Articles | Volume 15, issue 6
https://doi.org/10.5194/os-15-1627-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-1627-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vertical structure of ocean surface currents under high winds from massive arrays of drifters
John Lodise
CORRESPONDING AUTHOR
RSMAS, University of Miami, Department of Ocean Sciences, Miami, FL 33149, USA
Tamay Özgökmen
RSMAS, University of Miami, Department of Ocean Sciences, Miami, FL 33149, USA
Annalisa Griffa
CNR-ISMAR, Department of Physical and Chemical Oceanography, Lerici, Italy
Maristella Berta
CNR-ISMAR, Department of Physical and Chemical Oceanography, Lerici, Italy
Related authors
No articles found.
Pierre-Marie Poulain, Luca Centurioni, Carlo Brandini, Stefano Taddei, Maristella Berta, and Milena Menna
Ocean Sci., 19, 1617–1631, https://doi.org/10.5194/os-19-1617-2023, https://doi.org/10.5194/os-19-1617-2023, 2023
Short summary
Short summary
Drifters and a profiling float were deployed in the coastal waters of the southeastern Ligurian Sea to characterize the near-surface circulation at a scale of ~10 km. The drifters were trapped in an offshore-flowing filament and a cyclonic eddy that developed at the southwestern extremity of the filament. Drifter velocities are used to estimate differential kinematic properties and relative dispersion statistics of the surface currents.
Tiziana Ciuffardi, Zoi Kokkini, Maristella Berta, Marina Locritani, Andrea Bordone, Ivana Delbono, Mireno Borghini, Maurizio Demarte, Roberta Ivaldi, Federica Pannacciulli, Anna Vetrano, Davide Marini, and Giovanni Caprino
Earth Syst. Sci. Data, 15, 1933–1946, https://doi.org/10.5194/essd-15-1933-2023, https://doi.org/10.5194/essd-15-1933-2023, 2023
Short summary
Short summary
This paper presents the results of the first 2 years of the Levante Canyon Mooring, a mooring line placed since 2020 in the eastern Ligurian Sea, to study a canyon area at about 600 m depth characterized by the presence of cold-water living corals. It provides hydrodynamic and thermohaline measurements along the water column, describing a water-mass distribution coherent with previous evidence in the Ligurian Sea. The data also show a Northern Current episodic and local reversal during summer.
Irina I. Rypina, Timothy Getscher, Lawrence J. Pratt, and Tamay Ozgokmen
Nonlin. Processes Geophys., 29, 345–361, https://doi.org/10.5194/npg-29-345-2022, https://doi.org/10.5194/npg-29-345-2022, 2022
Short summary
Short summary
Techniques from dynamical systems theory have been widely used to study transport in ocean flows. However, they have been typically applied to numerically simulated trajectories of water parcels. This paper applies different dynamical systems techniques to real ocean drifter trajectories from the massive release in the Gulf of Mexico. To our knowledge, this is the first comprehensive comparison of the performance of different dynamical systems techniques with application to real drifters.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Ivan Manso-Narvarte, Erick Fredj, Gabriel Jordà, Maristella Berta, Annalisa Griffa, Ainhoa Caballero, and Anna Rubio
Ocean Sci., 16, 575–591, https://doi.org/10.5194/os-16-575-2020, https://doi.org/10.5194/os-16-575-2020, 2020
Short summary
Short summary
Our main aim is to study the feasibility of reconstructing oceanic currents by extending the data obtained from coastal multiplatform observatories to nearby areas in 3D in the SE Bay of Biscay. To that end, two different data-reconstruction methods with different approaches were tested, providing satisfactory results. This work is a first step towards the real applicability of these methods in this study area, and it shows the capabilities of the methods for a wide range of applications.
Roberta Sciascia, Maristella Berta, Daniel F. Carlson, Annalisa Griffa, Monica Panfili, Mario La Mesa, Lorenzo Corgnati, Carlo Mantovani, Elisa Domenella, Erick Fredj, Marcello G. Magaldi, Raffaele D'Adamo, Gianfranco Pazienza, Enrico Zambianchi, and Pierre-Marie Poulain
Ocean Sci., 14, 1461–1482, https://doi.org/10.5194/os-14-1461-2018, https://doi.org/10.5194/os-14-1461-2018, 2018
Short summary
Short summary
Understanding the role of ocean currents in the recruitment of commercially important fish is an important step toward developing sustainable resource management guidelines. Here, we attempt to elucidate the role of surface ocean transport in supplying recruits of European sardines to the Gulf of Manfredonia, a known recruitment area in the Adriatic Sea. We find that transport to the Gulf of Manfredonia from remote spawing areas in the Adriatic is more likely than local spawning and retention.
Maristella Berta, Lucio Bellomo, Annalisa Griffa, Marcello G. Magaldi, Anne Molcard, Carlo Mantovani, Gian Pietro Gasparini, Julien Marmain, Anna Vetrano, Laurent Béguery, Mireno Borghini, Yves Barbin, Joel Gaggelli, and Céline Quentin
Ocean Sci., 14, 689–710, https://doi.org/10.5194/os-14-689-2018, https://doi.org/10.5194/os-14-689-2018, 2018
Short summary
Short summary
The Northern Current (NC) in the NW Mediterranean Sea is studied by HF radar, glider, vessel survey, wind station, and model. NC variability is dominated by synoptic response to wind events, studied decomposing geostrophic and ageostrophic surface components. The combination of autonomous observing platforms with classical marine surveys provides high-resolution datasets for scientific purposes and practical applications such as the management of marine resources in the Mediterranean Sea.
Cited articles
Arbic, B. K., Scott, R. B., Chelton, D. B., Richman, J. G., and Shriver, J. F.:
Effects on stencil width on surface ocean geostrophic velocity and vorticity
estimation from gridded satellite altimeter data, J. Geophys. Res., 117,
C03029, https://doi.org/10.1029/2011JC007367, 2012.
Ardhuin, F., Marié, L., Rascle, N., Forget, P., and Roland, A.:
Observation and estimation of Lagrangian, Stokes, and Eulerian currents induced by wind and waves at the sea surface, J. Phys.
Oceanogr., 39, 2820–2838, https://doi.org/10.1175/2009JPO4169.1, 2009.
Berta, M., Bellomo, L., Magaldi, M.G., Griffa, A., Molcard, A., Marmain, J.,
Borghini, M. and Taillandier, V.: Estimating Lagrangian transport blending
drifters with HF radar data and models: results from the TOSCA experiment in
the Ligurian Current (North Western Mediterranean Sea), Prog. Oceanogr.,
128, 15–29, https://doi.org/10.1016/j.pocean.2014.08.004, 2014.
Berta, M., Griffa, A., Magaldi, M. G., Özgökmen, T. M., Poje, A. C.,
Haza, A. C., and Olascoaga, M. J.: Improved surface velocity and trajectory
estimates in the Gulf of Mexico from blended satellite altimetry and drifter
data, J. Atmos. Ocean. Tech., 32, 1880–1901,
https://doi.org/10.1175/JTECH-D-14-00226.1, 2015.
Berta, M., Bellomo, L., Griffa, A., Magaldi, M. G., Molcard, A., Mantovani, C., Gasparini, G. P., Marmain, J., Vetrano, A., Béguery, L., Borghini, M., Barbin, Y., Gaggelli, J., and Quentin, C.: Wind-induced variability in the Northern Current (northwestern Mediterranean Sea) as depicted by a multi-platform observing system, Ocean Sci., 14, 689–710, https://doi.org/10.5194/os-14-689-2018, 2018.
Buckley, M. P. and Veron, F.: The turbulent airflow over wind generated
surface waves, Eur. J. Mech. B. Fluids, 73, 132–143,
https://doi.org/10.1016/j.euromechflu.2018.04.003, 2019.
Bouchard, R. H., Jensen, R. E., Riley, R. LeBlanc, L. A., and Fiorentino, L.
A.: Calibration and Field Evaluation of the National Data Buoy Center's New
Wave Measurement System, AMS 98th Annual Meeting, Austin, TX, 9 January
2018, Session 7, 2018.
Chang, Y., Hammond, D., Haza, A. C., Hogan, P., Huntley, H. S., Kirwan Jr,
A. D., Lipphardt Jr, B. L., Taillandier, V., Griffa, A., and Özgökmen,
T. M.: Enhanced estimation of sonobuoy trajectories by velocity
reconstruction with near-surface drifters, Ocean Modell., 36, 179–197,
https://doi.org/10.1016/j.ocemod.2010.11.002, 2011.
Chassignet, E. P., Smith, L. T., Halliwell, G. R., and Bleck, R.: North Atlantic
simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the
vertical coordinate choice, reference pressure, and thermobaricity, J. Phys.
Oceanogr., 33, 2504–2526, 2003.
Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R., Hogan,
P. J., Wallcraft, A. J., Baraille, R., and Bleck, R.: The HYCOM (hybrid
coordinate ocean model) data assimilative system, J. Mar. Syst., 65, 60–83,
https://doi.org/10.1016/j.jmarsys.2005.09.016, 2007.
Chen, S. S., Zhao, W., Donelan, M. A., and Tolman, H. L.: Directional wind–wave
coupling in fully coupled atmosphere–wave–ocean models: Results from
CBLAST-Hurricane, J. Atmos. Sci., 70, 3198–3215,
https://doi.org/10.1175/JAS-D-12-0157.1, 2013.
Chen, S. S. and Curcic, M.: Unified Wave INterface Coupled Model (UWIN-CM) output from LASER, Distributed by: Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC), Harte Research Institute, Texas A&M University-Corpus Christi, available at: https://data.gulfresearchinitiative.org/data/R4.x265.000:0045, https://doi.org/10.7266/N7KW5DH7, last access: 26 January 2017, 2016a.
Chen, S. S. and Curcic, M.: Ocean surface waves in Hurricane Ike (2008) and
Superstorm Sandy (2012): Coupled model predictions and observations, Ocean
Modell., 103, 161–176, https://doi.org/10.1016/j.ocemod.2015.08.005, 2016b.
Cole, R. and Symonds, D.: A 25 year collaboration using ADCPs, in: 2015
IEEE/OES 11th Current, Waves and Turbulence Measurement Workshop, St.
Petersburg, FL, USA, March 2015, 1–10, 2015.
Curcic, M., Chen, S. S., and Özgökmen, T. M.: Hurricane-induced ocean
waves and stokes drift and their impacts on surface transport and dispersion
in the Gulf of Mexico, Geophys. Res. Lett., 43, 2773–2781,
https://doi.org/10.1002/2015GL067619, 2016.
Davis, R. E.: Drifter observations of coastal surface currents during CODE:
The method and descriptive view, J. Geophys. Res.-Oceans, 90, 4741–4755,
1985.
D'Asaro, E., Guigand, C., Haza, A., Huntley, H., Novelli, G., Özgökmen, T., and Ryan, E.: Lagrangian Submesoscale Experiment (LASER) surface drifters, raw, Gulf of Mexico, January–May 2016, Distributed by: Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC), Harte Research Institute, Texas A&M University-Corpus Christi, available at: https://data.gulfresearchinitiative.org/data/R4.x265.000:0027, https://doi.org/10.7266/N7MS3R6V, last access: 25 September 2017, 2016.
D'Asaro, E., Guigand, C., Haza, A., Huntley, H., Novelli, G., Özgökmen, T., and Ryan, E: Lagrangian Submesoscale Experiment (LASER) surface drifters, interpolated to 15-minute intervals, Distributed by: Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC), Harte Research Institute, Texas A&M University-Corpus Christi, available at: https://data.gulfresearchinitiative.org/data/R4.x265.237:0001, https://doi.org/10.7266/N7W0940J, last access: 25 September 2017.
Donelan, M. A., Curcic, M., Chen, S. S., and Magnusson, A. K.: Modeling waves
and wind stress, J. Geophys. Res.-Oceans, 117, C11, https://doi.org/10.1029/2011JC007787, 2012.
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic
ocean tides, J. of Atmos. Ocean. Tech., 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002.
Ekman, V. W.: On the influence of the Earth's rotation on ocean-currents,
Arkiv for Matematik, Astronomi, Och Fysik, 2, 1–52, 1905.
Gonçalves, R. C., Iskandarani, M., Özgökmen, T., and Thacker,
W. C.: Reconstruction of submesoscale velocity field from surface drifters,
J. Phys. Oceanogr., 49, 941–958, https://doi.org/10.1175/JPO-D-18-0025.1, 2019.
Haza, A. C., D'Asaro, E., Chang, H., Chen, S., Curcic, M., Guigand, C., Huntley, H. S., Jacobs, G., Novelli, G., Ozgokmen, T. M., Poje, A. C., Ryan, E., and Shcherbina, A.: Drogue status of the Lagrangian Submesoscale Experiment (LASER) surface drifters, Distributed by: Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC), Harte Research Institute, Texas A&M University-Corpus Christi, available at: https://data.gulfresearchinitiative.org/data/R4.x265.000:0044, https://doi.org/10.7266/N7QN656H, last access: 25 September 2017.
Haza, A. C., D'Asaro, E., Chang, H., Chen, S., Curcic, M., Guigand, C.,
Huntley, H. S., Jacobs, G., Novelli, G., Özgökmen, T. M., and Poje,
A. C.: Drogue-loss detection for surface drifters during the Lagrangian
submesoscale experiment (LASER), J. Atmos. Ocean. Tech., 35, 705–725,
https://doi.org/10.1175/JTECH-D-17-0143.1, 2018.
Haza, A. C., Paldor, N., Ozgokmen, T. M., Curcic, M., Chen, S. S., and
Jacobs, G. A.: Wind-based estimations of ocean surface currents from massive
clusters of drifters in the Gulf of Mexico, J. Geophys. Res.-Oceans, 124, 5844–5869, https://doi.org/10.1029/2018JC014813, 2019.
Hodur, R. M.: The Naval Research Laboratory's Coupled Ocean/Atmosphere
Mesoscale Prediction System (COAMPS), Mon. Weather Rev., 125, 1414–1430,
https://doi.org/10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2, 1997.
Hill, C., DeLuca, C., Suarez, M., and Da Silva, A.: The architecture of the
earth system modeling framework, Comput. Sci. Eng., 6, 18–28,
https://doi.org/10.1109/MCISE.2004.1255817, 2004.
Isobe, A., Kubo, K., Tamura, Y., Nakashima, E., and Fujii, N.: Selective
transport of microplastics and mesoplastics by drifting in coastal waters,
Mar. Pollut. Bull., 89, 324–330,
https://doi.org/10.1016/j.marpolbul.2014.09.041, 2014.
Ivonin, D. V., Broche, P., Devenon, J. L., and Shrira, V. I.: Validation of HF
radar probing of the vertical shear of surface currents by acoustic Doppler
current profiler measurements. J. Geophys. Res.-Oceans, 109, C4,
https://doi.org/10.1029/2003JC002025, 2004.
Jacobs, G. A., Bartels, B. P., Bogucki, D. J., Beron-Vera, F. J., Chen, S. S.,
Coelho, E. F., Curcic, M., Griffa, A., Gough, M., Haus, B. K., and Haza, A. C.:
Data assimilation considerations for improved ocean predictability during
the Gulf of Mexico Grand Lagrangian Deployment (GLAD), Ocean Modell., 83,
98–117, https://doi.org/10.1016/j.ocemod.2014.09.003, 2014.
Kim, S. Y., Cornuelle, B. D., and Terrill, E. J.: Decomposing observations of
high-frequency radar-derived surface currents by their forcing mechanisms:
Locally wind-driven surface currents, J. Geophys. Res.-Oceans, 115,
C12046 https://doi.org/10.1029/2010JC006223, 2010.
Klymak, J., D'Asaro, E., and Shcherbina, A.: Lagrangian Submesoscale Experiment (LASER) Moving Vessel Profiler CTD, northern Gulf of Mexico, January–February 2016, Distributed by: Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC), Harte Research Institute, Texas A&M University-Corpus Christi, available at: https://data.gulfresearchinitiative.org/data/R4.x265.000:0028, https://doi.org/10.7266/N7H130FC, last access: 28 June 2017, 2016.
Kudryavtsev, V. N. and Soloviev, A. V.: Slippery near-surface layer of the
ocean arising due to daytime solar heating, J. Phys. Oceanogr., 20,
617–628, https://doi.org/10.1175/1520-0485(1990)020<0617:SNSLOT>2.0.CO;2, 1990.
Laxague, N. J., Özgökmen, T. M., Haus, B. K., Novelli, G., Shcherbina,
A., Sutherland, P., Guigand, C. M., Lund, B., Mehta, S., Alday, M., and
Molemaker, J.: Observations of Near-Surface Current Shear Help Describe
Oceanic Oil and Plastic Transport, Geophys. Res. Lett., 45, 245–249,
https://doi.org/10.1002/2017GL075891, 2018.
Le Hénaff, M., Kourafalou, V. H., Paris, C. B., Helgers, J., Aman, Z. M.,
Hogan, P. J., and Srinivasan, A.: Surface evolution of the Deepwater Horizon
oil spill patch: combined effects of circulation and wind-induced drift,
Environ. Sci. Technol., 46, 7267–7273, https://doi.org/10.1021/es301570w,
2012.
Longuet-Higgins, M. S., Cartwright, D. E., and Smith, N. D.: Observations of the
directional specyrum of sea waves using the motion of a floating buoy, Ocean
Wave Spectra, Prentice-Hall, Englewood Cliffs, NJ, 1963.
Lumpkin, R. and Pazos, M.: Measuring surface currents with Surface Velocity
Program drifters: the instrument, its data, and some recent results, in:
Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, edited by:
Griffa, A, Kirwan, A. D., Mariano, A., Özgökmen, T. M., and Rossby,
T., Cambridge University Press, Cambridge, 39–67, 2007.
Lumpkin, R., Özgökmen, T., and Centurioni, L.: Advances in the
application of surface drifters, Annu. Rev. Mar. Sci., 9, 59–81,
https://doi.org/10.1146/annurev-marine-010816-060641, 2017.
Morey, S., Wienders, N., Dukhovskoy, D., and Bourassa, M.: Measurement
characteristics of near-surface currents from ultra-thin drifters, drogued
drifters, and HF radar, Remote Sens., 10, 1633,
https://doi.org/10.3390/rs10101633, 2018.
Novelli, G., Guigand, C. M., Cousin, C., Ryan, E. H., Laxague, N. J., Dai, H.,
Haus, B. K., and Özgökmen, T. M.: A biodegradable surface drifter for
ocean sampling on a massive scale, J. Atmos. Ocean. Tech., 34, 2509–2532,
https://doi.org/10.1175/JTECH-D-17-0055.1, 2017.
Ohlmann, J. C. and Niiler, P. P.: Circulation over the continental shelf in
the northern Gulf of Mexico, Prog. Oceanogr., 64, 45–81,
https://doi.org/10.1016/j.pocean.2005.02.001, 2005.
Özgökmen, T. M., Chassignet, E. P., Dawson, C. N., Dukhovskoy, D.,
Jacobs, G., Ledwell, J., Garcia-Pineda, O., MacDonald, I. R., Morey, S. L.,
Olascoaga, M. J., and Poje, A. C.: Over what area did the oil and gas spread
during the 2010 Deepwater Horizon oil spill?, Oceanography, 29, 96–107,
https://doi.org/10.5670/oceanog.2016.74, 2016.
Phillips, O. M.: Dynamics of the Upper Ocean, Cambridge University Press,
Cambridge, 336 pp., 1977.
Pollard, R. T.: On the generation by winds of inertial waves in the ocean,
Deep-Sea Res., 17, 795–812,
https://doi.org/10.1016/0011-7471(70)90042-2, 1970.
Pollard, R. T. and Millard Jr, R. C.: Comparison between observed and
simulated wind-generated inertial oscillations, Deep-Sea Res., 17, 813–821,
https://doi.org/10.1016/0011-7471(70)90043-4 ,1970.
Poulain, P. M., Gerin, R., Mauri, E., and Pennel, R.: Wind effects on drogued
and undrogued drifters in the Eastern Mediterranean, J. Atmos. Ocean. Techn.,
26, 1144–1156, https://doi.org/10.1175/2008JTECHO618.1, 2009.
Rascle, N., Ardhuin, F., and Terray, E. A.: Drift and mixing under the ocean
surface: A coherent one-dimensional description with application to
unstratified conditions, J. Geophys. Res.-Oceans, 111, C03016,
https://doi.org/10.1029/2005JC003004, 2006.
Rascle, N. and Ardhuin, F.: Drift and mixing under the ocean surface
revisited: Stratified conditions and model-data comparisons, J. Geophys.
Res., 114, C02016, https://doi.org/10.1029/2007JC004466, 2009.
Röhrs, J., Sperrevik, A. K., Christensen, K. H., Broström, G., and
Breivik, Ø.: Comparison of HF radar measurements with Eulerian and
Lagrangian surface currents, Ocean Dynam., 65, 679–690,
https://doi.org/10.1007/s10236-015-0828-8, 2015.
Röhrs, J. and Christensen, K. H.: Drift in the uppermost part of the
ocean, Geophys. Res. Lett., 42, 10349–10356,
https://doi.org/10.1002/2015GL066733, 2015.
Santala, M. J. and Terray, E. A.: A technique for making unbiased
estimates of current shear from a wave-follower, Deep-Sea Res., 39, 607–622, https://doi.org/10.1016/0198-0149(92)90091-7, 1992.
Sentchev, A., Forget, P., and Fraunié, P.: Surface current dynamics under
sea breeze conditions observed by simultaneous HF radar, ADCP and drifter
measurements, Ocean Dynam., 67, 499–512,
https://doi.org/10.1007/s10236-017-1035-6, 2017.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X. Y., Wang, W., and Powers, J. G.: A description of the advanced
research WRF Version 3, NCAR Technical Note NCAR/TN-475 + STR, National
Center for Atmospheric Research, https://doi.org/10.5065/D68S4MVH, 2008.
Stewart, R. H. and Joy, J. W.: HF radio measurements of surface currents, Deep-Sea Res., 21, 1039–1049,
https://doi.org/10.1016/0011-7471(74)90066-7, 1974.
Stokes, G. G.: On the theory of oscillatory waves, Transactions of the
Cambridge Philosophical Society, 8, 441–473, 1847.
Sutherland, G., Marié, L., Reverdin, G., Christensen, K. H.,
Broström, G., and Ward, B.: Enhanced turbulence associated with the
diurnal jet in the ocean surface boundary layer, J. Phys. Oceanogr., 46,
3051–3067, https://doi.org/10.1175/JPO-D-15-0172.1, 2016.
Taillandier, V., Griffa, A., and Molcard, A.: A variational approach for the
reconstruction of regional scale Eulerian velocity fields from Lagrangian
data, Ocean Modell., 13, 1–24, https://doi.org/10.1016/j.ocemod.2005.09.002,
2006.
Wallcraft, A. J., Metzger, E. J., and Carroll, S. N.: Software design
description for the Hybrid Coordinate Ocean Model (HYCOM) version 2.2, Naval
Research Laboratory Tech. Rep. NRL/MR/7320-09-9166, NRL, 2009.
Wu, J.: Sea-surface drift currents induced by wind and waves, J. Phys.
Oceanogr., 13, 1441–145, https://doi.org/10.1175/1520-0485(1983)013<1441:SSDCIB>2.0.CO;2, 1983.
Short summary
Observations of ocean currents within the first meter of the surface are made using a large number of ocean drifters of two different draft depths (0–5 and 0–60 cm). We deconstruct the total drifter velocities using an estimate of the regional circulation and a modeled Stokes drift velocity to calculate the purely wind-driven component of each drifter type. We reveal that the wind-driven velocities rotate to the right of the wind, while also decreasing, with depth.
Observations of ocean currents within the first meter of the surface are made using a large...