Articles | Volume 15, issue 4
Ocean Sci., 15, 1023–1032, 2019
https://doi.org/10.5194/os-15-1023-2019

Special issue: The Copernicus Marine Environment Monitoring Service (CMEMS):...

Ocean Sci., 15, 1023–1032, 2019
https://doi.org/10.5194/os-15-1023-2019

Research article 02 Aug 2019

Research article | 02 Aug 2019

Using canonical correlation analysis to produce dynamically based and highly efficient statistical observation operators

Eric Jansen et al.

Related authors

Assimilation of SST data in the POSEIDON system using the SOSSTA statistical-dynamical observation operator
Gerasimos Korres, Dimitra Denaxa, Eric Jansen, Isabelle Mirouze, Sam Pimentel, Wang-Hung Tse, and Andrea Storto
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-158,https://doi.org/10.5194/os-2018-158, 2019
Preprint withdrawn
Short summary
A new search-and-rescue service in the Mediterranean Sea: a demonstration of the operational capability and an evaluation of its performance using real case scenarios
Giovanni Coppini, Eric Jansen, Giuseppe Turrisi, Sergio Creti, Elena Yurievna Shchekinova, Nadia Pinardi, Rita Lecci, Ivano Carluccio, Yogesh Vittal Kumkar, Alessandro D'Anca, Gianandrea Mannarini, Sara Martinelli, Palmalisa Marra, Tommaso Capodiferro, and Tommaso Gismondi
Nat. Hazards Earth Syst. Sci., 16, 2713–2727, https://doi.org/10.5194/nhess-16-2713-2016,https://doi.org/10.5194/nhess-16-2713-2016, 2016
Short summary
Drift simulation of MH370 debris using superensemble techniques
Eric Jansen, Giovanni Coppini, and Nadia Pinardi
Nat. Hazards Earth Syst. Sci., 16, 1623–1628, https://doi.org/10.5194/nhess-16-1623-2016,https://doi.org/10.5194/nhess-16-1623-2016, 2016
Short summary

Cited articles

Bernie, D. J., Guilyardi, E., Madec, G., Slingo, J. M., and Woolnough, S. J.: Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 1: a diurnally forced OGCM, Clim. Dynam., 29, 575–590, https://doi.org/10.1007/s00382-007-0249-6, 2007. a, b, c
Björck, Å. and Golub, G. H.: Numerical Methods for Computing Angles Between Linear Subspaces, Math. Comput., 27, 579–594, https://doi.org/10.2307/2005662, 1973. a
Burchard, H., Bolding, K., and Ruiz-Villarreal, M.: GOTM, a general ocean turbulence model. Theory, implementation and test cases, Tech. Rep. EUR 18745 EN, European Commission, Brussels, Belgium, 1999. a
Donlon, C. J., Minnett, P. J., Gentemann, C., Nightingale, T. J., Barton, I. J., Ward, B., and Murray, M. J.: Toward Improved Validation of Satellite Sea Surface Skin Temperature Measurements for Climate Research, J. Climate, 15, 353–369, https://doi.org/10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2, 2002. a
Flament, P., Firing, J., Sawyer, M., and Trefois, C.: Amplitude and Horizontal Structure of a Large Diurnal Sea Surface Warming Event during the Coastal Ocean Dynamics Experiment, J. Phys. Oceanogr., 24, 124–139, https://doi.org/10.1175/1520-0485(1994)024<0124:AAHSOA>2.0.CO;2, 1994.  a
Download
Short summary
The assimilation of satellite SST data into ocean models is complex. The temperature of the thin uppermost layer that is measured by satellites may differ from the much thicker upper layer used in numerical models, leading to biased results. This paper shows how canonical correlation analysis can be used to generate observation operators from existing datasets of model states and corresponding observation values. This type of operator can correct for near-surface effects when assimilating SST.