/sp-4-osr8-15-2024, 2024
Short summary
Short summary
A noticeable cold spell occurred in Eastern Europe at the beginning of 2022 and was the main driver of intense deep-water formation and the associated transport of nutrients to the surface. Southeast of Crete, the availability of both light and nutrients in the surface layer stimulated an anomalous phytoplankton bloom. In the area, chlorophyll concentration (a proxy for bloom intensity) and primary production were considerably higher than usual, suggesting possible impacts on fishery catches.
Simone Spada, Anna Teruzzi, Stefano Maset, Stefano Salon, Cosimo Solidoro, and Gianpiero Cossarini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-170, https://doi.org/10.5194/gmd-2023-170, 2023
Revised manuscript under review for GMD
Short summary
Short summary
In geosciences, data assimilation (DA) combines modeled dynamics and observations to reduce simulation uncertainties. Uncertainties can be dynamically and effectively estimated in ensemble DA methods. With respect to current techniques, the novel GHOSH ensemble DA scheme is designed to improve accuracy by reaching a higher approximation order, without increasing computational costs, as demonstrated in idealized Lorenz96 tests and in realistic simulations of the Mediterranean Sea biogeochemistry
Giovanni Coppini, Emanuela Clementi, Gianpiero Cossarini, Stefano Salon, Gerasimos Korres, Michalis Ravdas, Rita Lecci, Jenny Pistoia, Anna Chiara Goglio, Massimiliano Drudi, Alessandro Grandi, Ali Aydogdu, Romain Escudier, Andrea Cipollone, Vladyslav Lyubartsev, Antonio Mariani, Sergio Cretì, Francesco Palermo, Matteo Scuro, Simona Masina, Nadia Pinardi, Antonio Navarra, Damiano Delrosso, Anna Teruzzi, Valeria Di Biagio, Giorgio Bolzon, Laura Feudale, Gianluca Coidessa, Carolina Amadio, Alberto Brosich, Arnau Miró, Eva Alvarez, Paolo Lazzari, Cosimo Solidoro, Charikleia Oikonomou, and Anna Zacharioudaki
Ocean Sci., 19, 1483–1516, https://doi.org/10.5194/os-19-1483-2023, https://doi.org/10.5194/os-19-1483-2023, 2023
Short summary
Short summary
The paper presents the Mediterranean Forecasting System evolution and performance developed in the framework of the Copernicus Marine Service.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Valeria Di Biagio, Stefano Salon, Laura Feudale, and Gianpiero Cossarini
Biogeosciences, 19, 5553–5574, https://doi.org/10.5194/bg-19-5553-2022, https://doi.org/10.5194/bg-19-5553-2022, 2022
Short summary
Short summary
The amount of dissolved oxygen in the ocean is the result of interacting physical and biological processes. Oxygen vertical profiles show a subsurface maximum in a large part of the ocean. We used a numerical model to map this subsurface maximum in the Mediterranean Sea and to link local differences in its properties to the driving processes. This emerging feature can help the marine ecosystem functioning to be better understood, also under the impacts of climate change.
Marco Reale, Gianpiero Cossarini, Paolo Lazzari, Tomas Lovato, Giorgio Bolzon, Simona Masina, Cosimo Solidoro, and Stefano Salon
Biogeosciences, 19, 4035–4065, https://doi.org/10.5194/bg-19-4035-2022, https://doi.org/10.5194/bg-19-4035-2022, 2022
Short summary
Short summary
Future projections under the RCP8.5 and RCP4.5 emission scenarios of the Mediterranean Sea biogeochemistry at the end of the 21st century show different levels of decline in nutrients, oxygen and biomasses and an acidification of the water column. The signal intensity is stronger under RCP8.5 and in the eastern Mediterranean. Under RCP4.5, after the second half of the 21st century, biogeochemical variables show a recovery of the values observed at the beginning of the investigated period.
Paolo Lazzari, Stefano Salon, Elena Terzić, Watson W. Gregg, Fabrizio D'Ortenzio, Vincenzo Vellucci, Emanuele Organelli, and David Antoine
Ocean Sci., 17, 675–697, https://doi.org/10.5194/os-17-675-2021, https://doi.org/10.5194/os-17-675-2021, 2021
Short summary
Short summary
Multispectral optical sensors and models are increasingly adopted to study marine systems. In this work, bio-optical mooring and biogeochemical Argo float optical observations are combined with the Ocean-Atmosphere Spectral Irradiance Model (OASIM) to analyse the variability of sunlight at the sea surface. We show that the model skill in simulating data varies according to the wavelength of light and temporal scale considered and that it is significantly affected by cloud dynamics.
Valeria Di Biagio, Gianpiero Cossarini, Stefano Salon, and Cosimo Solidoro
Biogeosciences, 17, 5967–5988, https://doi.org/10.5194/bg-17-5967-2020, https://doi.org/10.5194/bg-17-5967-2020, 2020
Short summary
Short summary
Events that influence the functioning of the Earth’s ecosystems are of interest in relation to a changing climate. We propose a method to identify and characterise
wavesof extreme events affecting marine ecosystems for multi-week periods over wide areas. Our method can be applied to suitable ecosystem variables and has been used to describe different kinds of extreme event waves of phytoplankton chlorophyll in the Mediterranean Sea, by analysing the output from a high-resolution model.
Giuliana Rossi, Gualtiero Böhm, Angela Saraò, Diego Cotterle, Lorenzo Facchin, Paolo Giurco, Renata Giulia Lucchi, Maria Elena Musco, Francesca Petrera, Stefano Picotti, and Stefano Salon
Geosci. Commun., 3, 381–392, https://doi.org/10.5194/gc-3-381-2020, https://doi.org/10.5194/gc-3-381-2020, 2020
Short summary
Short summary
We organized an exhibition on the climate crisis using high-quality images shot by scientists, who are amateur photographers, during their campaigns in glacier regions. Working-age people, attracted by the gorgeous images, received the message that such beauty is in danger of vanishing. Twice, the visitors could talk directly with the experts to discuss geoscience, photography, and aesthetic choices and, of course, climate change, a problem that each of us has to play a part in to solve.
Elena Terzić, Paolo Lazzari, Emanuele Organelli, Cosimo Solidoro, Stefano Salon, Fabrizio D'Ortenzio, and Pascal Conan
Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019, https://doi.org/10.5194/bg-16-2527-2019, 2019
Short summary
Short summary
Measuring ecosystem properties in the ocean is a hard business. Recent availability of data from Biogeochemical-Argo floats can help make this task easier. Numerical models can integrate these new data in a coherent picture and can be used to investigate the functioning of ecosystem processes. Our new approach merges experimental information and model capabilities to quantitatively demonstrate the importance of light and water vertical mixing for algae dynamics in the Mediterranean Sea.
Carlos Enmanuel Soto López, Fabio Anselmi, Mirna Gharbi Dit Kacem, and Paolo Lazzari
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-174, https://doi.org/10.5194/gmd-2024-174, 2024
Preprint under review for GMD
Short summary
Short summary
Our goal was to use an analytical expression to estimate the density of optical constituents, allowing us to have an interpretable formulation consistent with the laws of physics. We focused on a probabilistic approach, optimizing the model and retrieving quantities with their respective uncertainty. Considering future application to Big Data, we also explored a Neural Network based method, retrieving computationally efficient estimates, maintaining consistency with the analytical expression.
Gloria Pietropolli, Luca Manzoni, and Gianpiero Cossarini
Geosci. Model Dev., 17, 7347–7364, https://doi.org/10.5194/gmd-17-7347-2024, https://doi.org/10.5194/gmd-17-7347-2024, 2024
Short summary
Short summary
Monitoring the ocean is essential for studying marine life and human impact. Our new software, PPCon, uses ocean data to predict key factors like nitrate and chlorophyll levels, which are hard to measure directly. By leveraging machine learning, PPCon offers more accurate and efficient predictions.
Anna Teruzzi, Ali Aydogdu, Carolina Amadio, Emanuela Clementi, Simone Colella, Valeria Di Biagio, Massimiliano Drudi, Claudia Fanelli, Laura Feudale, Alessandro Grandi, Pietro Miraglio, Andrea Pisano, Jenny Pistoia, Marco Reale, Stefano Salon, Gianluca Volpe, and Gianpiero Cossarini
State Planet, 4-osr8, 15, https://doi.org/10.5194/sp-4-osr8-15-2024, https://doi.org/10.5194/sp-4-osr8-15-2024, 2024
Short summary
Short summary
A noticeable cold spell occurred in Eastern Europe at the beginning of 2022 and was the main driver of intense deep-water formation and the associated transport of nutrients to the surface. Southeast of Crete, the availability of both light and nutrients in the surface layer stimulated an anomalous phytoplankton bloom. In the area, chlorophyll concentration (a proxy for bloom intensity) and primary production were considerably higher than usual, suggesting possible impacts on fishery catches.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Gianpiero Cossarini, Andy Moore, Stefano Ciavatta, and Katja Fennel
State Planet Discuss., https://doi.org/10.5194/sp-2024-8, https://doi.org/10.5194/sp-2024-8, 2024
Revised manuscript under review for SP
Short summary
Short summary
Marine biogeochemistry refers to the cycling of chemical elements resulting from physical transport, chemical reaction, uptake, and processing by living organisms. Biogeochemical models can have a wide range of complexity, from single parameterizations of processes to fully explicit representations of several nutrients, trophic levels, and functional groups. Uncertainty sources are the lack of knowledge about the parameterizations, initial and boundary conditions and the lack of observations
Jorn Bruggeman, Karsten Bolding, Lars Nerger, Anna Teruzzi, Simone Spada, Jozef Skákala, and Stefano Ciavatta
Geosci. Model Dev., 17, 5619–5639, https://doi.org/10.5194/gmd-17-5619-2024, https://doi.org/10.5194/gmd-17-5619-2024, 2024
Short summary
Short summary
To understand and predict the ocean’s capacity for carbon sequestration, its ability to supply food, and its response to climate change, we need the best possible estimate of its physical and biogeochemical properties. This is obtained through data assimilation which blends numerical models and observations. We present the Ensemble and Assimilation Tool (EAT), a flexible and efficient test bed that allows any scientist to explore and further develop the state of the art in data assimilation.
Carolina Amadio, Anna Teruzzi, Gloria Pietropolli, Luca Manzoni, Gianluca Coidessa, and Gianpiero Cossarini
Ocean Sci., 20, 689–710, https://doi.org/10.5194/os-20-689-2024, https://doi.org/10.5194/os-20-689-2024, 2024
Short summary
Short summary
Forecasting of marine biogeochemistry can be improved via the assimilation of observations. Floating buoys provide multivariate information about the status of the ocean interior. Information on the ocean interior can be expanded/augmented by machine learning. In this work, we show the enhanced impact of assimilating new in situ variables (oxygen) and reconstructed variables (nitrate) in the operational forecast system (MedBFM) model of the Mediterranean Sea.
Eva Álvarez, Gianpiero Cossarini, Anna Teruzzi, Jorn Bruggeman, Karsten Bolding, Stefano Ciavatta, Vincenzo Vellucci, Fabrizio D'Ortenzio, David Antoine, and Paolo Lazzari
Biogeosciences, 20, 4591–4624, https://doi.org/10.5194/bg-20-4591-2023, https://doi.org/10.5194/bg-20-4591-2023, 2023
Short summary
Short summary
Chromophoric dissolved organic matter (CDOM) interacts with the ambient light and gives the waters of the Mediterranean Sea their colour. We propose a novel parameterization of the CDOM cycle, whose parameter values have been optimized by using the data of the monitoring site BOUSSOLE. Nutrient and light limitations for locally produced CDOM caused aCDOM(λ) to covary with chlorophyll, while the above-average CDOM concentrations observed at this site were maintained by allochthonous sources.
Simone Spada, Anna Teruzzi, Stefano Maset, Stefano Salon, Cosimo Solidoro, and Gianpiero Cossarini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-170, https://doi.org/10.5194/gmd-2023-170, 2023
Revised manuscript under review for GMD
Short summary
Short summary
In geosciences, data assimilation (DA) combines modeled dynamics and observations to reduce simulation uncertainties. Uncertainties can be dynamically and effectively estimated in ensemble DA methods. With respect to current techniques, the novel GHOSH ensemble DA scheme is designed to improve accuracy by reaching a higher approximation order, without increasing computational costs, as demonstrated in idealized Lorenz96 tests and in realistic simulations of the Mediterranean Sea biogeochemistry
Giovanni Coppini, Emanuela Clementi, Gianpiero Cossarini, Stefano Salon, Gerasimos Korres, Michalis Ravdas, Rita Lecci, Jenny Pistoia, Anna Chiara Goglio, Massimiliano Drudi, Alessandro Grandi, Ali Aydogdu, Romain Escudier, Andrea Cipollone, Vladyslav Lyubartsev, Antonio Mariani, Sergio Cretì, Francesco Palermo, Matteo Scuro, Simona Masina, Nadia Pinardi, Antonio Navarra, Damiano Delrosso, Anna Teruzzi, Valeria Di Biagio, Giorgio Bolzon, Laura Feudale, Gianluca Coidessa, Carolina Amadio, Alberto Brosich, Arnau Miró, Eva Alvarez, Paolo Lazzari, Cosimo Solidoro, Charikleia Oikonomou, and Anna Zacharioudaki
Ocean Sci., 19, 1483–1516, https://doi.org/10.5194/os-19-1483-2023, https://doi.org/10.5194/os-19-1483-2023, 2023
Short summary
Short summary
The paper presents the Mediterranean Forecasting System evolution and performance developed in the framework of the Copernicus Marine Service.
Valeria Di Biagio, Riccardo Martellucci, Milena Menna, Anna Teruzzi, Carolina Amadio, Elena Mauri, and Gianpiero Cossarini
State Planet, 1-osr7, 10, https://doi.org/10.5194/sp-1-osr7-10-2023, https://doi.org/10.5194/sp-1-osr7-10-2023, 2023
Short summary
Short summary
Oxygen is essential to all aerobic organisms, and its content in the marine environment is continuously under assessment. By integrating observations with a model, we describe the dissolved oxygen variability in a sensitive Mediterranean area in the period 1999–2021 and ascribe it to multiple acting physical and biological drivers. Moreover, the reduction recognized in 2021, apparently also due to other mechanisms, requires further monitoring in light of its possible impacts.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Juan Pablo Almeida, Lorenzo Menichetti, Alf Ekblad, Nicholas P. Rosenstock, and Håkan Wallander
Biogeosciences, 20, 1443–1458, https://doi.org/10.5194/bg-20-1443-2023, https://doi.org/10.5194/bg-20-1443-2023, 2023
Short summary
Short summary
In forests, trees allocate a significant amount of carbon belowground to support mycorrhizal symbiosis. In northern forests nitrogen normally regulates this allocation and consequently mycorrhizal fungi growth. In this study we demonstrate that in a conifer forest from Sweden, fungal growth is regulated by phosphorus instead of nitrogen. This is probably due to an increase in nitrogen deposition to soils caused by decades of human pollution that has altered the ecosystem nutrient regime.
Valeria Di Biagio, Stefano Salon, Laura Feudale, and Gianpiero Cossarini
Biogeosciences, 19, 5553–5574, https://doi.org/10.5194/bg-19-5553-2022, https://doi.org/10.5194/bg-19-5553-2022, 2022
Short summary
Short summary
The amount of dissolved oxygen in the ocean is the result of interacting physical and biological processes. Oxygen vertical profiles show a subsurface maximum in a large part of the ocean. We used a numerical model to map this subsurface maximum in the Mediterranean Sea and to link local differences in its properties to the driving processes. This emerging feature can help the marine ecosystem functioning to be better understood, also under the impacts of climate change.
Marco Reale, Gianpiero Cossarini, Paolo Lazzari, Tomas Lovato, Giorgio Bolzon, Simona Masina, Cosimo Solidoro, and Stefano Salon
Biogeosciences, 19, 4035–4065, https://doi.org/10.5194/bg-19-4035-2022, https://doi.org/10.5194/bg-19-4035-2022, 2022
Short summary
Short summary
Future projections under the RCP8.5 and RCP4.5 emission scenarios of the Mediterranean Sea biogeochemistry at the end of the 21st century show different levels of decline in nutrients, oxygen and biomasses and an acidification of the water column. The signal intensity is stronger under RCP8.5 and in the eastern Mediterranean. Under RCP4.5, after the second half of the 21st century, biogeochemical variables show a recovery of the values observed at the beginning of the investigated period.
Ginevra Rosati, Donata Canu, Paolo Lazzari, and Cosimo Solidoro
Biogeosciences, 19, 3663–3682, https://doi.org/10.5194/bg-19-3663-2022, https://doi.org/10.5194/bg-19-3663-2022, 2022
Short summary
Short summary
Methylmercury (MeHg) is produced and bioaccumulated in marine food webs, posing concerns for human exposure through seafood consumption. We modeled and analyzed the fate of MeHg in the lower food web of the Mediterranean Sea. The modeled spatial–temporal distribution of plankton bioaccumulation differs from the distribution of MeHg in surface water. We also show that MeHg exposure concentrations in temperate waters can be lowered by winter convection, which is declining due to climate change.
Anna Teruzzi, Giorgio Bolzon, Laura Feudale, and Gianpiero Cossarini
Biogeosciences, 18, 6147–6166, https://doi.org/10.5194/bg-18-6147-2021, https://doi.org/10.5194/bg-18-6147-2021, 2021
Short summary
Short summary
During summer, maxima of phytoplankton chlorophyll concentration (DCM) occur in the subsurface of the Mediterranean Sea and can play a relevant role in carbon sequestration into the ocean interior. A numerical model based on in situ and satellite observations provides insights into the range of DCM conditions across the relatively small Mediterranean Sea and shows a western DCM that is 25 % shallower and with a higher phytoplankton chlorophyll concentration than in the eastern Mediterranean.
Paolo Lazzari, Stefano Salon, Elena Terzić, Watson W. Gregg, Fabrizio D'Ortenzio, Vincenzo Vellucci, Emanuele Organelli, and David Antoine
Ocean Sci., 17, 675–697, https://doi.org/10.5194/os-17-675-2021, https://doi.org/10.5194/os-17-675-2021, 2021
Short summary
Short summary
Multispectral optical sensors and models are increasingly adopted to study marine systems. In this work, bio-optical mooring and biogeochemical Argo float optical observations are combined with the Ocean-Atmosphere Spectral Irradiance Model (OASIM) to analyse the variability of sunlight at the sea surface. We show that the model skill in simulating data varies according to the wavelength of light and temporal scale considered and that it is significantly affected by cloud dynamics.
Elena Terzić, Arnau Miró, Paolo Lazzari, Emanuele Organelli, and Fabrizio D'Ortenzio
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-473, https://doi.org/10.5194/bg-2020-473, 2021
Preprint withdrawn
Short summary
Short summary
This study integrates numerical simulations (using a multi-spectral optical model) with in-situ measurements of floats and remotely sensed observations from satellites. It aims at improving our current understanding of the impact that different constituents (such as pure water, colored dissolved organic matter, detritus and phytoplankton) have on the in-water light propagation.
Valeria Di Biagio, Gianpiero Cossarini, Stefano Salon, and Cosimo Solidoro
Biogeosciences, 17, 5967–5988, https://doi.org/10.5194/bg-17-5967-2020, https://doi.org/10.5194/bg-17-5967-2020, 2020
Short summary
Short summary
Events that influence the functioning of the Earth’s ecosystems are of interest in relation to a changing climate. We propose a method to identify and characterise
wavesof extreme events affecting marine ecosystems for multi-week periods over wide areas. Our method can be applied to suitable ecosystem variables and has been used to describe different kinds of extreme event waves of phytoplankton chlorophyll in the Mediterranean Sea, by analysing the output from a high-resolution model.
Giuliana Rossi, Gualtiero Böhm, Angela Saraò, Diego Cotterle, Lorenzo Facchin, Paolo Giurco, Renata Giulia Lucchi, Maria Elena Musco, Francesca Petrera, Stefano Picotti, and Stefano Salon
Geosci. Commun., 3, 381–392, https://doi.org/10.5194/gc-3-381-2020, https://doi.org/10.5194/gc-3-381-2020, 2020
Short summary
Short summary
We organized an exhibition on the climate crisis using high-quality images shot by scientists, who are amateur photographers, during their campaigns in glacier regions. Working-age people, attracted by the gorgeous images, received the message that such beauty is in danger of vanishing. Twice, the visitors could talk directly with the experts to discuss geoscience, photography, and aesthetic choices and, of course, climate change, a problem that each of us has to play a part in to solve.
Elena Terzić, Paolo Lazzari, Emanuele Organelli, Cosimo Solidoro, Stefano Salon, Fabrizio D'Ortenzio, and Pascal Conan
Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019, https://doi.org/10.5194/bg-16-2527-2019, 2019
Short summary
Short summary
Measuring ecosystem properties in the ocean is a hard business. Recent availability of data from Biogeochemical-Argo floats can help make this task easier. Numerical models can integrate these new data in a coherent picture and can be used to investigate the functioning of ecosystem processes. Our new approach merges experimental information and model capabilities to quantitatively demonstrate the importance of light and water vertical mixing for algae dynamics in the Mediterranean Sea.
Gianpiero Cossarini, Stefano Querin, Cosimo Solidoro, Gianmaria Sannino, Paolo Lazzari, Valeria Di Biagio, and Giorgio Bolzon
Geosci. Model Dev., 10, 1423–1445, https://doi.org/10.5194/gmd-10-1423-2017, https://doi.org/10.5194/gmd-10-1423-2017, 2017
Short summary
Short summary
The BFMCOUPLER (v1.0) is a coupling scheme that links the MITgcm and BFM models for ocean biogeochemistry simulations. The online coupling is based on an open-source code characterizd by a modular structure. Modularity preserves the potentials of the two models, allowing for a sustainable programming effort to handle future evolutions in the two codes. The BFMCOUPLER code is released along with an idealized problem (a cyclonic gyre in a mid-latitude closed basin).
E. Akoglu, S. Libralato, B. Salihoglu, T. Oguz, and C. Solidoro
Geosci. Model Dev., 8, 2687–2699, https://doi.org/10.5194/gmd-8-2687-2015, https://doi.org/10.5194/gmd-8-2687-2015, 2015
Short summary
Short summary
Ecosystem-based marine management requires coupling/integrating multiple models in one unified scheme. The widely adopted Ecopath with Ecosim (EwE) is potentially a crucial high trophic level component of such schemes. However, being written in Visual Basic, integration of EwE with physical and/or biogeochemical oceanographic models, which were mostly written in Fortran, is complicated. We release a re-coding of EwE in Fortran (EwE-F) so as to facilitate its coupling/integration in such schemes.
G. Cossarini, P. Lazzari, and C. Solidoro
Biogeosciences, 12, 1647–1658, https://doi.org/10.5194/bg-12-1647-2015, https://doi.org/10.5194/bg-12-1647-2015, 2015
L. Feudale, A. Manzato, and S. Micheletti
Adv. Sci. Res., 10, 77–84, https://doi.org/10.5194/asr-10-77-2013, https://doi.org/10.5194/asr-10-77-2013, 2013
Related subject area
Approach: Operational Oceanography | Depth range: All Depths | Geographical range: Mediterranean Sea | Phenomena: Biological Processes
Pre-operational short-term forecasts for Mediterranean Sea biogeochemistry
P. Lazzari, A. Teruzzi, S. Salon, S. Campagna, C. Calonaci, S. Colella, M. Tonani, and A. Crise
Ocean Sci., 6, 25–39, https://doi.org/10.5194/os-6-25-2010, https://doi.org/10.5194/os-6-25-2010, 2010
Cited articles
Álvarez, M., Sanleón-Bartolomé, H., Tanhua, T., Mintrop, L.,
Luchetta, A., Cantoni, C., Schroeder, K., and Civitarese, G.: The CO2 system in the Mediterranean Sea: a basin wide perspective, Ocean Sci., 10, 69–92, https://doi.org/10.5194/os-10-69-2014, 2014.
Artuso, F., Chamard, P., Piacentino, S., Sferlazzo, D. M., De Silvestri, L.,
di Sarra, A., Meloni, D., and Monteleone, F.: Influence of transport and trends in atmospheric CO2 at Lampedusa, Atmos. Environ., 43, 3044–3051, 2009.
Ayata, S. D., Irisson, J. O., Aubert, A., Berline, L., Dutay, J. C., Mayot, N., Nieblas, A.-E., D'Ortenzio, F., Palmièri, J., Reygondeau, G., and
Rossi, V.: Regionalisation of the Mediterranean basin, a MERMEX synthesis,
Prog. Oceanogr., 163, 7–20, https://doi.org/10.1016/j.pocean.2017.09.016, 2018
Bell, M. J., Schiller, A., Le Traon, P.-Y., Smith, N. R., Dombrowsky, E., and
Wilmer-Becker, K.: An introduction to GODAE OceanView, J. Oper. Oceanogr.,
8, s2–s11, https://doi.org/10.1080/1755876X.2015.1022041, 2015.
Bergametti, G., Remoudaki, E., Losno, R., Steiner, E., and Chatenet, B.: Source, transport and deposition of atmospheric Phosphorus over the northwestern Mediterranean, J. Atmos. Chem.. 14, 501–513, 1992.
Berx, B., Dickey-Collas, M., Skogen, M. D., de Roeck, Y. H., Klein, H., Barciela, R., Forster, R. M., Dombrowsky, E., Huret, M., Payne, M., Sagarminaga, Y., and Schrum, C.: Does Operational Oceanography Address the Needs of Fisheries and Applied Environmental Scientists?, Oceanography, 24, 166–171, https://doi.org/10.5670/oceanog.2011.14, 2011.
Bittig, H. C., Körtzinger, A., Neill, C., van Ooijen, E., Plant, J. N.,
Hahn, J., Johnson, K. S., Yang, B., and Emerson, S. R.: Oxygen Optode Sensors: Principle, Characterization, Calibration, and Application in the Ocean, Front. Mar. Sci., 4, 429, https://doi.org/10.3389/fmars.2017.00429, 2018.
Bolzon, G., Cossarini, G., Lazzari, P., Salon, S., Teruzzi, A., Crise, A.,
and Solidoro, C.: Mediterranean Sea biogeochemical analysis and forecast
(CMEMS MED AF-Biogeochemistry 2015–2018), Copernicus Monitoring Environment
Marine Service, https://doi.org/10.25423/CMCC/MEDSEA_ANALYSIS
_FORECAST_BIO_006_014, 2018.
Bosc, E., Bricaud, A., and Antoine, D.: Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of Sea-WiFS observations, Global Biogeochem. Cy., 18, GB1005, https://doi.org/10.1029/2003GB002034, 2004
Clementi, E., Oddo, P., Drudi, M., Pinardi, N., Korres, G., and Grandi, A.:
Coupling hydrodynamic and wave models: first step and sensitivity experiments in the Mediterranean Sea, Ocean Dynam., 67, 1293–1312, https://doi.org/10.1007/s10236-017-1087-7, 2017.
Clementi, E., Grandi, A., Di Pietro, P., Pistoia, J., and Mattia, G.: Quality Information Document for MEDSEA_ANALYSIS_FORECAST_PHY_006_013, Copernicus Marine Environment Monitoring Service, available at: http://cmems-resources.cls.fr/documents/QUID/CMEMS-MED-QUID-006-013.pdf (last access: 25 July 2019), 2018.
Colella, S.: La produzione primaria nel Mar Mediterraneo da satellite:
sviluppo di un modello regionale e sua applicazione ai dati SeaWiFS, MODIS e
MERIS, PhD Thesis, Università Federico II, Napoli, 162 pp., 2006.
Copin-Montegut C.: Alkalinity and carbon budgets in the Mediterranean Sea,
Global Biogeochem. Cy., 7, 915–925, 1993.
Cornell, S., Rendell, A., and Jickells, T.: Atmospheric inputs of dissolved
organic Nitrogen to the oceans, Nature, 376, 243–246, 1995.
Cossarini, G., Lazzari, P., and Solidoro, C.: Spatiotemporal variability of
alkalinity in the Mediterranean Sea, Biogeosciences, 12, 1647–1658,
https://doi.org/10.5194/bg-12-1647-2015, 2015.
Cossarini, G., Mariotti, L., Feudale, L., Teruzzi, A., D'Ortenzio, F., Tallandier, V., and Mignot, A.: Towards operational 3D-Var assimilation of
chlorophyll Biogeochemical-Argo float data into a biogeochemical model of the Mediterranean Sea, Ocean Model., 133, 112–128, https://doi.org/10.1016/j.ocemod.2018.11.005, 2019.
Cristini, L., Lampitt, R. S., Cardin, V., Delory, E., Haugan, P., O'Neill, N., Petihakis, G., and Ruhl, H. A.: Cost and value of multidisciplinary
fixed-point ocean observatories, Mar. Policy, 71, 138–146, https://doi.org/10.1016/j.marpol.2016.05.029, 2016.
de la Paz, M., Huertas, E. M., Padín, X.-A., Gónzalez-Dávila, M., Santana-Casiano, M., Forja, J. M., Orbi, A., Pérez, F. F., and Ríos,
A. F.: Reconstruction of the seasonal cycle of air–sea CO2 fluxes in the Strait of Gibraltar, Mar. Chem., 126, 155–162, 2011.
Dobricic, S. and Pinardi, N.: An oceanographic three-dimensional variational data assimilation scheme, Ocean Model., 22, 89–105, https://doi.org/10.1016/j.ocemod.2008.01.004, 2008.
D'Ortenzio, F. and Ribera d'Alcalà, M.: On the trophic regimes of the
Mediterranean Sea: a satellite analysis, Biogeosciences, 6, 139–148,
https://doi.org/10.5194/bg-6-139-2009, 2009.
Estrada, M., Latasa, M., Emelianov, M., Gutiérrez-Rodríguez, A.,
Fernández-Castro, B., Isern-Fontanet, J., Mouriño-Carballido, B., Salat, J., and Vidal, M.: Seasonal and mesoscale variability of primary
production in the deep winter-mixing region of the NW Mediterranean, Deep-Sea Res. Pt. I, 94, 45–61, 2014.
Fennel, K., Gehlen, M., Brasseur, P., Brown, C. W., Ciavatta, S., Cossarini, G., Crise, A., Edwards, C. A., Ford, D., Friedrichs, M. A. M., Gregoire, M.,
Jones, E., Kim, H.-C., Lamouroux, J., Murtugudde, R., Perruche, C., and the
GODAE OceanView Marine Ecosystem Analysis and Prediction Task Team: Advancing Marine Biogeochemical and Ecosystem Reanalyses and Forecasts as Tools for Monitoring and Managing Ecosystem Health, Front. Mar. Sci., 6, 1–9,
https://doi.org/10.3389/fmars.2019.00089, 2019.
Foujols, M.-A., Lévy, M., Aumont, O., and Madec, G.: OPA 8.1 Tracer Model Reference Manual, Institut Pierre Simon Laplace, France, 39 pp., 2000.
Garcia, H. E. and Gordon, L. I.: Oxygen solubility in seawater: Better fitting equations, Limnol. Oceanogr., 37, 1307–1312, 1992.
Gehlen, M., Barciela, R., Bertino, L., Brasseur, P., Butenschön, M., Chai, F., Crise, A., Drillet, Y., Ford, D., Lavoie, D., Lehodey, P., Perruche, C., Samuelsen, A., and Simon, E.: Building the capacity for
forecasting marine biogeochemistry and ecosystems: recent advances and future developments, J. Oper. Oceanogr., 8, s168–s187, https://doi.org/10.1080/1755876X.2015.1022350, 2015.
Gregg, W. W., Friedrichs, M. A., Robinson, A. R., Rose, K. A., Schlitzer, R., Thompson, K. R., and Doney, S. C.: Skill assessment in ocean biological data assimilation, J. Mar. Syst., 76, 16–33, https://doi.org/10.1016/j.jmarsys.2008.05.006, 2009.
Guerzoni, S., Chester, R., Dulac, F., Herut, B., Loÿe-Pilot, M.-D., Measures, C., Migon, C., Molinaroli, E., Moulin, C., Rossini, P., Saydam, C., Soudine, A., and Ziveri, P.: The role of atmospheric deposition in the
biogeochemistry of the Mediterranean Sea, Prog. Oceanogr., 44, 147–190, 1999.
Guyennon, A., Baklouti, M., Diaz, F., Palmieri, J., Beuvier, J.,
Lebaupin-Brossier, C., Arsouze, T., Béranger, K., Dutay, J.-C., and
Moutin, T.: New insights into the organic carbon export in the Mediterranean
Sea from 3-D modeling, Biogeosciences, 12, 7025–7046, https://doi.org/10.5194/bg-12-7025-2015, 2015.
Hernandez, F., Blockley, E., Brassington, G. B., Davidson, F., Divakaran, P.,
Drévillon, M., Ishizaki, S., Garcia-Sotillo, M., Hogan, J., Lagemaa, P., Levier, B., Martin, M., Mehra, A., Mooers, C., Ferry, N., Ryan, A., Regnier, C., Sellar, A., Smith, G. C., Sofianos, S., Spindler, T., Volpe, G., Wilkin, J., Zaron, E. D., and Zhang, A.: Recent progress in performance evaluations and near real-time assessment of operational ocean products, J. Oper. Oceanogr., 8, 221–238, https://doi.org/10.1080/1755876X.2015.1050282, 2015.
Hernandez, F., Smith, G., Baetens, K., Cossarini G., Garcia-Hermosa, I.,
Drévillon, M., Maksymczuk, J., Melet, A., Régnier, C., and von Schuckmann, K.: Measuring performances, skill and accuracy in operational
oceanography: New challenges and approaches, in: New Frontiers in Operational Oceanography, edited by: Chassignet, E., Pascual, A., Tintoré, J., and Verron, J., GODAE OceanView, printed by: CreateSpace Independent Publishing Platform, 759–796, https://doi.org/10.17125/gov2018, 2018.
Herut, B. and Krom, M.: Atmospheric input of nutrients and dust to the SE Mediterranean, in: The Impact of Desert Dust Across the Mediterranean,
edited by: Guerzoni, S. and Chester, R., Kluwer Acad., Norwell, Mass.,
349–358, 1996.
Huertas, I. E., Ríos, A. F., García-Lafuente, J., Makaoui, A.,
Rodríguez-Gálvez, S., Sánchez-Román, A., Orbi, A., Ruíz, J., and Pérez, F. F.: Anthropogenic and natural CO2 exchange
through the Strait of Gibraltar, Biogeosciences, 6, 647–662, https://doi.org/10.5194/bg-6-647-2009, 2009.
Ingleby, B. and Huddleston, M.: Quality control of ocean temperature and
salinity profiles – Historical and real-time data, J. Mar. Syst., 65,
158–175, https://doi.org/10.1016/j.jmarsys.2005.11.019, 2007.
Johnson, K. S. and Claustre, H.: Bringing biogeochemistry into the Argo age,
Eos, 97, 1–12, https://doi.org/10.1029/2016EO062427, 2016.
Johnson, K. S. and Coletti, L. J.: In situ ultraviolet spectrophotometry for
high resolution and long-term monitoring of nitrate, bromide and bisulfide
in the ocean, Deep-Sea Res. Pt. I, 49, 1291–1305, https://doi.org/10.1016/S0967-0637(02)00020-1, 2002.
Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M., Riser, S. C., Swift, D. D., Williams, N. L., Boss, E., Haëntjens, N.,
Talley, L. D., and Sarmiento, J. L.: Biogeochemical sensor performance in the
SOCCOM profiling float array, J. Geophys. Res.-Oceans, 122, 6416–6436,
https://doi.org/10.1002/2017JC012838, 2017.
Lavigne, H., D'ortenzio, F., d'Alcalà, M. R., Claustre, H., Sauzède, R., and Gacic, M.: On the vertical distribution of the chlorophyll a
concentration in the Mediterranean Sea: a basin-scale and seasonal approach,
Biogeosciences, 12, 5021–5039, https://doi.org/10.5194/bg-12-5021-2015, 2015.
Lazzari, P., Teruzzi, A., Salon, S., Campagna, S., Calonaci, C., Colella, S., Tonani, M., and Crise A.: Pre-operational short-term forecasts for the
Mediterranean Sea biogeochemistry, Ocean Sci., 6, 25–39, https://doi.org/10.5194/os-6-25-2010, 2010.
Lazzari, P., Solidoro, C., Ibello, V., Salon, S., Teruzzi, A., Béranger, K., Colella, S., and Crise, A.: Seasonal and interannual variability of
plankton chlorophyll and primary production in the Mediterranean Sea: a
modelling approach, Biogeosciences, 9, 217–233, https://doi.org/10.5194/bg-9-217-2012, 2012.
Lazzari, P., Solidoro, C., Salon, S., and Bolzon, G.: Spatial variability of
phosphate and nitrate in the Mediterranean Sea: a modelling approach, Deep-Sea Res. Pt. I, 108, 39–52, https://doi.org/10.1016/j.dsr.2015.12.006, 2016.
Le Traon, P. Y., Alfatih, A., Alvarez Fanjul, E., et al.: The Copernicus Marine Environmental Monitoring Service: Main Scientific Achievements and Future Prospects, Special Issue Mercator Océan Journal, 56, 1–101, https://doi.org/10.25575/56, 2017.
Lévy, M., Resplandy, L., Klein, P., Capet, X., Iovino, D., and Éthé, C.: Grid degradation of submesoscale resolving ocean models:
Benefits for offline passive tracer transport, Ocean Model., 48, 1–9, 2012.
Lewis, E. and Wallace, D. W. R.: Program Developed for CO2 System
Calculations, ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center,
Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, available at: http://cdiac.ornl.gov/oceans/co2rprt.html and https://salish-sea.pnnl.gov/media/ORNL-CDIAC-105.pdf (last access: 25 July 2019), 1998.
Loÿe-Pilot, M. D., Martin, J. M., and Morelli, J.: Atmospheric input of
inorganic nitrogen to the western Mediterranean, Biogeochemistry, 9, 117–134, 1990.
Macias, D., Stips, A., and Garcia-Gorriz, E.: The relevance of deep chlorophyll maximum in the open Mediterranean Sea evaluated through 3d hydrodynamic-biogeochemical coupled simulations, Ecol. Model., 281, 26–37, 2014.
Madec, G. and the NEMO team: NEMO ocean engine: v3.6 stable, Note du Pôle de modélisation de l'Institut Pierre-Simon Laplace, France, 27, 1288–1619, 2016.
Manca, B., Burca, M., Giorgetti, A., Coatanoan, C., Garcia, M. J., and Iona, A.: Physical and biochemical averaged vertical profiles in the Mediterranean
regions: an important tool to trace the climatology of water masses and to
validate incoming data from operational oceanography, J. Mar. Syst., 48,
83–116, https://doi.org/10.1016/j.jmarsys.2003.11.025, 2004.
Mattern, J. P., Edwards, C. A., and Moore, A. M.: Improving variational data
assimilation through background and observation error adjustments, Mon.
Weather Rev., 146, 485–501, https://doi.org/10.1175/MWR-D-17-0263.1, 2018.
Mattia, G., Zavatarelli, M., Vichi, M., and Oddo, P.: The eastern Mediterranean Sea biogeochemical dynamics in the 1990s: A numerical study, J. Geophys. Res.-Oceans, 118, 2231–2248, 2013.
Mayot, N., D'Ortenzio, F., Taillandier, V., Prieur, L., Pasqueron de De
Fommervault, O., Claustre, H., Bosse, A., Testor, P., and Conan, P.: Physical
and biogeochemical controls of the phytoplankton blooms in North Western
Mediterranean Sea: A multiplatform approach over a complete annual cycle
(2012–2013 DEWEX experiment), J. Geophys. Res.-Oceans, 122, 9999–10019, 2017.
Melaku Canu, D., Ghermandi, A., Nunes, P. A. L. D., Cossarini, G., Lazzari, P., and Solidoro, C.: Estimating the value of carbon sequestration ecosystem
services in the Mediterranean Sea: An ecological economics approach, Global
Environ. Change, 32, 87–95, https://doi.org/10.1016/j.gloenvcha.2015.02.008, 2015.
Mignot, A., D'Ortenzio, F., Taillandier, V., Cossarini, G., and Salon, S.:
Quantifying observational errors in Biogeochemical-Argo oxygen, nitrate and
chlorophyll a concentrations, Geophys. Res. Lett., 46, 4330–4337, https://doi.org/10.1029/2018GL080541, 2019.
Oddo, P., Adani, M., Pinardi, N., Fratianni, C., Tonani, M., and Pettenuzzo,
D.: A Nested Atlantic-Mediterranean Sea General Circulation Model for
Operational Forecasting, Ocean Sci., 5, 461–473, https://doi.org/10.5194/os-5-461-2009, 2009.
Oddo, P., Bonaduce, A., Pinardi, N., and Guarnieri, A.: Sensitivity of the
Mediterranean sea level to atmospheric pressure and free surface elevation
numerical formulation in NEMO, Geosci. Model Dev., 7, 3001–3015, https://doi.org/10.5194/gmd-7-3001-2014, 2014.
Oke, P. R. and Sakov, P.: Representation error of oceanic observations for
data assimilation, J. Atmos. Ocean. Tech., 25, 1004–1017, https://doi.org/10.1175/2007JTECHO558.1, 2008.
Oreskes, N., Shrader-Frechette, K., and Belitz, K.: Verification, validation, and confirmation of numerical models in the earth sciences, Science, 263, 641–645, https://doi.org/10.1126/science.263.5147.641, 1994.
Pasqueron de Fommervault, O., D'Ortenzio, F., Mangin, A., Serra, R., Migon, C., Claustre, H., Lavigne, H., d'Alcalà, M. R., Prieur, L., Taillandier,
V., and Schmechtig, C.: Seasonal variability of nutrient concentrations in
the Mediterranean Sea: Contribution of Bio-Argo floats, J. Geophys.
Res.-Oceans, 120, 8528–8550, https://doi.org/10.1002/2015JC011103, 2015.
Payne, M. R., Hobday, A. J., MacKenzie, B. R., Tommasi, D., Dempsey, D. P.,
Fässler, S. M. M., Haynie, A. C., Ji, R., Liu, G., Lynch, P. D., Matei, D., Miesner, A. K., Mills, K. E., Strand, K. O., and Villarino, E.: Lessons from the First Generation of Marine Ecological Forecast Products, Front. Mar.
Sci., 4, 1–15, https://doi.org/10.3389/fmars.2017.00289, 2017.
Petihakis, G., Perivoliotis, L., Korres, G., Ballas, D., Frangoulis, C.,
Pagonis, P., Ntoumas, M., Pettas, M., Chalkiopoulos, A., Sotiropoulou, M.,
Bekiari, M., Kalampokis, A., Ravdas, M., Bourma, E., Christodoulaki, S.,
Zacharioudaki, A., Kassis, D., Potiris, E., Triantafyllou, G., Tsiaras, K.,
Krasakopoulou, E., Velanas, S., and Zisis, N.: An integrated open-coastal
biogeochemistry, ecosystem and biodiversity observatory of the eastern
Mediterranean – the Cretan Sea component of the POSEIDON system, Ocean
Sci., 14, 1223–1245, https://doi.org/10.5194/os-14-1223-2018, 2018.
Pistoia, J., Clementi, E., Delrosso, D., Mattia, G., Fratianni, C., Drudi, M., Grandi, A., Padeletti, D., Di Pietro, P., Storto, A., and Pinardi, N.:
Last improvements in the data assimilation scheme for the Mediterranean
Analysis and Forecast system of the Copernicus Marine Service, in: Operational Oceanography serving Sustainable Marine Development, Proceedings
of the Eight EuroGOOS International Conference, 3–5 October 2017, Bergen, Norway, 335–342, 2018.
Raghukumar, K., Edwards, C. A, Goebel, N. L., Broquet, G., Veneziani, M.,
Moore, A. M., and Zehr, J. P.: Impact of assimilating physical oceanographic data on modeled ecosystem dynamics in the California Current System, Prog.
Ocean., 138, 546–558, https://doi.org/10.1016/j.pocean.2015.01.004, 2015.
Ravdas, M., Zacharioudaki, A., and Korres, G.: Implementation and validation of a new operational wave forecasting system of the Mediterranean Monitoring and Forecasting Centre in the framework of the Copernicus Marine Environment Monitoring Service, Nat. Hazards Earth Syst. Sci., 18, 2675–2695, https://doi.org/10.5194/nhess-18-2675-2018, 2018.
Ribera d'Alcalà, M., Civitarese, G., Conversano, F., and Lavezza, R.: Nutrient ratios and fluxes hint at overlooked processes in the Mediterranean Sea, J. Geophys. Res., 108, 8106, https://doi.org/10.1029/2002JC001650, 2003.
Richon, C., Dutay, J.-C., Dulac, F., Wang, R., Balkanski, Y., Nabat, P., Aumont, O., Desboeufs, K., Laurent, B., Guieu, C., Raimbault, P., and
Beuvier, J.: Modeling the impacts of atmospheric deposition of nitrogen and
desert dust-derived phosphorus on nutrients and biological budgets of the
Mediterranean Sea, Prog. Ocean., 163, 21–39, https://doi.org/10.1016/j.pocean.2017.04.009, 2017.
Roesler, C., Uitz, J., Claustre, H., Boss, E., Xing, X., Organelli, E., Briggs, N., Bricaud, A., Schmechtig, C., Poteau, A., D'Ortenzio, F., Ras, J., Drapeau, S., Haëntjens, N., and Barbieux, M.: Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll
fluorometers: A global analysis of WET Labs ECO sensors, Limnol.
Oceanogr.-Meth., 15, 572–585, https://doi.org/10.1002/lom3.10185, 2017.
Ryan, A. G., Regnier, C., Divakaran, P., Spindler, T., Mehra, A., Smith, A. G., Davidson, F., Hernandez, F., Maksymczuk, J., and Liu, Y.: GODAE OceanView
Class 4 forecast verification framework: global ocean inter-comparison, J.
Oper. Oceanogr., 8, s98–s111, https://doi.org/10.1080/1755876X.2015.1022330, 2015.
Salon, S., Cossarini, G., Lazzari, P., Teruzzi, A., Di Cerbo, P., Bolzon, G., Feudale, L., Solidoro, C., and Crise, A.: High resolution operational analysis and forecasts for the Mediterranean Sea biogeochemistry.
Operational Oceanography serving Sustainable Marine Development, in:
Proceedings of the Eight EuroGOOS International Conference, 3–5 October 2017, Bergen, Norway, 285–294, 2018.
Schmechtig, C. and Thierry, V.: Argo quality control manual for biogeochemical data, The Bio Argo Team, CNRS, UMR 7093, LOV, Observatoire Océanologique, Bio-Argo Group, Villefranche-sur-Mer, France, https://doi.org/10.13155/40879, 2016.
Severin, T., Kessouri, F., Rembauville, M., Sánchez-Pérez, E. D.,
Oriol, L., Caparros, J., Pujo-Pay, M., Ghiglione, J. F., D'Ortenzio, F.,
Taillandier, V., and Mayot, N.: Open-ocean convection process: A driver of
the winter nutrient supply and the spring phytoplankton distribution in the
Northwestern Mediterranean Sea, J. Geophys. Res.-Oceans, 122, 4587–4601, 2017.
She, J., Allen, I., Buch, E., Crise, A., Johannessen, J. A., Le Traon, P.-Y., Lips, U., Nolan, G., Pinardi, N., Reißmann, J. H., Siddorn, J., Stanev, E., and Wehde, H.: Developing European operational oceanography for Blue Growth, climate change adaptation and mitigation, and ecosystem-based management, Ocean Sci., 12, 953–976, https://doi.org/10.5194/os-12-953-2016, 2016.
Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., Ribera d'Alcalá, M., Vaqué, D., and Zingone, A.: Plankton in the open
Mediterranean Sea: a review, Biogeosciences, 7, 1543–1586,
https://doi.org/10.5194/bg-7-1543-2010, 2010.
Storto, A., Masina, S., and Navarra, A.: Evaluation of the CMCC
eddy-permitting global ocean physical reanalysis system (C-GLORS, 1982–2012)
and its assimilation components, Q. J. Roy. Meteorol. Soc., 142, 738–758,
https://doi.org/10.1002/qj.2673, 2015.
Stow, C. A., Jolliff, J., McGillicuddy Jr., D. J., Doney, S. C., Allen, J. I., Friedrichs, M. A. M., Rose, K. A., and Wallhead, P.: Skill assessment for coupled biological/physical models of marine systems, J. Mar. Syst., 76, 4–15, https://doi.org/10.1016/j.jmarsys.2008.03.011, 2009.
Takeshita, Y., Martz, T. R., Johnson, K. S., Plant, J. N., Gilbert, D., Riser, S. C., Neill, C., and Tilbrook, B.: A climatology-based quality control procedure for profiling float oxygen data: Qc Procedure for Profiling Float Oxygen, J. Geophys. Res.-Oceans, 118, 5640–5650, https://doi.org/10.1002/jgrc.20399, 2013.
Tanhua, T., Hainbucher, D., Schroeder, K., Cardin, V., Álvarez, M., and
Civitarese, G.: The Mediterranean Sea system: a review and an introduction
to the special issue, Ocean Sci., 9, 789–803, https://doi.org/10.5194/os-9-789-2013, 2013.
Teruzzi, A., Salon, S., Bolzon, G., Lazzari, P., Ficarelli, F., Solidoro, C., and Crise, A.: Operational forecasts of the biogeochemical state of
Mediterranean Sea, Mercator Ocean Quarterly Newsletter, 40, 15–25, available
at: https://www.mercator-ocean.fr/wp-content/uploads/2015/05/Mercator-Ocean-newsletter-2011_40.pdf (last access: 25 July 2019), 2011.
Teruzzi, A., Dobricic, S., Solidoro, C., and Cossarini, G.: A 3D variational
assimilation scheme in coupled transport biogeochemical models: Forecast of
Mediterranean biogeochemical properties, J. Geophys. Res.-Oceans, 119, 200–217, https://doi.org/10.1002/2013JC009277, 2014.
Teruzzi, A., Bolzon, G., Salon, S., Lazzari, P., Solidoro, C., and Cossarini, G.: Assimilation of coastal and open sea biogeochemical data to improve phytoplankton modelling in the Mediterranean Sea, Ocean Model., 132, 46–60, https://doi.org/10.1016/j.ocemod.2018.09.007, 2018.
Teruzzi, A., Di Cerbo, P., Cossarini, G., Pascolo, E., and Salon, S.: Parallel implementation of a data assimilation scheme for operational oceanography: the case of the OGSTM-BFM model system, Comput. Geosci., 124, 103–114, https://doi.org/10.1016/j.cageo.2019.01.003, 2019a.
Teruzzi, A., Feudale, L., Cossarini, G., Salon, S., Bolzon, G., and Lazzari, P.: Quality Information Document for MEDSEA_ANALYSIS_FORECAST_BIO_006_014, Copernicus Marine Environment Monitoring Service, available at: http://resources.marine.copernicus.eu/documents/QUID/CMEMS-MED-QUID-006-014.pdf (last access: 25 July 2019), 2019b.
Thierry, V. and Bittig, H.: The Argo-Bgc Team: Argo quality control manual for dissolved oxygen concentration, Version 2.0, 23 October 2018, IFREMER for Argo BGC Group, Villefranche-sur-Mer, France, p. 33, https://doi.org/10.13155/46542, 2018.
Tonani, M., Pinardi, N., Dobricic, S., Pujol, I., and Fratianni, C.: A
high-resolution free-surface model of the Mediterranean Sea, Ocean Sci., 4,
1–14, https://doi.org/10.5194/os-4-1-2008, 2008.
Tonani, M., Nilsson, J. A. U., Lyubartsev, V., Grandi, A., Aydogdu, A.,
Azzopardi, J., Bolzon, G., Bruschi, A., Drago, A., Garau, T., Gatti, J., Gertman, I., Goldman, R., Hayes, D., Korres, G., Lorente, P., Malacic, V.,
Mantziafou, A., Nardone, G., Olita, A., Ozsoy, E., Pairaud, I., Pensieri, S., Perivoliotis, L., Petelin, B., Ravaioli, M., Renault, L., Sofianos, S.,
Sotillo, M. G., Teruzzi, A., and Zodiatis, G.: Operational evaluation of the
Mediterranean Monitoring and Forecasting Centre products: implementation and
results, Ocean Sci. Discuss., 9, 1813–1851, https://doi.org/10.5194/osd-9-1813-2012, 2012.
Tonani, M., Salon, S., Korres, G., Bolzon, G., Clementi, E., Cossarini, G.,
Crise, A., Drudi, M., Fratianni, C., Girardi, G., Guarnieri, A., Marino, S.,
Oddo, P., Pinardi, N., Simoncelli, S., Solidoro, S., and Teruzzi, A.: The
Mediterranean Monitoring and Forecasting Centre, a component of the MyOcean
System, in: EGU General Assembly 2013, 7–12 April 2013, Vienna, Austria,
p. 13628, 2013.
Tsiaras, K. P., Hoteit, I., Kalaroni, S., Petihakis, G., and Triantafyllou,
G.: A hybrid ensemble-OI Kalman filter for efficient data assimilation into
a 3-D biogeochemical model of the Mediterranean, Ocean Dynam., 67, 673–690, 2017.
Vichi, M., Pinardi, N., and Masina, S.: A generalized model of pelagic
biogeochemistry for the global ocean ecosystem. Part I: theory, J. Mar. Syst., 64, 89–109, https://doi.org/10.1016/j.jmarsys.2006.03.006, 2007a.
Vichi, M., Masina, S., and Navarra, A.: A generalized model of pelagic
biogeochemistry for the global ocean ecosystem. Part II: numerical simulations, J. Mar. Syst., 64, 110–134, https://doi.org/10.1016/j.jmarsys.2006.03.014, 2007b.
Vichi, M., Lovato, T., Lazzari, P., Cossarini, G., Gutierrez, E., Mattia, G.,
Masina, S., McKiver, W. J., Pinardi, N., Solidoro, C., Tedesco, L., and
Zavatarelli, M.: The Biogeochemical Flux Model (BFM): Equation Description
and User Manual, BFM version 5.1, BFM Report series N. 1, Release 1.1, July 2015, Bologna, Italy, 104 pp., http://bfm-community.eu (last access: 25 July 2019), 2015.
Volpe, G., Santoleri, R., Vellucci, V., Ribera d'Alcala, M., Marullo, S.,
and D'Ortenzio, F.: The colour of the Mediterranean Sea: Global versus
regional bio-optical algorithms evaluation and implication for satellite
chlorophyll estimates, Remote Sens. Environ., 107, 625–638, https://doi.org/10.1016/j.rse.2006.10.017, 2007.
Volpe, G., Colella, S., Forneris, V., Tronconi, C., and Santoleri, R.: The
Mediterranean Ocean Colour Observing System – system development and product
validation, Ocean Sci., 8, 869–883, https://doi.org/10.5194/os-8-869-2012, 2012.
Volpe, G., Pitarch, J., Colella, S., Brando, V. E., Forneris, V., Bracaglia,
M., and Benincasa, M.: Quality Information Document for the OCTAC Products –
Ocean Colour Mediterranean and Black Sea Observation Product, Copernicus
Monitoring Environment Marine Service, available at: http://resources.marine.copernicus.eu/documents/QUID/CMEMS-OC-QUID-009-038to045-071-073-078-079-095-096.pdf (last access: 25 July 2019), 2017.
von Schuckmann, K., Le Traon, P.-Y., Alvarez-Fanjul, E., Axell, L.,
Balmaseda, M., Breivik, L.-A., Brewin, R. J. W., Bricaud, C., Drevillon, M., Drillet, Y., Dubois, C., Embury, O., Etienne, H., García Sotillo, M., Garric, G., Gasparin, F., Gutknecht, E., Guinehut, S., Hernandez, F., Juza, M., Karlson, B., Korres, G., Legeais, J.-F., Levier, B., Lien, V. S., Morrow, R., Notarstefano, G., Parent, L., Pascual, A., Pérez-Gómez, B., Perruche, C., Pinardi, N., Pisano, A., Poulain, P.-M., Pujol, I. M., Raj, R. P., Raudsepp, U., Roquet, H., Samuelsen, A., Sathyendranath, S., She, J., Simoncelli, S., Solidoro, C., Tinker,J., Tintoré, J., Viktorsson, L., Ablain, M., Almroth-Rosell, E., Bonaduce, A., Clementi, E., Cossarini, G., Dagneaux, Q., Desportes, C., Dye, S., Fratianni, C., Good, S., Greiner, E., Gourrion, J., Hamon, M., Holt, J., Hyder, P., Kennedy, J., Manzano-Muñoz, F., Melet, A., Meyssignac, B., Mulet, S., Buongiorno Nardelli, B., O'Dea, E., Olason, E., Paulmier, A., Pérez-González, I., Reid, R., Racault, M.-F., Raitsos, D. E., Ramos, A., Sykes, P., Szekely, T., and Verbrugge, N.: The Copernicus Marine Environment Monitoring Service Ocean State Report, J. Oper. Oceanogr., 9, s235–s320, https://doi.org/10.1080/1755876X.2016.1273446, 2016.
Xing, X., Morel, A., Claustre, H., Antoine, D., D'Ortenzio, F., and Poteau,
A.: Combined processing and mutual interpretation of radiometry and
fluorometry from autonomous profiling Bio-Argo floats: 2. Colored dissolved
organic matter absorption retrieval, J. Geophys. Res.-Oceans, 117, C04022,
https://doi.org/10.1029/2011JC007632, 2012.
Weiss, R. F.: The solubility of nitrogen, oxygen and argon in water and
seawater, Deep-Sea Res., 17, 721–735, 1970.
Yu, L., Fennel, K., Bertino, L., El Gharamti, M., and Thompson, K. R.: Insights on multivariate updates of physical and biogeochemical ocean
variables using an Ensemble Kalman Filter and an idealized model of upwelling, Ocean Model., 126, 13–28, https://doi.org/10.1016/j.ocemod.2018.04.005, 2018.
Zacharioudaki, A., Ravdas, M., and Korres, G.: Quality Information Document
for MEDSEA_ANALYSIS_FORECAST_WAV_006_017, Copernicus Marine Environment
Monitoring Service, available at: http://cmems-resources.cls.fr/documents/QUID/CMEMS-MED-QUID-006-017.pdf (last access: 25 July 2019), 2018.
Short summary
After 10 years of research and development, validated analysis and forecasts of the main parameters of the Mediterranean Sea biogeochemistry (e.g. phytoplankton, nutrients, oxygen, pH, carbon fluxes) at high spatial and temporal resolution are provided in the frame of the EU Copernicus Marine Environment Monitoring Service. Along with a traditional skill performance assessment, novel metrics exploiting the Biogeochemical Argo floats data are designed to estimate the forecasts uncertainty.
After 10 years of research and development, validated analysis and forecasts of the main...