Articles | Volume 15, issue 3
https://doi.org/10.5194/os-15-809-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-809-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Surface predictor of overturning circulation and heat content change in the subpolar North Atlantic
Damien G. Desbruyères
CORRESPONDING AUTHOR
Ifremer, University of Brest, CNRS, IRD, Laboratoire d'Océanographie Physique et Spatiale, IUEM, Ifremer centre de Bretagne, Plouzané, 29280, France
Herlé Mercier
University of Brest, CNRS, Ifremer, IRD, Laboratoire d'Océanographie Physique et Spatiale, IUEM, Ifremer centre de Bretagne, Plouzané, 29280, France
Guillaume Maze
Ifremer, University of Brest, CNRS, IRD, Laboratoire d'Océanographie Physique et Spatiale, IUEM, Ifremer centre de Bretagne, Plouzané, 29280, France
Nathalie Daniault
University of Brest, CNRS, Ifremer, IRD, Laboratoire d'Océanographie Physique et Spatiale, IUEM, Ifremer centre de Bretagne, Plouzané, 29280, France
Viewed
Total article views: 3,855 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 20 Feb 2019)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,736 | 1,015 | 104 | 3,855 | 416 | 109 | 87 |
- HTML: 2,736
- PDF: 1,015
- XML: 104
- Total: 3,855
- Supplement: 416
- BibTeX: 109
- EndNote: 87
Total article views: 3,308 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 Jun 2019)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,494 | 718 | 96 | 3,308 | 243 | 104 | 79 |
- HTML: 2,494
- PDF: 718
- XML: 96
- Total: 3,308
- Supplement: 243
- BibTeX: 104
- EndNote: 79
Total article views: 547 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 20 Feb 2019)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
242 | 297 | 8 | 547 | 173 | 5 | 8 |
- HTML: 242
- PDF: 297
- XML: 8
- Total: 547
- Supplement: 173
- BibTeX: 5
- EndNote: 8
Viewed (geographical distribution)
Total article views: 3,855 (including HTML, PDF, and XML)
Thereof 3,420 with geography defined
and 435 with unknown origin.
Total article views: 3,308 (including HTML, PDF, and XML)
Thereof 2,997 with geography defined
and 311 with unknown origin.
Total article views: 547 (including HTML, PDF, and XML)
Thereof 423 with geography defined
and 124 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
43 citations as recorded by crossref.
- Causes of the 2015 North Atlantic cold anomaly in a global state estimate R. Sanders et al. 10.5194/os-18-953-2022
- Should AMOC observations continue: how and why? E. Frajka-Williams et al. 10.1098/rsta.2022.0195
- An outsized role for the Labrador Sea in the multidecadal variability of the Atlantic overturning circulation S. Yeager et al. 10.1126/sciadv.abh3592
- Meridional Connectivity of a 25‐Year Observational AMOC Record at 47°N S. Wett et al. 10.1029/2023GL103284
- TIMCOM model datasets for the CMIP6 Ocean Model Intercomparison Project Y. Tseng et al. 10.1016/j.ocemod.2022.102109
- Latitudinal Structure of the Meridional Overturning Circulation Variability on Interannual to Decadal Time Scales in the North Atlantic Ocean S. Zou et al. 10.1175/JCLI-D-19-0215.1
- Surface‐Forced Variability in the Nordic Seas Overturning Circulation and Overflows M. Årthun 10.1029/2023GL104158
- Labrador sea water spreading and the Atlantic meridional overturning circulation I. Le Bras 10.1098/rsta.2022.0189
- Overturning in the subpolar North Atlantic: a review M. Lozier 10.1098/rsta.2022.0191
- Seasonal Changes in the North Atlantic Cold Anomaly: The Influence of Cold Surface Waters From Coastal Greenland and Warming Trends Associated With Variations in Subarctic Sea Ice Cover D. Allan & R. Allan 10.1029/2019JC015379
- Skilful decadal predictions of subpolar North Atlantic SSTs using CMIP model-analogues M. Menary et al. 10.1088/1748-9326/ac06fb
- The evolution of the North Atlantic Meridional Overturning Circulation since 1980 L. Jackson et al. 10.1038/s43017-022-00263-2
- Air‐Sea Interactions and Water Mass Transformation During a Katabatic Storm in the Irminger Sea O. Gutjahr et al. 10.1029/2021JC018075
- Seasonal overturning variability in the eastern North Atlantic subpolar gyre: a Lagrangian perspective O. Tooth et al. 10.5194/os-19-769-2023
- Reconciling the Relationship Between the AMOC and Labrador Sea in OSNAP Observations and Climate Models M. Menary et al. 10.1029/2020GL089793
- Mechanisms for Late 20th and Early 21st Century Decadal AMOC Variability A. Megann et al. 10.1029/2021JC017865
- Buoyancy forcing and the subpolar Atlantic meridional overturning circulation M. Buckley et al. 10.1098/rsta.2022.0181
- AMOC Recent and Future Trends: A Crucial Role for Oceanic Resolution and Greenland Melting? D. Swingedouw et al. 10.3389/fclim.2022.838310
- Opportunities for Earth Observation to Inform Risk Management for Ocean Tipping Points R. Wood et al. 10.1007/s10712-024-09859-3
- Understanding the Sensitivity of the North Atlantic Subpolar Overturning in Different Resolution Versions of HadGEM3‐GC3.1 T. Petit et al. 10.1029/2023JC019672
- Fast mechanisms linking the Labrador Sea with subtropical Atlantic overturning Y. Kostov et al. 10.1007/s00382-022-06459-y
- Atlantic Deep Water Formation Occurs Primarily in the Iceland Basin and Irminger Sea by Local Buoyancy Forcing T. Petit et al. 10.1029/2020GL091028
- Observation-based estimates of heat and freshwater exchanges from the subtropical North Atlantic to the Arctic F. Li et al. 10.1016/j.pocean.2021.102640
- Role of air–sea fluxes and ocean surface density in the production of deep waters in the eastern subpolar gyre of the North Atlantic T. Petit et al. 10.5194/os-17-1353-2021
- North Atlantic overturning and water mass transformation in CMIP6 models L. Jackson & T. Petit 10.1007/s00382-022-06448-1
- Pathways of the water masses exiting the Labrador Sea: The importance of boundary–interior exchanges S. Georgiou et al. 10.1016/j.ocemod.2020.101623
- Pending recovery in the strength of the meridional overturning circulation at 26° N B. Moat et al. 10.5194/os-16-863-2020
- A shift in the ocean circulation has warmed the subpolar North Atlantic Ocean since 2016 D. Desbruyères et al. 10.1038/s43247-021-00120-y
- Mixing and air–sea buoyancy fluxes set the time-mean overturning circulation in the subpolar North Atlantic and Nordic Seas D. Evans et al. 10.5194/os-19-745-2023
- Observed mechanisms activating the recent subpolar North Atlantic Warming since 2016 L. Chafik et al. 10.1098/rsta.2022.0183
- New insights into the eastern subpolar North Atlantic meridional overturning circulation from OVIDE H. Mercier et al. 10.5194/os-20-779-2024
- Fast and Slow Subpolar Ocean Responses to the North Atlantic Oscillation: Thermal and Dynamical Changes H. Khatri et al. 10.1029/2022GL101480
- Arctic freshwater impact on the Atlantic Meridional Overturning Circulation: status and prospects T. Haine et al. 10.1098/rsta.2022.0185
- Atlantic circulation change still uncertain K. Kilbourne et al. 10.1038/s41561-022-00896-4
- Major sources of North Atlantic Deep Water in the subpolar North Atlantic from Lagrangian analyses in an eddy-rich ocean model J. Fröhle et al. 10.5194/os-18-1431-2022
- A stable Atlantic Meridional Overturning Circulation in a changing North Atlantic Ocean since the 1990s Y. Fu et al. 10.1126/sciadv.abc7836
- Surface factors controlling the volume of accumulated Labrador Sea Water Y. Kostov et al. 10.5194/os-20-521-2024
- Copernicus Ocean State Report, issue 6 10.1080/1755876X.2022.2095169
- The Atlantic Meridional Overturning Circulation at 35°N From Deep Moorings, Floats, and Satellite Altimeter I. Le Bras et al. 10.1029/2022GL101931
- Labrador Sea subsurface density as a precursor of multidecadal variability in the North Atlantic: a multi-model study P. Ortega et al. 10.5194/esd-12-419-2021
- Distinct sources of interannual subtropical and subpolar Atlantic overturning variability Y. Kostov et al. 10.1038/s41561-021-00759-4
- Thirty Years of GOSHIP and WOCE Data: Atlantic Overturning of Mass, Heat, and Freshwater Transport V. Caínzos et al. 10.1029/2021GL096527
- Importance of Boundary Processes for Heat Uptake in the Subpolar North Atlantic D. Desbruyères et al. 10.1029/2020JC016366
42 citations as recorded by crossref.
- Causes of the 2015 North Atlantic cold anomaly in a global state estimate R. Sanders et al. 10.5194/os-18-953-2022
- Should AMOC observations continue: how and why? E. Frajka-Williams et al. 10.1098/rsta.2022.0195
- An outsized role for the Labrador Sea in the multidecadal variability of the Atlantic overturning circulation S. Yeager et al. 10.1126/sciadv.abh3592
- Meridional Connectivity of a 25‐Year Observational AMOC Record at 47°N S. Wett et al. 10.1029/2023GL103284
- TIMCOM model datasets for the CMIP6 Ocean Model Intercomparison Project Y. Tseng et al. 10.1016/j.ocemod.2022.102109
- Latitudinal Structure of the Meridional Overturning Circulation Variability on Interannual to Decadal Time Scales in the North Atlantic Ocean S. Zou et al. 10.1175/JCLI-D-19-0215.1
- Surface‐Forced Variability in the Nordic Seas Overturning Circulation and Overflows M. Årthun 10.1029/2023GL104158
- Labrador sea water spreading and the Atlantic meridional overturning circulation I. Le Bras 10.1098/rsta.2022.0189
- Overturning in the subpolar North Atlantic: a review M. Lozier 10.1098/rsta.2022.0191
- Seasonal Changes in the North Atlantic Cold Anomaly: The Influence of Cold Surface Waters From Coastal Greenland and Warming Trends Associated With Variations in Subarctic Sea Ice Cover D. Allan & R. Allan 10.1029/2019JC015379
- Skilful decadal predictions of subpolar North Atlantic SSTs using CMIP model-analogues M. Menary et al. 10.1088/1748-9326/ac06fb
- The evolution of the North Atlantic Meridional Overturning Circulation since 1980 L. Jackson et al. 10.1038/s43017-022-00263-2
- Air‐Sea Interactions and Water Mass Transformation During a Katabatic Storm in the Irminger Sea O. Gutjahr et al. 10.1029/2021JC018075
- Seasonal overturning variability in the eastern North Atlantic subpolar gyre: a Lagrangian perspective O. Tooth et al. 10.5194/os-19-769-2023
- Reconciling the Relationship Between the AMOC and Labrador Sea in OSNAP Observations and Climate Models M. Menary et al. 10.1029/2020GL089793
- Mechanisms for Late 20th and Early 21st Century Decadal AMOC Variability A. Megann et al. 10.1029/2021JC017865
- Buoyancy forcing and the subpolar Atlantic meridional overturning circulation M. Buckley et al. 10.1098/rsta.2022.0181
- AMOC Recent and Future Trends: A Crucial Role for Oceanic Resolution and Greenland Melting? D. Swingedouw et al. 10.3389/fclim.2022.838310
- Opportunities for Earth Observation to Inform Risk Management for Ocean Tipping Points R. Wood et al. 10.1007/s10712-024-09859-3
- Understanding the Sensitivity of the North Atlantic Subpolar Overturning in Different Resolution Versions of HadGEM3‐GC3.1 T. Petit et al. 10.1029/2023JC019672
- Fast mechanisms linking the Labrador Sea with subtropical Atlantic overturning Y. Kostov et al. 10.1007/s00382-022-06459-y
- Atlantic Deep Water Formation Occurs Primarily in the Iceland Basin and Irminger Sea by Local Buoyancy Forcing T. Petit et al. 10.1029/2020GL091028
- Observation-based estimates of heat and freshwater exchanges from the subtropical North Atlantic to the Arctic F. Li et al. 10.1016/j.pocean.2021.102640
- Role of air–sea fluxes and ocean surface density in the production of deep waters in the eastern subpolar gyre of the North Atlantic T. Petit et al. 10.5194/os-17-1353-2021
- North Atlantic overturning and water mass transformation in CMIP6 models L. Jackson & T. Petit 10.1007/s00382-022-06448-1
- Pathways of the water masses exiting the Labrador Sea: The importance of boundary–interior exchanges S. Georgiou et al. 10.1016/j.ocemod.2020.101623
- Pending recovery in the strength of the meridional overturning circulation at 26° N B. Moat et al. 10.5194/os-16-863-2020
- A shift in the ocean circulation has warmed the subpolar North Atlantic Ocean since 2016 D. Desbruyères et al. 10.1038/s43247-021-00120-y
- Mixing and air–sea buoyancy fluxes set the time-mean overturning circulation in the subpolar North Atlantic and Nordic Seas D. Evans et al. 10.5194/os-19-745-2023
- Observed mechanisms activating the recent subpolar North Atlantic Warming since 2016 L. Chafik et al. 10.1098/rsta.2022.0183
- New insights into the eastern subpolar North Atlantic meridional overturning circulation from OVIDE H. Mercier et al. 10.5194/os-20-779-2024
- Fast and Slow Subpolar Ocean Responses to the North Atlantic Oscillation: Thermal and Dynamical Changes H. Khatri et al. 10.1029/2022GL101480
- Arctic freshwater impact on the Atlantic Meridional Overturning Circulation: status and prospects T. Haine et al. 10.1098/rsta.2022.0185
- Atlantic circulation change still uncertain K. Kilbourne et al. 10.1038/s41561-022-00896-4
- Major sources of North Atlantic Deep Water in the subpolar North Atlantic from Lagrangian analyses in an eddy-rich ocean model J. Fröhle et al. 10.5194/os-18-1431-2022
- A stable Atlantic Meridional Overturning Circulation in a changing North Atlantic Ocean since the 1990s Y. Fu et al. 10.1126/sciadv.abc7836
- Surface factors controlling the volume of accumulated Labrador Sea Water Y. Kostov et al. 10.5194/os-20-521-2024
- Copernicus Ocean State Report, issue 6 10.1080/1755876X.2022.2095169
- The Atlantic Meridional Overturning Circulation at 35°N From Deep Moorings, Floats, and Satellite Altimeter I. Le Bras et al. 10.1029/2022GL101931
- Labrador Sea subsurface density as a precursor of multidecadal variability in the North Atlantic: a multi-model study P. Ortega et al. 10.5194/esd-12-419-2021
- Distinct sources of interannual subtropical and subpolar Atlantic overturning variability Y. Kostov et al. 10.1038/s41561-021-00759-4
- Thirty Years of GOSHIP and WOCE Data: Atlantic Overturning of Mass, Heat, and Freshwater Transport V. Caínzos et al. 10.1029/2021GL096527
1 citations as recorded by crossref.
Latest update: 18 Jan 2025
Short summary
In the North Atlantic, ocean currents transport warm waters northward in the upper water column, and cold waters southwards at depth. This circulation is here reconstructed from surface data and thermodynamics theory. Its driving role in recent temperature changes (1993–2017) in the North Atlantic is evidenced, and predictions of near-future variability (5 years) are provided and discussed.
In the North Atlantic, ocean currents transport warm waters northward in the upper water column,...