Articles | Volume 15, issue 5
https://doi.org/10.5194/os-15-1351-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-1351-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Present climate trends and variability in thermohaline properties of the northern Adriatic shelf
Institute of Oceanography and Fisheries, Split, Croatia
Petra Zemunik
Institute of Oceanography and Fisheries, Split, Croatia
Jadranka Šepić
Institute of Oceanography and Fisheries, Split, Croatia
Natalija Dunić
Institute of Oceanography and Fisheries, Split, Croatia
Oussama Marzouk
SeaTech, University of Toulon, Toulon, France
Hrvoje Mihanović
Institute of Oceanography and Fisheries, Split, Croatia
Clea Denamiel
Institute of Oceanography and Fisheries, Split, Croatia
Robert Precali
Center for Marine Research, Ruđer Bošković Institute,
Rovinj, Croatia
Tamara Djakovac
Center for Marine Research, Ruđer Bošković Institute,
Rovinj, Croatia
Related authors
Davide Bonaldo, Sandro Carniel, Renato R. Colucci, Cléa Denamiel, Petra Pranic, Fabio Raicich, Antonio Ricchi, Lorenzo Sangelantoni, Ivica Vilibic, and Maria Letizia Vitelletti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1468, https://doi.org/10.5194/egusphere-2024-1468, 2024
Short summary
Short summary
We present a high-resolution modelling effort to investigate the possible end-of-century evolution of the main physical processes in the Adriatic Sea in a severe climate change scenario, with an ensemble approach (viz., use a of multiple simulations) allowing to control the uncertainty of the predictions. Our model exhibits a satisfactory capability to reproduce the recent past and provides a ground for a set of multidisciplinary studies in this area over a multi-decadal horizon.
Petra Pranić, Cléa Denamiel, Ivica Janeković, and Ivica Vilibić
Ocean Sci., 19, 649–670, https://doi.org/10.5194/os-19-649-2023, https://doi.org/10.5194/os-19-649-2023, 2023
Short summary
Short summary
In this study, we analyse and compare the results of four different approaches in modelling bora-driven dense-water dynamics in the Adriatic. The study investigated the likely requirements for modelling the ocean circulation in the Adriatic and found that a 31-year run of a fine-resolution Adriatic climate model is able to outperform most aspects of the newest reanalysis product, a short-term hindcast and data-assimilated simulation, in reproducing the dense-water dynamics in the Adriatic Sea.
Cléa Denamiel and Ivica Vilibić
EGUsphere, https://doi.org/10.5194/egusphere-2023-913, https://doi.org/10.5194/egusphere-2023-913, 2023
Preprint archived
Short summary
Short summary
We present a new methodology using coupled atmosphere-ocean-wave models and demonstrate the feasibility to provide meter scale assessments of the impact of climate change on storm surge hazards. We show that sea level variations and distributions can be derived at the climate scale in the Adriatic Sea small lagoons and bays. We expect that the newly developed methodology could lead to more targeted adaptation strategies in regions of the world vulnerable to atmospherically driven extreme events.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Petra Pranić, Cléa Denamiel, and Ivica Vilibić
Geosci. Model Dev., 14, 5927–5955, https://doi.org/10.5194/gmd-14-5927-2021, https://doi.org/10.5194/gmd-14-5927-2021, 2021
Short summary
Short summary
The Adriatic Sea and Coast model was developed due to the need for higher-resolution climate models and longer-term simulations to capture coastal atmospheric and ocean processes at climate scales in the Adriatic Sea. The ocean results of a 31-year-long simulation were compared to the observational data. The evaluation revealed that the model is capable of reproducing the observed physical properties with good accuracy and can be further used to study the dynamics of the Adriatic–Ionian basin.
Petra Zemunik, Jadranka Šepić, Havu Pellikka, Leon Ćatipović, and Ivica Vilibić
Earth Syst. Sci. Data, 13, 4121–4132, https://doi.org/10.5194/essd-13-4121-2021, https://doi.org/10.5194/essd-13-4121-2021, 2021
Short summary
Short summary
A new global dataset – MISELA (Minute Sea-Level Analysis) – has been developed and contains quality-checked sea-level records from 331 tide gauges worldwide for a period from 2004 to 2019. The dataset is appropriate for research on atmospherically induced high-frequency sea-level oscillations. Research on these oscillations is important, as they can, like all sea-level extremes, seriously threaten coastal zone infrastructure and populations.
Iva Tojčić, Cléa Denamiel, and Ivica Vilibić
Nat. Hazards Earth Syst. Sci., 21, 2427–2446, https://doi.org/10.5194/nhess-21-2427-2021, https://doi.org/10.5194/nhess-21-2427-2021, 2021
Short summary
Short summary
This study quantifies the performance of the Croatian meteotsunami early warning system (CMeEWS) composed of a network of air pressure and sea level observations developed in order to help coastal communities prepare for extreme events. The system would have triggered the warnings for most of the observed events but also set off some false alarms if it was operational during the multi-meteotsunami event of 11–19 May 2020 in the eastern Adriatic. Further development of the system is planned.
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary
Short summary
The atmospheric results of the Adriatic Sea and Coast (AdriSC) climate simulation (1987–2017) are evaluated against available observational datasets in the Adriatic region. Generally, the AdriSC model performs better than regional climate models that have resolutions that are 4 times more coarse, except concerning summer temperatures, which are systematically underestimated. High-resolution climate models may thus provide new insights about the local impacts of global warming in the Adriatic.
Ivica Vilibić, Hrvoje Mihanović, Ivica Janeković, Cléa Denamiel, Pierre-Marie Poulain, Mirko Orlić, Natalija Dunić, Vlado Dadić, Mira Pasarić, Stipe Muslim, Riccardo Gerin, Frano Matić, Jadranka Šepić, Elena Mauri, Zoi Kokkini, Martina Tudor, Žarko Kovač, and Tomislav Džoić
Ocean Sci., 14, 237–258, https://doi.org/10.5194/os-14-237-2018, https://doi.org/10.5194/os-14-237-2018, 2018
H. Mihanović, I. Vilibić, S. Carniel, M. Tudor, A. Russo, A. Bergamasco, N. Bubić, Z. Ljubešić, D. Viličić, A. Boldrin, V. Malačič, M. Celio, C. Comici, and F. Raicich
Ocean Sci., 9, 561–572, https://doi.org/10.5194/os-9-561-2013, https://doi.org/10.5194/os-9-561-2013, 2013
S. Pasquet, I. Vilibić, and J. Šepić
Nat. Hazards Earth Syst. Sci., 13, 473–482, https://doi.org/10.5194/nhess-13-473-2013, https://doi.org/10.5194/nhess-13-473-2013, 2013
Clea Lumina Denamiel, Iva Tojčić, and Petra Pranić
EGUsphere, https://doi.org/10.5194/egusphere-2024-2524, https://doi.org/10.5194/egusphere-2024-2524, 2024
Short summary
Short summary
We use a high-resolution atmosphere-ocean model to project Adriatic dense water dynamics under extreme warming. We find that a 15 % increase in sea surface evaporation will offset a 25 % decrease in extreme windstorms. As a result, future dense water will form at the same rate as today but will be too light to reach the Adriatic's deepest parts, making deep-water presence reliant on exchanges with the Ionian Sea.
Krešimir Ruić, Jadranka Šepić, and Marin Vojković
EGUsphere, https://doi.org/10.5194/egusphere-2024-1601, https://doi.org/10.5194/egusphere-2024-1601, 2024
Preprint withdrawn
Short summary
Short summary
Identifying the driving processes of intense sea-level (SL) oscillations has been the goal of many scientific endeavors. Our study focuses on intense SL oscillations in the Adriatic Sea resulting from atmospheric processes. Using machine learning methods, we identified several synoptic situations during which these oscillations occur. This can aid future predictions of extreme SL events, potentially reducing infrastructure damage and protecting lives.
Davide Bonaldo, Sandro Carniel, Renato R. Colucci, Cléa Denamiel, Petra Pranic, Fabio Raicich, Antonio Ricchi, Lorenzo Sangelantoni, Ivica Vilibic, and Maria Letizia Vitelletti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1468, https://doi.org/10.5194/egusphere-2024-1468, 2024
Short summary
Short summary
We present a high-resolution modelling effort to investigate the possible end-of-century evolution of the main physical processes in the Adriatic Sea in a severe climate change scenario, with an ensemble approach (viz., use a of multiple simulations) allowing to control the uncertainty of the predictions. Our model exhibits a satisfactory capability to reproduce the recent past and provides a ground for a set of multidisciplinary studies in this area over a multi-decadal horizon.
Petra Pranić, Cléa Denamiel, Ivica Janeković, and Ivica Vilibić
Ocean Sci., 19, 649–670, https://doi.org/10.5194/os-19-649-2023, https://doi.org/10.5194/os-19-649-2023, 2023
Short summary
Short summary
In this study, we analyse and compare the results of four different approaches in modelling bora-driven dense-water dynamics in the Adriatic. The study investigated the likely requirements for modelling the ocean circulation in the Adriatic and found that a 31-year run of a fine-resolution Adriatic climate model is able to outperform most aspects of the newest reanalysis product, a short-term hindcast and data-assimilated simulation, in reproducing the dense-water dynamics in the Adriatic Sea.
Cléa Denamiel and Ivica Vilibić
EGUsphere, https://doi.org/10.5194/egusphere-2023-913, https://doi.org/10.5194/egusphere-2023-913, 2023
Preprint archived
Short summary
Short summary
We present a new methodology using coupled atmosphere-ocean-wave models and demonstrate the feasibility to provide meter scale assessments of the impact of climate change on storm surge hazards. We show that sea level variations and distributions can be derived at the climate scale in the Adriatic Sea small lagoons and bays. We expect that the newly developed methodology could lead to more targeted adaptation strategies in regions of the world vulnerable to atmospherically driven extreme events.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Petra Pranić, Cléa Denamiel, and Ivica Vilibić
Geosci. Model Dev., 14, 5927–5955, https://doi.org/10.5194/gmd-14-5927-2021, https://doi.org/10.5194/gmd-14-5927-2021, 2021
Short summary
Short summary
The Adriatic Sea and Coast model was developed due to the need for higher-resolution climate models and longer-term simulations to capture coastal atmospheric and ocean processes at climate scales in the Adriatic Sea. The ocean results of a 31-year-long simulation were compared to the observational data. The evaluation revealed that the model is capable of reproducing the observed physical properties with good accuracy and can be further used to study the dynamics of the Adriatic–Ionian basin.
Petra Zemunik, Jadranka Šepić, Havu Pellikka, Leon Ćatipović, and Ivica Vilibić
Earth Syst. Sci. Data, 13, 4121–4132, https://doi.org/10.5194/essd-13-4121-2021, https://doi.org/10.5194/essd-13-4121-2021, 2021
Short summary
Short summary
A new global dataset – MISELA (Minute Sea-Level Analysis) – has been developed and contains quality-checked sea-level records from 331 tide gauges worldwide for a period from 2004 to 2019. The dataset is appropriate for research on atmospherically induced high-frequency sea-level oscillations. Research on these oscillations is important, as they can, like all sea-level extremes, seriously threaten coastal zone infrastructure and populations.
Iva Tojčić, Cléa Denamiel, and Ivica Vilibić
Nat. Hazards Earth Syst. Sci., 21, 2427–2446, https://doi.org/10.5194/nhess-21-2427-2021, https://doi.org/10.5194/nhess-21-2427-2021, 2021
Short summary
Short summary
This study quantifies the performance of the Croatian meteotsunami early warning system (CMeEWS) composed of a network of air pressure and sea level observations developed in order to help coastal communities prepare for extreme events. The system would have triggered the warnings for most of the observed events but also set off some false alarms if it was operational during the multi-meteotsunami event of 11–19 May 2020 in the eastern Adriatic. Further development of the system is planned.
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary
Short summary
The atmospheric results of the Adriatic Sea and Coast (AdriSC) climate simulation (1987–2017) are evaluated against available observational datasets in the Adriatic region. Generally, the AdriSC model performs better than regional climate models that have resolutions that are 4 times more coarse, except concerning summer temperatures, which are systematically underestimated. High-resolution climate models may thus provide new insights about the local impacts of global warming in the Adriatic.
Ivica Vilibić, Hrvoje Mihanović, Ivica Janeković, Cléa Denamiel, Pierre-Marie Poulain, Mirko Orlić, Natalija Dunić, Vlado Dadić, Mira Pasarić, Stipe Muslim, Riccardo Gerin, Frano Matić, Jadranka Šepić, Elena Mauri, Zoi Kokkini, Martina Tudor, Žarko Kovač, and Tomislav Džoić
Ocean Sci., 14, 237–258, https://doi.org/10.5194/os-14-237-2018, https://doi.org/10.5194/os-14-237-2018, 2018
H. Mihanović, I. Vilibić, S. Carniel, M. Tudor, A. Russo, A. Bergamasco, N. Bubić, Z. Ljubešić, D. Viličić, A. Boldrin, V. Malačič, M. Celio, C. Comici, and F. Raicich
Ocean Sci., 9, 561–572, https://doi.org/10.5194/os-9-561-2013, https://doi.org/10.5194/os-9-561-2013, 2013
S. Pasquet, I. Vilibić, and J. Šepić
Nat. Hazards Earth Syst. Sci., 13, 473–482, https://doi.org/10.5194/nhess-13-473-2013, https://doi.org/10.5194/nhess-13-473-2013, 2013
Related subject area
Approach: In situ Observations | Depth range: Shelf-sea depth | Geographical range: Mediterranean Sea | Phenomena: Temperature, Salinity and Density Fields
Factors favouring phytoplankton blooms in the northern Adriatic: towards the northern Adriatic empirical ecological model
Exceptional dense water formation on the Adriatic shelf in the winter of 2012
R. Kraus, N. Supić, and R. Precali
Ocean Sci., 12, 19–37, https://doi.org/10.5194/os-12-19-2016, https://doi.org/10.5194/os-12-19-2016, 2016
Short summary
Short summary
Seasonal and interannual production changes in the northern Adriatic (NA) reflect on the total Adriatic bioproduction of certain species (i.e. anchovy). Long-term (1990-2004) phyto-abundance and geostrophic current analysis relieve the basic mechanism of NA biomass production changes. The results present a first step in building an empirical ecological model of the region, aiming to predict the amount of organic production in NA, which is to be used in the environmental management of the region.
H. Mihanović, I. Vilibić, S. Carniel, M. Tudor, A. Russo, A. Bergamasco, N. Bubić, Z. Ljubešić, D. Viličić, A. Boldrin, V. Malačič, M. Celio, C. Comici, and F. Raicich
Ocean Sci., 9, 561–572, https://doi.org/10.5194/os-9-561-2013, https://doi.org/10.5194/os-9-561-2013, 2013
Cited articles
Androulidakis, Y. S., Kombiadou, K. D., Makris, C. V., Baltikas, V. N., and
Krestenitis, Y. N.: Storm surges in the Mediterranean Sea: Variability and
trends under future climatic conditions, Dyn. Atm. Oceans, 71, 56–82, https://doi.org/10.1016/j.dynatmoce.2015.06.001, 2015.
Artegiani, A. and Salusti, E.: Field observation of the flow of dense water
on the bottom of the Adriatic Sea during the winter of 1981, Oceanol. Acta,
10, 387–391, 1987.
Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, F., and
Russo, A.: The Adriatic Sea general circulation, part I: air-sea
interactions and water mass structure, J. Phys. Oceanogr., 27, 1492–1514,
https://doi.org/10.1175/1520-0485(1997)027<1492:TASGCP>2.0.CO;2,
1997.
Bartolini, G., di Stefano, V., Maracchi, G., and Orlandini, S.:
Mediterranean warming is especially due to summer season: Evidences from
Tuscany (central Italy), Theor. Appl. Clim., 107, 279–295, https://doi.org/10.1007/s00704-011-0481-1, 2012.
Beg-Paklar, G., Isakov, V., Koračin, D., Kourafalou, V., and Orlić,
M.: A case study of bora-driven flow and density changes on the Adriatic
shelf (January 1987), Cont. Shelf Res., 21, 1751–1783, https://doi.org/10.1016/S0278-4343(01)00029-2, 2001.
Bengil, F. and Mavruk, S.: Warming in Turkish Seas: Comparative
multidecadal assessment, Turkish J. Fish. Aquat. Sci., 19, 51–57, https://doi.org/10.4194/1303-2712-v19_1_06, 2019.
Bensi, M., Cardin, V., Rubino, A., Notarstefano, G., and Poulain, P.-M.:
Effects of winter convection on the deep layer of the Southern Adriatic Sea
in 2012, J. Geophys. Res., 118, 6064–6075, https://doi.org/10.1002/2013JC009432,
2013.
Bergamasco, A., Oguz, T., and Malanotte-Rizzoli, P.: Modelling dense water
mass formation and winter circulation in the northern and central Adriatic
Sea, J. Mar. Syst., 20, 279–300, https://doi.org/10.1016/S0924-7963(98)00087-6, 1999.
Bethoux, J. P., Gentili, B., Raunet, J., and Tailliez, D.: Warming trend in
the Western Mediterranean deep-water, Nature, 347, 660–662, https://doi.org/10.1038/347660a0, 1990.
Branković, C., Güttler, I., and Gajić-Čapka, M.: Evaluating
climate change at the Croatian Adriatic from observations and regional
climate models' simulations, Clim. Dynam., 41, 2353–2373, https://doi.org/10.1007/s00382-012-1646-z, 2013.
Buljan, M. and Zore-Armanda, M.: Oceanographic properties of the Adriatic
Sea, Oceanogr. Mar. Biol. Ann. Rev., 14, 11–98, 1976.
Chatfield, C.: The Analysis of Time Series: An Introduction, 6th edn, CRC
Press, Boca Raton, 2004.
Coppola, E., Verdecchia, M., Giorgi, F., Colaiuda, V., Tomassetti, B., and
Lombardi, A.: Changing hydrological conditions in the Po basin under global
warming, Sci. Total Environ., 493, 1183–1196, https://doi.org/10.1016/j.scitotenv.2014.03.003, 2014.
Cusinato, E., Zanchettin, D., Sannino, G., and Rubino, A.: Mediterranean
thermohaline response to large-scale winter atmospheric forcing in a
high-resolution ocean model simulation, Pure Appl. Geophys., 175, 4083–4110,
https://doi.org/10.1007/s00024-018-1859-0, 2018.
Dautović, J., Vojvodić, V., Tepić, N., Ćosović, B., and
Ciglenečki, I.: Dissolved organic carbon as potential indicator of
global change: A long-term investigation in the northern Adriatic, Sci. Total
Environ., 587, 185–195, https://doi.org/10.1016/j.scitotenv.2017.02.111, 2017.
Djakovac, T., Supić, N., Aubry, F. B., Degobbis, D., and Giani, M.:
Mechanisms of hypoxia frequency changes in the northern Adriatic Sea during
the period 1972–2012, J. Mar. Syst., 141, 179–189, https://doi.org/10.1016/j.jmarsys.2014.08.001, 2015.
Franco, P. and Michelato, A.: Northern Adriatic Sea: oceanography of the
basin proper and of the western coastal zone, in: Marine Coastal
Eutrophication, edited by: Vollenweider, R. A., Marchetti, R., and Viviani, R., Elsevier,
Amsterdam, https://doi.org/10.1016/B978-0-444-89990-3.50013-4, 1992.
Gačić, M., Borzelli, G. L. E., Civitarese, G., Cardin, V., and Yari,
S.: Can internal processes sustain reversals of the ocean upper circulation?
The Ionian Sea example, Geophys. Res. Lett., 37, L09608,
https://doi.org/10.1029/2010GL043216, 2010.
Gačić, M., Civitarese, G., Kovačević, V., Ursella, L., Bensi, M., Menna, M., Cardin, V., Poulain, P.-M., Cosoli, S., Notarstefano, G., and Pizzi, C.: Extreme winter 2012 in the Adriatic: an example of climatic effect on the BiOS rhythm, Ocean Sci., 10, 513–522, https://doi.org/10.5194/os-10-513-2014, 2014.
Giani, M., Djakovac, T., Degobbis, D., Cozzi, S., Solidoro, C., and Fonda
Umani, S.: Recent changes in the marine ecosystems of the northern Adriatic
Sea, Estuar. Coast. Shelf Sci., 115, 1–13, https://doi.org/10.1016/j.ecss.2012.08.023, 2012.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, L08707, https://doi.org/10.1029/2006GL025734, 2006.
Giorgi, F. and Lionello, P.: Climate change projections for the Mediterranean
region, Global Planet. Change, 63, 90–104, https://doi.org/10.1016/j.gloplacha.2007.09.005, 2008.
Grbec, B., Morović, M., Beg Paklar, G., Kušpilić, G.,
Matijević, S., Matić, F., and Ninčević Gladan, Ž.: The
relationship between the atmospheric variability and productivity in the
Adriatic Sea area, J. Mar. Biol. Assoc. U.K., 89, 1549–1558, https://doi.org/10.1017/S0025315409000708, 2009.
Grbec, B., Matić, F., Paklar, G. B., Morović, M., Popović, R.,
and Vilibić, I.: Long-term trends, variability and extremes of in situ
sea surface temperature measured along the eastern Adriatic coast and its
relationship to hemispheric processes, Pure Appl. Geophys., 175, 4031–4036,
https://doi.org/10.1007/s00024-018-1793-1, 2018.
Grisogono, B. and Belušić, D.: A review of recent advances in
understanding the meso- and microscale properties of the severe Bora wind,
Tellus A, 61, 1–16, https://doi.org/10.1111/j.1600-0870.2008.00369.x, 2009.
Iona, A., Theodorou, A., Sofianos, S., Watelet, S., Troupin, C., and Beckers, J.-M.: Mediterranean Sea climatic indices: monitoring long-term variability and climate changes, Earth Syst. Sci. Data, 10, 1829–1842, https://doi.org/10.5194/essd-10-1829-2018, 2018.
Ionita, M., Boroneant, C., and Chelcea, S.: Seasonal modes of dryness and
wetness variability over Europe and their connections with large scale
atmospheric circulation and global sea surface temperature, Clim. Dynam., 45,
2803–2829, https://doi.org/10.1007/s00382-015-2508-2, 2015.
Ivančić, I., Fuks, D., Najdek, M., Blažina, M., Devescovi, M.,
Šilović, T., Paliaga, P., and Orlić, S.: Long-term changes in
heterotrophic prokaryotes abundance and growth characteristics in the
northern Adriatic Sea, J. Mar. Syst., 82, 206–216, https://doi.org/10.1016/j.jmarsys.2010.05.008, 2010.
Iveša, L., Djakovac, T., and Devescovi, M.: Long-term fluctuations in
Cystoseira populations along the west Istrian Coast (Croatia) related to
eutrophication patterns in the northern Adriatic Sea, Mar. Poll. Bull., 106,
162–173, https://doi.org/10.1016/j.marpolbul.2016.03.010, 2016.
Janeković, I. and Kuzmić, M.: Numerical simulation of the Adriatic Sea principal tidal constituents, Ann. Geophys., 23, 3207–3218, https://doi.org/10.5194/angeo-23-3207-2005, 2005.
Janeković, I., Mihanović, H., Vilibić, I., and Tudor, M.:
Extreme cooling and dense water formation estimates in open and coastal
regions of the Adriatic Sea during the winter of 2012, J. Geophys. Res.-Oceans, 119, 3200–3218, https://doi.org/10.1002/2014JC009865, 2014.
Knight, J. R., Folland, C. K., and Scaife, A. A.: Climate impacts of the
Atlantic Multidecadal Oscillation, Geophys. Res. Lett., 33, L17706, https://doi.org/10.1029/2006GL026242, 2006.
Kourafalou, V. H.: Process studies on the Po River plume, North Adriatic Sea,
J. Geophys. Res., 104, 29963–29985, https://doi.org/10.1029/1999JC900217, 1999.
Kraus, R. and Supić, N.: Impact of circulation on high phytoplankton blooms
and fish catch in the northern Adriatic (1990–2004), Estuar. Coast Shelf
Sci., 91, 198–210, https://doi.org/10.1016/j.ecss.2010.10.021, 2011.
Lionello, P. and Scarascia, L.: The relation between climate change in the
Mediterranean region and global warming, Reg. Env. Change, 18, 1481–1493,
https://doi.org/10.1007/s10113-018-1290-1, 2018.
Lionello, P., Mufato, R., and Tomasin, A.: Sensitivity of free and forced
oscillations of the Adriatic Sea to sea level rise, Clim. Res., 29, 23–39,
https://doi.org/10.3354/cr029023, 2005.
Lionello, P., Ozsoy, E., Planton, S., and Zanchetta, G.: Climate variability
and change in the Mediterranean region, Global Planet. Change, 151, 1–3,
https://doi.org/10.1016/j.gloplacha.2017.04.005, 2017a.
Lionello, P., Conte, D., Marzo, L., and Scarascia, L.: The contrasting
effect of increasing mean sea level and decreasing storminess on the maximum
water level during storms along the coast of the Mediterranean Sea in the
mid 21st century, Global Planet. Change, 151, 80–91, https://doi.org/10.1016/j.gloplacha.2016.06.012, 2017b.
Lipizer, M., Partescano, E., Rabitti, A., Giorgetti, A., and Crise, A.: Qualified temperature, salinity and dissolved oxygen climatologies in a changing Adriatic Sea, Ocean Sci., 10, 771–797, https://doi.org/10.5194/os-10-771-2014, 2014.
Macias, D., Garcia-Gorriz, E., and Stips, A.: Understanding the causes of
recent warming of Mediterranean waters. How much could be attributed to
climate change?, PLoS One, 8, e81591, https://doi.org/10.1371/journal.pone.0081591,
2013.
Malanotte-Rizzoli, P., Artale, V., Borzelli-Eusebi, G. L., Brenner, S., Crise, A., Gacic, M., Kress, N., Marullo, S., Ribera d'Alcalà, M., Sofianos, S., Tanhua, T., Theocharis, A., Alvarez, M., Ashkenazy, Y., Bergamasco, A., Cardin, V., Carniel, S., Civitarese, G., D'Ortenzio, F., Font, J., Garcia-Ladona, E., Garcia-Lafuente, J. M., Gogou, A., Gregoire, M., Hainbucher, D., Kontoyannis, H., Kovacevic, V., Kraskapoulou, E., Kroskos, G., Incarbona, A., Mazzocchi, M. G., Orlic, M., Ozsoy, E., Pascual, A., Poulain, P.-M., Roether, W., Rubino, A., Schroeder, K., Siokou-Frangou, J., Souvermezoglou, E., Sprovieri, M., Tintoré, J., and Triantafyllou, G.: Physical forcing and physical/biochemical variability of the Mediterranean Sea: a review of unresolved issues and directions for future research, Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, 2014.
Marić, D., Kraus, R., Godrijan, J., Supić, N., Djakovac, T., and
Precali, R.: Phytoplankton response to climatic and anthropogenic influence
in the north-eastern Adriatic during the last four decades, Estuar. Coast
Shelf. Sci., 115, 98–112, 2012.
Martin, P. J., Book, J. W., Burrage, D. M., Rowley, C. D., and Tudor, M.:
Comparison of model-simulated and observed currents in the central Adriatic
during DART, J. Geophys. Res., 114, C01S05, https://doi.org/10.1029/2008JC004842, 2009.
Marullo, S., Artale, V., and Santoleri, R.: The SST multidecadal variability
in the Atlantic-Mediterranean region and its relation to AMO, J. Climate, 24,
4385–4401, https://doi.org/10.1175/2011JCLI3884.1, 2011.
Međugorac, I., Orlić, M., Janeković, I., Pasarić, Z., and
Pasarić, M.: Adriatic storm surges and related cross-basin sea-level
slope, J. Mar. Syst., 181, 79–90, https://doi.org/10.1016/j.jmarsys.2018.02.005, 2018.
Mihanović, H., Vilibić, I., Carniel, S., Tudor, M., Russo, A., Bergamasco, A., Bubić, N., Ljubešić, Z., Viličić, D., Boldrin, A., Malačič, V., Celio, M., Comici, C., and Raicich, F.: Exceptional dense water formation on the Adriatic shelf in the winter of 2012, Ocean Sci., 9, 561–572, https://doi.org/10.5194/os-9-561-2013, 2013.
Mihanović, H., Vilibić, I., Dunić, N., and Šepić, J.:
Mapping of decadal middle Adriatic oceanographic variability and its
relation to the BiOS regime, J. Geophys. Res.-Oceans, 120, 5615–5630, https://doi.org/10.1002/2015JC010725, 2015.
Millot, C., Candela, J., Fuda, J. L., and Tber, Y.: Large warming and
salinification of the Mediterranean outflow due to changes in its
composition, Deep-Sea Res. I, 53, 656–666, https://doi.org/10.1016/j.dsr.2005.12.017, 2006.
Montanari, A.: Hydrology of the Po River: looking for changing patterns in river discharge, Hydrol. Earth Syst. Sci., 16, 3739–3747, https://doi.org/10.5194/hess-16-3739-2012, 2012.
Mozetič, P., Solidoro, C., Cossarini, G., Socal, G., Precali, R.,
France, J., Bianchi, F., De Vittor, C., Smodlaka, N., and Umani, S.F.:
Recent trends towards oligotrophication of the northern Adriatic: Evidence
from chlorophyll a time series, Estuar. Coasts, 33, 362–375, https://doi.org/10.1007/s12237-009-9191-7, 2010.
Orlić, M., Gačić, M., and La Violette, P. E.: The currents and
circulation of the Adriatic Sea, Oceanol. Acta, 15, 109–124, 1992.
Orlić, M., Dadić, V., Grbec, B., Leder, N., Marki, A., Matić,
F., Mihanović, H., Beg Paklar, G., Pasarić, M., Pasarić, Z., and
Vilibić, I.: Wintertime buoyancy forcing, changing seawater properties
and two different circulation systems produced in the Adriatic, J. Geophys.
Res.-Oceans, 111, C03S07, https://doi.org/10.1029/2005JC003271, 2006.
Pastor, F., Valiente, J. A., and Palau, J. L.: Sea surface temperature in the
Mediterranean: Trends and spatial patterns (1982–2016), Pure Appl. Geophys.,
175, 4017–4029, https://doi.org/10.1007/s00024-017-1739-z, 2018.
Peharda, M., Vilibić, I., Black, B.A., Markulin, K., Dunić, N.,
Džoić, T., Mihanović, H., Gačić, M., Puljas, S., and
Waldman, R.: Using bivalve chronologies for quantifying environmental
drivers in a semi-enclosed temperate sea, Sci. Rep., 8, 5559,
https://doi.org/10.1038/s41598-018-23773-w, 2018.
Planton, S., Lionello, P., Artale, V., Aznar, R., Carrillo, A., Colin, J.,
Congedi, L., Dubois, C., Elizalde, A., Gualdi, S., Hertig, E., Jacobeit, J.,
Jorda, G., Li, L., Mariotti, A., Piani, C., Ruti, P., Sanchez-Gomez, E.,
Sannino, G., Sevault, F., Somot, S., and Tsimplis, M.: The climate of the
Mediterranean region in future climate projections, in: Climate of the
Mediterranean Region: From the Past to the Future, edited by: Lionello, P.,
Elsevier Insights, Amsterdam, 449–502, https://doi.org/10.1016/B978-0-12-416042-2.00008-2, 2012.
Plavšić, M.: Long-term variations of folic acid concentrations in
the Northern Adriatic, Environ. Int., 30, 761–767, https://doi.org/10.1016/j.envint.2003.12.010, 2004.
Raicich, F.: On the fresh balance of the Adriatic Sea, J. Mar. Syst., 9,
305–319, https://doi.org/10.1016/S0924-7963(96)00042-5, 1996.
Reale, M., Salon, S., Crise, A., Farneti, R., Mosetti, R., and Sannino, G.:
Unexpected covariant behavior of the Aegean and Ionian Seas in the period
1987–2008 by means of a nondimensional sea surface height index, J.
Geophys. Res.-Oceans, 122, 8020–8033, https://doi.org/10.1002/2017JC012983, 2017.
Scorzini, A. R., Di Bacco, M., and Leopardi, M.: Recent trends in daily
temperature extremes over the central Adriatic region of Italy in a
Mediterranean climatic context, Int. J. Clim., 38, E741–E757, https://doi.org/10.1002/joc.5403, 2018.
Shaltout, M. and Omstedt, A.: Recent sea surface temperature trends and future
scenarios for the Mediterranean Sea, Oceanologia, 56, 411–443, https://doi.org/10.5697/oc.56-3.411, 2014.
She, J., Allen, I., Buch, E., Crise, A., Johannessen, J. A., Le Traon, P.-Y., Lips, U., Nolan, G., Pinardi, N., Reißmann, J. H., Siddorn, J., Stanev, E., and Wehde, H.: Developing European operational oceanography for Blue Growth, climate change adaptation and mitigation, and ecosystem-based management, Ocean Sci., 12, 953–976, https://doi.org/10.5194/os-12-953-2016, 2016.
Shohami, D., Dayan, U., and Morin, E.: Warming and drying of the eastern
Mediterranean: Additional evidence from trend analysis, J. Geophys. Res.,
116, D22101, https://doi.org/10.1029/2011JD016004, 2011.
Skliris, N., Sofianos, S., Gkanasos, A., Mantziafou, A., Vervatis, V.,
Axaopoulos, P., and Lascaratos, A.: Decadal scale variability of sea surface
temperature in the Mediterranean Sea in relation to atmospheric variability,
Ocean Dyn., 62, 13–30, https://doi.org/10.1007/s10236-011-0493-5, 2012.
Somot, S., Sevault, F., and Déqué, M.: Transient climate change
scenario simulation of the Mediterranean Sea for the twenty-first century
using a high-resolution ocean circulation model, Clim. Dynam., 27, 851–879,
https://doi.org/10.1007/s00382-006-0167-z, 2006.
Supić, N. and Ivančić, I.: Hydrographic conditions in the northern
Adriatic in relation to surface fluxes and the Po river discharge rates
(1966–1992), Period. Biol., 104, 203–209, 2002.
Supić, N., Grbec, B., Vilibić, I., and Ivančić, I.: Long-term changes in hydrographic conditions in northern Adriatic and its relationship to hydrological and atmospheric processes, Ann. Geophys., 22, 733–745, https://doi.org/10.5194/angeo-22-733-2004, 2004.
Tintore, J., Vizoso, G., Casas, B., Heslop, E., Pascual, A., Orfila, A.,
Ruiz, S., Martinez-Ledesma, M., Torner, M., Cusi, S., Diedrich, A.,
Balaguer, P., Gomez-Pujol, L., Alvarez-Ellacuria, A., Gomara, S., Sebastian,
K., Lora, S., Beltran, J.P., Renault, L., Juza, M., Alvarez, D., March, D.,
Garau, B., Castilla, C., Canellas, T., Roque, D., Lizaran, I., Pitarch, S.,
Carrasco, M.A., Lana, A., Mason, E., Escudier, R., Conti, D., Sayol, J.M.,
Barcelo, B., Alemany, F., Reglero, P., Massuti, E., Velez-Belchi, P., Ruiz,
J., Oguz, T., Gomez, M., Alvarez, E., Ansorena, L., and Manriquez, M.:
SOCIB: The Balearic Islands coastal ocean observing and forecasting system
responding to science, technology and society needs, Mar. Technol. Soc. J.,
47, 101–117, https://doi.org/10.4031/MTSJ.47.1.10, 2013.
Trigo, I. F. and Davies, T. D.: Meteorological conditions associated with sea
surges in Venice: A 40 year climatology, Int. J. Clim., 22, 787–803, https://doi.org/10.1002/joc.719, 2002.
Tsimplis, M. N. and Baker, T. F.: Sea level drop in the Mediterranean Sea: An
indicator of deep water salinity and temperature changes?, Geophys. Res.
Lett., 27, 1731–1734, https://doi.org/10.1029/1999GL007004, 2000.
Vargas-Yanez, M., Garcia-Martinez, M. C., Moya, F., Balbin, R., Lopez-Jurado,
J. L., Serra, M., Zunino, P., Pascual, J., and Salat, J.: Updating
temperature and salinity mean values and trends in the Western
Mediterranean: The RADMED project, Prog. Oceanogr., 157, 27–46, https://doi.org/10.1016/j.pocean.2017.09.004, 2017.
Vilibić, I.: An analysis of dense water production on the North Adriatic
shelf, Estuar. Coast Shelf Sci., 56, 697–707, https://doi.org/10.1016/S0272-7714(02)00277-9, 2003.
Vilibić, I., Matijević, S., Šepić, J., and Kušpilić, G.: Changes in the Adriatic oceanographic properties induced by the Eastern Mediterranean Transient, Biogeosciences, 9, 2085–2097, https://doi.org/10.5194/bg-9-2085-2012, 2012.
Vilibić, I., Šepić, J., and Proust, N.: Weakening of
thermohaline circulation in the Adriatic Sea, Clim. Res., 55, 217–225, https://doi.org/10.3354/cr01128, 2013.
Vilibić, I., Šepić, J., Pasarić, M., and Orlić, M.: The
Adriatic Sea: A long-standing laboratory for sea level studies, Pure Appl.
Geophys., 174, 3765–3811, https://doi.org/10.1007/s00024-017-1625-8, 2017.
Wilks, D. S.: Statistical methods in the atmospheric sciences, Academic
Press, International Geophysics, 100, 2–676, 2011.
Zampieri, M., Giorgi, F., Lionello, P., and Nikulin, G.: Regional climate
change in the Northern Adriatic, Phys. Chem. Earth, 40–41, 32–46, https://doi.org/10.1016/j.pce.2010.02.003, 2012.
Zanchettin, D., Traverso, P., and Tomasino, M.: Po River discharges: a
preliminary analysis of a 200-year time series, Clim. Change, 89, 411–433,
https://doi.org/10.1007/s10584-008-9395-z, 2008.
Zore-Armanda, M.: Les masses d'eau de la mer Adriatique, Acta Adriat., 10,
5–88, 1963.