Articles | Volume 15, issue 4
https://doi.org/10.5194/os-15-1055-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-1055-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution underwater laser spectrometer sensing provides new insights into methane distribution at an Arctic seepage site
CAGE, Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT – The Arctic University of Norway, 9037 Tromsø, Norway
Jack Triest
Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble,
France
Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble,
France
Bénédicte Ferré
CAGE, Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT – The Arctic University of Norway, 9037 Tromsø, Norway
Anna Silyakova
CAGE, Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT – The Arctic University of Norway, 9037 Tromsø, Norway
Jürgen Mienert
CAGE, Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT – The Arctic University of Norway, 9037 Tromsø, Norway
Jérôme Chappellaz
Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble,
France
Related authors
No articles found.
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, Roberto Grilli, Quentin Fournier, Irène Ventrillard, Nicolas Caillon, and Kathy Law
Atmos. Chem. Phys., 24, 1361–1388, https://doi.org/10.5194/acp-24-1361-2024, https://doi.org/10.5194/acp-24-1361-2024, 2024
Short summary
Short summary
This study reports the first simultaneous records of oxygen (Δ17O) and nitrogen (δ15N) isotopes in nitrogen dioxide (NO2) and nitrate (NO3−). These data are combined with atmospheric observations to explore sub-daily N reactive chemistry and quantify N fractionation effects in an Alpine winter city. The results highlight the necessity of using Δ17O and δ15N in both NO2 and NO3− to avoid biased estimations of NOx sources and fates from NO3− isotopic records in urban winter environments.
Xavier Faïn, David M. Etheridge, Kévin Fourteau, Patricia Martinerie, Cathy M. Trudinger, Rachael H. Rhodes, Nathan J. Chellman, Ray L. Langenfelds, Joseph R. McConnell, Mark A. J. Curran, Edward J. Brook, Thomas Blunier, Grégory Teste, Roberto Grilli, Anthony Lemoine, William T. Sturges, Boris Vannière, Johannes Freitag, and Jérôme Chappellaz
Clim. Past, 19, 2287–2311, https://doi.org/10.5194/cp-19-2287-2023, https://doi.org/10.5194/cp-19-2287-2023, 2023
Short summary
Short summary
We report on a 3000-year record of carbon monoxide (CO) levels in the Southern Hemisphere's high latitudes by combining ice core and firn air measurements with modern direct atmospheric samples. Antarctica [CO] remained stable (–835 to 1500 CE), decreased during the Little Ice Age, and peaked around 1985 CE. Such evolution reflects stable biomass burning CO emissions before industrialization, followed by growth from CO anthropogenic sources, which decline after 1985 due to improved combustion.
Aymeric P. M. Servettaz, Anaïs J. Orsi, Mark A. J. Curran, Andrew D. Moy, Amaelle Landais, Joseph R. McConnell, Trevor J. Popp, Emmanuel Le Meur, Xavier Faïn, and Jérôme Chappellaz
Clim. Past, 19, 1125–1152, https://doi.org/10.5194/cp-19-1125-2023, https://doi.org/10.5194/cp-19-1125-2023, 2023
Short summary
Short summary
The temperature of the past 2000 years is still poorly known in vast parts of the East Antarctic plateau. In this study, we present temperature reconstructions based on water and gas stable isotopes from the Aurora Basin North ice core. Spatial and temporal significance of each proxy differs, and we can identify some cold periods in the snow temperature up to 2°C cooler in the 1000–1400 CE period, which could not be determined with water isotopes only.
Albane Barbero, Roberto Grilli, Markus M. Frey, Camille Blouzon, Detlev Helmig, Nicolas Caillon, and Joël Savarino
Atmos. Chem. Phys., 22, 12025–12054, https://doi.org/10.5194/acp-22-12025-2022, https://doi.org/10.5194/acp-22-12025-2022, 2022
Short summary
Short summary
The high reactivity of the summer Antarctic boundary layer results in part from the emissions of nitrogen oxides produced during photo-denitrification of the snowpack, but its underlying mechanisms are not yet fully understood. The results of this study suggest that more NO2 is produced from the snowpack early in the photolytic season, possibly due to stronger UV irradiance caused by a smaller solar zenith angle near the solstice.
Knut Ola Dølven, Juha Vierinen, Roberto Grilli, Jack Triest, and Bénédicte Ferré
Geosci. Instrum. Method. Data Syst., 11, 293–306, https://doi.org/10.5194/gi-11-293-2022, https://doi.org/10.5194/gi-11-293-2022, 2022
Short summary
Short summary
Sensors capable of measuring rapid fluctuations are important to improve our understanding of environmental processes. Many sensors are unable to do this, due to their reliance on the transfer of the measured property, for instance a gas, across a semi-permeable barrier. We have developed a mathematical tool which enables the retrieval of fast-response signals from sensors with this type of sensor design.
Muhammed Fatih Sert, Helge Niemann, Eoghan P. Reeves, Mats A. Granskog, Kevin P. Hand, Timo Kekäläinen, Janne Jänis, Pamela E. Rossel, Bénédicte Ferré, Anna Silyakova, and Friederike Gründger
Biogeosciences, 19, 2101–2120, https://doi.org/10.5194/bg-19-2101-2022, https://doi.org/10.5194/bg-19-2101-2022, 2022
Short summary
Short summary
We investigate organic matter composition in the Arctic Ocean water column. We collected seawater samples from sea ice to deep waters at six vertical profiles near an active hydrothermal vent and its plume. In comparison to seawater, we found that the organic matter in waters directly affected by the hydrothermal plume had different chemical composition. We suggest that hydrothermal processes may influence the organic matter distribution in the deep ocean.
Xavier Faïn, Rachael H. Rhodes, Philip Place, Vasilii V. Petrenko, Kévin Fourteau, Nathan Chellman, Edward Crosier, Joseph R. McConnell, Edward J. Brook, Thomas Blunier, Michel Legrand, and Jérôme Chappellaz
Clim. Past, 18, 631–647, https://doi.org/10.5194/cp-18-631-2022, https://doi.org/10.5194/cp-18-631-2022, 2022
Short summary
Short summary
Carbon monoxide (CO) is a regulated pollutant and one of the key components determining the oxidizing capacity of the atmosphere. In this study, we analyzed five ice cores from Greenland at high resolution for CO concentrations by coupling laser spectrometry with continuous melting. By combining these new datasets, we produced an upper-bound estimate of past atmospheric CO abundance since preindustrial times for the Northern Hemisphere high latitudes, covering the period from 1700 to 1957 CE.
Knut Ola Dølven, Bénédicte Ferré, Anna Silyakova, Pär Jansson, Peter Linke, and Manuel Moser
Ocean Sci., 18, 233–254, https://doi.org/10.5194/os-18-233-2022, https://doi.org/10.5194/os-18-233-2022, 2022
Short summary
Short summary
Natural sources of atmospheric methane need to be better described and quantified. We present time series from ocean observatories monitoring two seabed methane seep sites in the Arctic. Methane concentration varied considerably on short timescales and seasonal scales. Seeps persisted throughout the year, with increased potential for atmospheric release in winter due to water mixing. The results highlight and constrain uncertainties in current methane estimates from seabed methane seepage.
Loïc Schmidely, Christoph Nehrbass-Ahles, Jochen Schmitt, Juhyeong Han, Lucas Silva, Jinwha Shin, Fortunat Joos, Jérôme Chappellaz, Hubertus Fischer, and Thomas F. Stocker
Clim. Past, 17, 1627–1643, https://doi.org/10.5194/cp-17-1627-2021, https://doi.org/10.5194/cp-17-1627-2021, 2021
Short summary
Short summary
Using ancient gas trapped in polar glaciers, we reconstructed the atmospheric concentrations of methane and nitrous oxide over the penultimate deglaciation to study their response to major climate changes. We show this deglaciation to be characterized by modes of methane and nitrous oxide variability that are also found during the last deglaciation and glacial cycle.
Jinhwa Shin, Christoph Nehrbass-Ahles, Roberto Grilli, Jai Chowdhry Beeman, Frédéric Parrenin, Grégory Teste, Amaelle Landais, Loïc Schmidely, Lucas Silva, Jochen Schmitt, Bernhard Bereiter, Thomas F. Stocker, Hubertus Fischer, and Jérôme Chappellaz
Clim. Past, 16, 2203–2219, https://doi.org/10.5194/cp-16-2203-2020, https://doi.org/10.5194/cp-16-2203-2020, 2020
Short summary
Short summary
We reconstruct atmospheric CO2 from the EPICA Dome C ice core during Marine Isotope Stage 6 (185–135 ka) to understand carbon mechanisms under the different boundary conditions of the climate system. The amplitude of CO2 is highly determined by the Northern Hemisphere stadial duration. Carbon dioxide maxima show different lags with respect to the corresponding abrupt CH4 jumps, the latter reflecting rapid warming in the Northern Hemisphere.
Albane Barbero, Camille Blouzon, Joël Savarino, Nicolas Caillon, Aurélien Dommergue, and Roberto Grilli
Atmos. Meas. Tech., 13, 4317–4331, https://doi.org/10.5194/amt-13-4317-2020, https://doi.org/10.5194/amt-13-4317-2020, 2020
Short summary
Short summary
In this paper, we present a compact, affordable and robust instrument for in situ measurements of different trace gases: NOx, IO, CHOCHO and O3 with very low detection limits. The device weighs 15 kg and has a total electrical power consumption of < 300 W. Its very low detection limits and its design make it suitable for field applications to address different questions such as how to better constrain the oxidative capacity of the atmosphere and study the chemistry of highly reactive species.
Roberto Grilli, François Darchambeau, Jérôme Chappellaz, Ange Mugisha, Jack Triest, and Augusta Umutoni
Geosci. Instrum. Method. Data Syst., 9, 141–151, https://doi.org/10.5194/gi-9-141-2020, https://doi.org/10.5194/gi-9-141-2020, 2020
Short summary
Short summary
We report the results from the deployment of a newly developed in situ sensor for dissolved gas measurements. Its adaptation to high gas concentrations and dissolved gas pressures was proven. The campaign leads to a first continuous profile of methane on the first 150 m and allowed us to compare the data with previous measurements. The fast response of the instrument makes this technique a good candidate for regular monitoring of those type of lakes, for anticipating disastrous gas eruptions.
Kévin Fourteau, Patricia Martinerie, Xavier Faïn, Alexey A. Ekaykin, Jérôme Chappellaz, and Vladimir Lipenkov
Clim. Past, 16, 503–522, https://doi.org/10.5194/cp-16-503-2020, https://doi.org/10.5194/cp-16-503-2020, 2020
Short summary
Short summary
We quantify how the greenhouse gas records of East Antarctic ice cores (which are the oldest ice cores) might differ from the actual atmosphere history. It is required to properly interpret ice core data. For this, we measured the methane of five new East Antarctic ice core sections using a high-resolution technique. We found that in these very old ice cores, one can retrieve concentration variations occurring in only a few centuries, allowing climatologists to study climate's fast dynamics.
Loic Lechevallier, Roberto Grilli, Erik Kerstel, Daniele Romanini, and Jérôme Chappellaz
Atmos. Meas. Tech., 12, 3101–3109, https://doi.org/10.5194/amt-12-3101-2019, https://doi.org/10.5194/amt-12-3101-2019, 2019
Short summary
Short summary
In this work we describe a highly sensitive optical spectrometer for simultaneous measurement of methane, ethane, and the isotopic composition of methane. The coupling of the spectrometer with a dissolved gas extraction system will provide a suitable tool for understanding the origins of the dissolved hydrocarbons and discriminate between the different sources (e.g., biogenic vs. thermogenic).
Stephen M. Platt, Sabine Eckhardt, Benedicte Ferré, Rebecca E. Fisher, Ove Hermansen, Pär Jansson, David Lowry, Euan G. Nisbet, Ignacio Pisso, Norbert Schmidbauer, Anna Silyakova, Andreas Stohl, Tove M. Svendby, Sunil Vadakkepuliyambatta, Jürgen Mienert, and Cathrine Lund Myhre
Atmos. Chem. Phys., 18, 17207–17224, https://doi.org/10.5194/acp-18-17207-2018, https://doi.org/10.5194/acp-18-17207-2018, 2018
Short summary
Short summary
We measured atmospheric mixing ratios of methane over the Arctic Ocean around Svalbard and compared observed variations to inventories for anthropogenic, wetland, and biomass burning methane emissions and an atmospheric transport model. With knowledge of where variations were expected due to the aforementioned land-based emissions, we were able to identify and quantify a methane source from the ocean north of Svalbard, likely from sub-sea hydrocarbon seeps and/or gas hydrate decomposition.
Daiki Nomura, Mats A. Granskog, Agneta Fransson, Melissa Chierici, Anna Silyakova, Kay I. Ohshima, Lana Cohen, Bruno Delille, Stephen R. Hudson, and Gerhard S. Dieckmann
Biogeosciences, 15, 3331–3343, https://doi.org/10.5194/bg-15-3331-2018, https://doi.org/10.5194/bg-15-3331-2018, 2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue
Atmos. Meas. Tech., 11, 2159–2171, https://doi.org/10.5194/amt-11-2159-2018, https://doi.org/10.5194/amt-11-2159-2018, 2018
Short summary
Short summary
The amplitude, the temperature dependence, and the physical origin of the water vapour absorption continuum are a long standing issue in molecular spectroscopy with a direct impact in atmospheric and planetary sciences. Using highly sensitive laser spectrometers, the water self continuum has been determined with unprecedented sensitivity in infrared atmospheric transparency windows.
Sunil Vadakkepuliyambatta, Ragnhild B. Skeie, Gunnar Myhre, Stig B. Dalsøren, Anna Silyakova, Norbert Schmidbauer, Cathrine Lund Myhre, and Jürgen Mienert
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-110, https://doi.org/10.5194/esd-2017-110, 2017
Preprint retracted
Short summary
Short summary
Release of methane, one of the major greenhouse gases, from melting hydrates has been proposed as a mechanism that accelerated global warming in the past. We focus on Arctic Ocean warming as a robust case study for accelerated melting of hydrates, assessing the impact of Arctic methane release on global air temperatures during the next century. Contrary to popular belief, it is shown that methane emissions from melting hydrates from the Arctic seafloor is not a major driver of global warming.
Kévin Fourteau, Xavier Faïn, Patricia Martinerie, Amaëlle Landais, Alexey A. Ekaykin, Vladimir Ya. Lipenkov, and Jérôme Chappellaz
Clim. Past, 13, 1815–1830, https://doi.org/10.5194/cp-13-1815-2017, https://doi.org/10.5194/cp-13-1815-2017, 2017
Short summary
Short summary
We measured methane concentrations from a polar ice core to quantify the differences between the ice record and the past true atmospheric conditions. Two effects were investigated by combining data analysis and modeling: the stratification of polar snow before gas enclosure driving chronological hiatuses in the record and the gradual formation of bubbles in the ice attenuating fast atmospheric variations. This study will contribute to improving future climatic interpretations from ice archives.
Frédéric Parrenin, Marie G. P. Cavitte, Donald D. Blankenship, Jérôme Chappellaz, Hubertus Fischer, Olivier Gagliardini, Valérie Masson-Delmotte, Olivier Passalacqua, Catherine Ritz, Jason Roberts, Martin J. Siegert, and Duncan A. Young
The Cryosphere, 11, 2427–2437, https://doi.org/10.5194/tc-11-2427-2017, https://doi.org/10.5194/tc-11-2427-2017, 2017
Short summary
Short summary
The oldest dated deep ice core drilled in Antarctica has been retrieved at EPICA Dome C (EDC), reaching ~ 800 000 years. Obtaining an older palaeoclimatic record from Antarctica is one of the greatest challenges of the ice core community. Here, we estimate the age of basal ice in the Dome C area. We find that old ice (> 1.5 Myr) likely exists in two regions a few tens of kilometres away from EDC:
Little Dome C Patchand
North Patch.
Jason Roberts, Andrew Moy, Christopher Plummer, Tas van Ommen, Mark Curran, Tessa Vance, Samuel Poynter, Yaping Liu, Joel Pedro, Adam Treverrow, Carly Tozer, Lenneke Jong, Pippa Whitehouse, Laetitia Loulergue, Jerome Chappellaz, Vin Morgan, Renato Spahni, Adrian Schilt, Cecilia MacFarling Meure, David Etheridge, and Thomas Stocker
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-96, https://doi.org/10.5194/cp-2017-96, 2017
Preprint withdrawn
Short summary
Short summary
Here we present a revised Law Dome, Dome Summit South (DSS) ice core age model (denoted LD2017) that significantly improves the chronology over the last 88 thousand years. An ensemble approach was used, allowing for the computation of both a median age and associated uncertainty as a function of depth. We use a non-linear interpolation between age ties and unlike previous studies, we made an independent estimate of the snow accumulation rate, where required, for the use of gas based age ties.
C. Consolaro, T. L. Rasmussen, G. Panieri, J. Mienert, S. Bünz, and K. Sztybor
Clim. Past, 11, 669–685, https://doi.org/10.5194/cp-11-669-2015, https://doi.org/10.5194/cp-11-669-2015, 2015
Short summary
Short summary
A sediment core collected from a pockmark field on the Vestnesa Ridge (~80N) in the Fram Strait is presented. Our results show an undisturbed sedimentary record for the last 14 ka BP and negative carbon isotope excursions (CIEs) during the Bølling-Allerød interstadials and during the early Holocene. Both CIEs relate to periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere, suggesting an apparent correlation with warm climatic events.
A. Silyakova, R. G. J. Bellerby, K. G. Schulz, J. Czerny, T. Tanaka, G. Nondal, U. Riebesell, A. Engel, T. De Lange, and A. Ludvig
Biogeosciences, 10, 4847–4859, https://doi.org/10.5194/bg-10-4847-2013, https://doi.org/10.5194/bg-10-4847-2013, 2013
J. Czerny, K. G. Schulz, T. Boxhammer, R. G. J. Bellerby, J. Büdenbender, A. Engel, S. A. Krug, A. Ludwig, K. Nachtigall, G. Nondal, B. Niehoff, A. Silyakova, and U. Riebesell
Biogeosciences, 10, 3109–3125, https://doi.org/10.5194/bg-10-3109-2013, https://doi.org/10.5194/bg-10-3109-2013, 2013
T. Tanaka, S. Alliouane, R. G. B. Bellerby, J. Czerny, A. de Kluijver, U. Riebesell, K. G. Schulz, A. Silyakova, and J.-P. Gattuso
Biogeosciences, 10, 315–325, https://doi.org/10.5194/bg-10-315-2013, https://doi.org/10.5194/bg-10-315-2013, 2013
K. G. Schulz, R. G. J. Bellerby, C. P. D. Brussaard, J. Büdenbender, J. Czerny, A. Engel, M. Fischer, S. Koch-Klavsen, S. A. Krug, S. Lischka, A. Ludwig, M. Meyerhöfer, G. Nondal, A. Silyakova, A. Stuhr, and U. Riebesell
Biogeosciences, 10, 161–180, https://doi.org/10.5194/bg-10-161-2013, https://doi.org/10.5194/bg-10-161-2013, 2013
Cited articles
Andreassen, K., Hubbard, A., Winsborrow, M., Patton, H., Vadakkepuliyambatta, S., Plaza-Faverola, A., Gudlaugsson, E., Serov, P., Deryabin, A., Mattingsdal, R., Mienert, J., and Bünz, S.: Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor, Science, 356, 948–953, https://doi.org/10.1126/science.aal4500, 2017.
Berndt, C., Feseker, T., Treude, T., Krastel, S., Liebetrau, V., Niemann, H., Bertics, V. J., Dumke, I., Dünnbier, K., Ferré, B., Graves, C.,
Gross, F., Hissmann, K., Hühnerbach, V., Krause, S., Lieser, K., Schauer, J., and Steinle, L.: Temporal Constraints on Hydrate-Controlled Methane Seepage off Svalbard, Science, 343, 284–287, https://doi.org/10.1126/science.1246298, 2014.
Biastoch, A., Treude, T., Rüpke, L. H., Riebesell, U., Roth, C., Burwicz, E. B., Park, W., Latif, M., Böning, C. W., and Madec, G.: Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification, Geophys. Res. Lett., 38, L08602, https://doi.org/10.1029/2011GL047222, 2011.
Boetius, A. and Wenzhöfer, F.: Seafloor oxygen consumption fuelled by
methane from cold seeps, Nat. Geosci., 6, 725–734, https://doi.org/10.1038/ngeo1926,
2013.
Boulart, C., Prien, R., Chavagnac, V., and Dutasta, J.-P.: Sensing Dissolved
Methane in Aquatic Environments: An Experiment in the Central Baltic Sea Using Surface Plasmon Resonance, Environ. Sci. Technol., 47, 8582–8590, https://doi.org/10.1021/es4011916, 2013.
Boulart, C., Briais, A., Chavagnac, V., Révillon, S., Ceuleneer, G.,
Donval, J.-P., Guyader, V., Barrere, F., Ferreira, N., Hanan, B., Hémond, C., Macleod, S., Maia, M., Maillard, A., Merkuryev, S., Park, S.-H., Ruellan, E., Schohn, A., Watson, S., and Yang, Y.-S.: Contrasted hydrothermal activity along the South-East Indian Ridge (130∘ E–140∘ E): From crustal to ultramafic circulation, Geochem. Geophy. Geosy., 18, 2446–2458, https://doi.org/10.1002/2016GC006683, 2017.
Damm, E., Mackensen, A., Budéus, G., Faber, E., and Hanfland, C.: Pathways of methane in seawater: Plume spreading in an Arctic shelf environment (SW-Spitsbergen), Cont. Shelf Res., 25, 1453–1472,
https://doi.org/10.1016/j.csr.2005.03.003, 2005.
Dewey, R. K.: Mooring Design & Dynamics – a Matlab® package for designing and analyzing oceanographic moorings, Mar. Models, 1, 103–157, https://doi.org/10.1016/S1369-9350(00)00002-X, 1999.
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic
Ocean Tides, J. Atmos. Ocean. Tech., 19, 183–204,
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002.
Ferré, B., Mienert, J., and Feseker, T.: Ocean temperature variability
for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate stability on human time scales, J. Geophys. Res.-Oceans, 117, C10017, https://doi.org/10.1029/2012JC008300 2012.
Gentz, T., Damm, E., Schneider von Deimling, J., Mau, S., McGinnis, D. F., and Schlüter, M.: A water column study of methane around gas flares
located at the West Spitsbergen continental margin, Cont. Shelf Res., 72, 107–118, https://doi.org/10.1016/j.csr.2013.07.013, 2014.
Graves, C. A., Steinle, L., Rehder, G., Niemann, H., Connelly, D. P., Lowry, D., Fisher, R. E., Stott, A. W., Sahling, H., and James, R. H.: Fluxes and
fate of dissolved methane released at the seafloor at the landward limit of
the gas hydrate stability zone offshore western Svalbard, J. Geophys. Res.-Oceans, 120, 6185–6201, https://doi.org/10.1002/2015JC011084, 2015.
Greinert, J., Artemov, Y., Egorov, V., De Batist, M., and McGinnis, D.:
1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea:
Hydroacoustic characteristics and temporal variability, Earth Planet. Sc. Lett., 244, 1–15, https://doi.org/10.1016/j.epsl.2006.02.011, 2006.
Grilli, R., Triest, J., Chappellaz, J., Calzas, M., Desbois, T., Jansson, P., Guillerm, C., Ferré, B., Lechevallier, L., Ledoux, V., and Romanini, D.: Sub-Ocean: Subsea Dissolved Methane Measurements Using an Embedded Laser
Spectrometer Technology, Environ. Sci. Technol., 52, 10543–10551, https://doi.org/10.1021/acs.est.7b06171, 2018.
Hong, W. L., Torres, M. E., Portnov, A., Waage, M., Haley, B., and Lepland, A.: Variations in Gas and Water Pulses at an Arctic Seep: Fluid Sources and
Methane Transport, Geophys. Res. Lett., 45, 4153–4162,
https://doi.org/10.1029/2018GL077309, 2018.
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H. W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R. M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V., Hall, J. K., Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D., Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G., and Weatherall, P.: The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0, Geophys. Res. Lett., 39, L12609, https://doi.org/10.1029/2012gl052219, 2012.
Jansson, P., Ferré, B., Silyakova, A., Dølven, K. O., and Omstedt, A.: A new numerical model for understanding free and dissolved gas progression toward the atmosphere in aquatic methane seepage systems, Limnol. Oceanogr.: Meth., 17, 223–239, https://doi.org/10.1002/lom3.10307, 2019a.
Jansson, P., Triest, J., Grilli, R., Ferré, B., Silyakova, A., Mienert, J., Chappellaz, J.: Replication Data for: High-resolution underwater laser spectrometer sensing provides new insights into methane distribution at an Arctic seepage site, UiT, The Arctic University of Norway, DataverseNO, https://doi.org/10.18710/UWP6LL, 2019b.
Jørgensen, N. O., Laier, T., Buchardt, B., and Cederberg, T.: Shallow
hydrocarbon gas in the nothern Jutland-Kattegat region, Denmark, Bull. Geol.
Soc., 38, 69–76, 1990.
Judd, A. and Hovland, M.: Seabed fluid flow: the impact on geology, biology
and the marine environment, Cambridge University Press, Cambridge, 2009.
Loeng, H.: Features of the physical oceanographic conditions of the Barents
Sea, Polar Res., 10, 5–18, https://doi.org/10.3402/polar.v10i1.6723, 1991.
Marín-Moreno, H., Minshull Timothy, A., Westbrook Graham, K., Sinha,
B., and Sarkar, S.: The response of methane hydrate beneath the seabed offshore Svalbard to ocean warming during the next three centuries, Geophys. Res. Lett., 40, 5159–5163, https://doi.org/10.1002/grl.50985, 2013.
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox, SCOR/IAPSO WG, 127, 1–28, 2011.
McGinnis, D., Greinert, J., Artemov, Y., Beaubien, S., and Wüest, A.:
Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere?, J. Geophys. Res.-Oceans, 111, C09007, https://doi.org/10.1029/2005JC003183, 2006.
Medwin, H. and Clay, C. S.: Fundamentals of acoustical oceanography, Academic Press, San Diego, CA, USA, 1997.
Miller, C. M., Dickens, G. R., Jakobsson, M., Johansson, C., Koshurnikov, A., O'Regan, M., Muschitiello, F., Stranne, C., and Mörth, C. M.: Pore water geochemistry along continental slopes north of the East Siberian Sea:
inference of low methane concentrations, Biogeosciences, 14, 2929–2953,
https://doi.org/10.5194/bg-14-2929-2017, 2017.
Myhre, C. L., Ferré, B., Platt, S. M., Silyakova, A., Hermansen, O., Allen, G., Pisso, I., Schmidbauer, N., Stohl, A., and Pitt, J.: Extensive
release of methane from Arctic seabed west of Svalbard during summer 2014
does not influence the atmosphere, Geophys. Res. Lett., 43, 4624–4631, https://doi.org/10.1002/2016GL068999, 2016.
Ostrovsky, I.: Methane bubbles in Lake Kinneret: Quantification and temporal
and spatial heterogeneity, Limnol. Oceanogr., 48, 1030–1036,
https://doi.org/10.4319/lo.2003.48.3.1030, 2003.
Ostrovsky, I., McGinnis, D. F., Lapidus, L., and Eckert, W.: Quantifying gas
ebullition with echosounder: the role of methane transport by bubbles in a
medium-sized lake, Limnol. Oceanogr.: Meth., 6, 105–118, https://doi.org/10.4319/lom.2008.6.105, 2008.
Platt, S. M., Eckhardt, S., Ferré, B., Fisher, R. E., Hermansen, O.,
Jansson, P., Lowry, D., Nisbet, E. G., Pisso, I., Schmidbauer, N., Silyakova, A., Stohl, A., Svendby, T. M., Vadakkepuliyambatta, S., Mienert, J., and Lund Myhre, C.: Methane at Svalbard and over the European Arctic Ocean, Atmos. Chem. Phys., 18, 17207–17224, https://doi.org/10.5194/acp-18-17207-2018, 2018.
Pohlman, J. W., Greinert, J., Ruppel, C., Silyakova, A., Vielstädte, L.,
Casso, M., Mienert, J., and Bünz, S.: Enhanced CO2 uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane, P. Natl. Acad. Sci. USA, 114, 5355, https://doi.org/10.1073/pnas.1618926114, 2017.
Portnov, A., Vadakkepuliyambatta, S., Mienert, J., and Hubbard, A.:
Ice-sheet-driven methane storage and release in the Arctic, Nat. Commun., 7, 10314, https://doi.org/10.1038/ncomms10314, 2016.
Reagan, M. T., Moridis, G. J., Elliott, S. M., and Maltrud, M.: Contribution
of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane
plumes, J. Geophys. Res.-Oceans, 116, C09014, https://doi.org/10.1029/2011JC007189, 2011.
Reeburgh, W. S.: Oceanic Methane Biogeochemistry, Chem. Rev., 107, 486–513, https://doi.org/10.1021/cr050362v, 2007.
Ruppel, C. D. and Kessler, J. D.: The Interaction of Climate Change and Methane Hydrates, Rev. Geophys., 126–168, https://doi.org/10.1002/2016RG000534, 2016.
Sahling, H., Römer, M., Pape, T., Bergès, B., dos Santos Fereirra, C., Boelmann, J., Geprägs, P., Tomczyk, M., Nowald, N., and Dimmler, W.:
Gas emissions at the continental margin west of Svalbard: mapping, sampling,
and quantification, Biogeosciences, 11, 6029–6046, https://doi.org/10.5194/bg-11-6029-2014, 2014.
Schauer, U., Fahrbach, E., Osterhus, S., and Rohardt, G.: Arctic warming
through the Fram Strait: Oceanic heat transport from 3 years of measurements, J. Geophys. Res.-Oceans, 109, C06026, https://doi.org/10.1029/2003JC001823, 2004.
Shakhova, N., Semiletov, I., Salyuk, A., Yusupov, V., Kosmach, D., and
Gustafsson, Ö.: Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf, Science, 327, 1246–1250,
https://doi.org/10.1126/science.1182221, 2010.
Shakhova, N., Semiletov, I., Leifer, I., Sergienko, V., Salyuk, A., Kosmach,
D., Chernykh, D., Stubbs, C., Nicolsky, D., Tumskoy, V., and Gustafsson, O.:
Ebullition and storm-induced methane release from the East Siberian Arctic
Shelf, Nat. Geosci., 7, 64–70, https://doi.org/10.1038/ngeo2007, 2014.
Skogseth, R., Haugan, P. M., and Jakobsson, M.: Watermass transformations in
Storfjorden, Cont. Shelf Res., 25, 667–695, https://doi.org/10.1016/j.csr.2004.10.005, 2005.
Ślubowska-Woldengen, M., Rasmussen, T. L., Koç, N., Klitgaard-Kristensen, D., Nilsen, F., and Solheim, A.: Advection of Atlantic
Water to the western and northern Svalbard shelf since 17,500 cal yr BP,
Quaternary Sci. Rev., 26, 463–478, https://doi.org/10.1016/j.quascirev.2006.09.009,
2007.
Sommer, S., Schmidt, M., and Linke, P.: Continuous inline mapping of a dissolved methane plume at a blowout site in the Central North Sea UK using
a membrane inlet mass spectrometer – Water column stratification impedes
immediate methane release into the atmosphere, Mar. Petrol. Geol., 68, 766–775, https://doi.org/10.1016/j.marpetgeo.2015.08.020, 2015.
Stashchuk, N., Vlasenko, V., Inall, M. E., and Aleynik, D.: Horizontal
dispersion in shelf seas: High resolution modelling as an aid to sparse
sampling, Prog. Oceanogr., 128, 74–87, https://doi.org/10.1016/j.pocean.2014.08.007, 2014.
Steinle, L., Graves, C. A., Treude, T., Ferré, B., Biastoch, A., Bussmann, I., Berndt, C., Krastel, S., James, R. H., Behrens, E., Böning, C. W., Greinert, J., Sapart, C.-J., Scheinert, M., Sommer, S., Lehmann, M. F., and Niemann, H.: Water column methanotrophy controlled by a rapid oceanographic switch, Nat. Geosci., 8, 378–382, https://doi.org/10.1038/ngeo2420, 2015.
Sundermeyer, M. A. and Ledwell, J. R.: Lateral dispersion over the continental shelf: Analysis of dye release experiments, J. Geophys. Res.-Oceans, 106, 9603–9621, https://doi.org/10.1029/2000JC900138, 2001.
Tishchenko, P., Hensen, C., Wallmann, K., and Wong, C. S.: Calculation of the stability and solubility of methane hydrate in seawater, Chem. Geol., 219, 37–52, https://doi.org/10.1016/j.chemgeo.2005.02.008, 2005.
Veloso, M., Greinert, J., Mienert, J., and De Batist, M.: A new methodology
for quantifying bubble flow rates in deep water using splitbeam
echosounders: Examples from the Arctic offshore NW-Svalbard, Limnol. Oceanogr.: Meth., 13, 267–287, https://doi.org/10.1002/lom3.10024, 2015.
Veloso, M., Greinert, J., Mienert, J., and De Batist, M.: Corrigendum: A new
methodology for quantifying bubble flow rates in deep water using splitbeam
echosounders: Examples from the Arctic offshore NW-Svalbard, Limnol. Oceanogr.: Meth., 17, 177–178, https://doi.org/10.1002/lom3.10313, 2019a.
Veloso, M., Jansson, P., De Batist, M., Minshull, T. A., Westbrook, G. K.,
Pälike, H., Bünz, S., Wright, I., and Greinert, J.: Variability of
acoustically evidenced methane bubble emissions offshore western Svalbard,
Geophys. Res. Lett., https://doi.org/10.1029/2019GL082750, in press, 2019b.
Wankel, S. D., Joye, S. B., Samarkin, V. A., Shah, S. R., Friederich, G.,
Melas-Kyriazi, J., and Girguis, P. R.: New constraints on methane fluxes and
rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in
situ mass spectrometry, Deep-Sea Res. Pt. II, 57, 2022–2029, https://doi.org/10.1016/j.dsr2.2010.05.009, 2010.
Weber, T. C., Mayer, L., Jerram, K., Beaudoin, J., Rzhanov, Y., and Lovalvo, D.: Acoustic estimates of methane gas flux from the seabed in a 6000 km2 region in the Northern Gulf of Mexico, Geochem. Geophy. Geosy., 15, 1911–1925, https://doi.org/10.1002/2014GC005271, 2014.
Westbrook, G. K., Thatcher, K. E., Rohling, E. J., Piotrowski, A. M.,
Pälike, H., Osborne, A. H., Nisbet, E. G., Minshull, T. A., Lanoisellé, M., and James, R. H.: Escape of methane gas from the seabed
along the West Spitsbergen continental margin, Geophys. Res. Lett., 36, L15608, https://doi.org/10.1029/2009GL039191, 2009.
Wiesenburg, D. A. and Guinasso Jr., N. L.: Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water, J. Chem. Eng. Data, 24, 356–360, https://doi.org/10.1021/je60083a006, 1979.
Short summary
Methane seepage from the seafloor west of Svalbard was investigated with a fast-response membrane inlet laser spectrometer. The acquired data were in good agreement with traditional sparse discrete water sampling, subsequent gas chromatography, and with a new 2-D model based on echo-sounder data. However, the acquired high-resolution data revealed unprecedented details of the methane distribution, which highlights the need for high-resolution measurements for future climate studies.
Methane seepage from the seafloor west of Svalbard was investigated with a fast-response...