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Abstract. Observation operators (OOs) are a central compo-
nent of any data assimilation system. As they project the state
variables of a numerical model into the space of the observa-
tions, they also provide an ideal opportunity to correct for
effects that are not described or are insufficiently described
by the model. In such cases a dynamical OO, an OO that
interfaces to a secondary and more specialised model, often
provides the best results. However, given the large number
of observations to be assimilated in a typical atmospheric
or oceanographic model, the computational resources needed
for using a fully dynamical OO mean that this option is usu-
ally not feasible. This paper presents a method, based on
canonical correlation analysis (CCA), that can be used to
generate highly efficient statistical OOs that are based on a
dynamical model. These OOs can provide an approximation
to the dynamical model at a fraction of the computational
cost.

One possible application of such an OO is the modelling of
the diurnal cycle of sea surface temperature (SST) in ocean
general circulation models (OGCMs). Satellites that measure
SST measure the temperature of the thin uppermost layer
of the ocean. This layer is strongly affected by atmospheric
conditions, and its temperature can differ significantly from
the water below. This causes a discrepancy between the SST
measurements and the upper layer of the OGCM, which typ-
ically has a thickness of around 1 m. The CCA OO method is
used to parameterise the diurnal cycle of SST. The CCA OO
is based on an input dataset from the General Ocean Turbu-

lence Model (GOTM), a high-resolution water column model
that has been specifically tuned for this purpose. The parame-
terisations of the CCA OO are found to be in good agreement
with the results from the GOTM and improve upon existing
parameterisations, showing the potential of this method for
use in data assimilation systems.

1 Introduction

Data assimilation (DA) strives to improve the forecast skill
of a numerical model by combining the model with observa-
tions. Observations are incorporated into the model by apply-
ing a series of corrections to the internal state of the model.
As the state variables of a numerical model are usually not
observed directly, this procedure requires an observation op-
erator (OO) to project the model state variables onto the vari-
able that is observed. The difference between the observation
and the model prediction, the so-called innovation, forms the
basis for calculating the correction to the model state. The ac-
curacy of the OO is paramount in this process: any bias in the
projection will lead to a bias in the innovation and therefore
result in a biased correction to the model state. For this rea-
son, bias correction procedures have been built considering
not only systematic errors in observations but also in obser-
vation operators (see e.g. Harris and Kelly, 2001, for satellite
radiance data).
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Many different types of OO exist. In its simplest form, an
OO could just select one of the state variables in a point near
the observation or, perhaps, perform an interpolation. More
complex OOs may include corrections for processes that in-
fluence the observation but are not modelled or are insuffi-
ciently modelled. Ultimately, one could even consider a dy-
namical OO that wraps a second numerical model to locally
refine the results of the parent model. The latter solution may
very well provide the most accurate results, but the vast num-
ber of observations that need to be assimilated in a typical at-
mospheric or oceanographic model means that this approach
would require a prohibitive amount of computing resources.
This limits OOs in most practical applications to relatively
simple parameterisations in terms of the model state vari-
ables. Moreover, variational data assimilation requires ob-
servation operators to be linearised around the background
within the inner loops (tangent-linear approximation). This
translates into a need to construct OOs that can be formally
and practically differentiated.

This paper presents a method of parameterising the results
of a specialised model in such a way that it can be efficiently
used within an OO. The parameterisation is based on canoni-
cal correlation analysis (CCA), a well-established mathemat-
ical method for finding cross-correlations between datasets.
A new pseudo-dynamical OO is generated using the canon-
ical correlation between the inputs and outputs of the spe-
cialised model on a large and representative dataset. Once
this correlation has been calculated, the application of the
pseudo-dynamical OO involves only a matrix multiplication
that can be performed at a fraction of the computational cost
of the dynamical OO. A similar method has been used previ-
ously to build reduced-order OOs in atmospheric data assim-
ilation (Haddad et al., 2015).

This work is part of the SOSSTA (Statistical-dynamical
observation Operator for SST data Assimilation) project,
funded by the EU Copernicus Marine Environment Monitor-
ing Service (CMEMS) through the Service Evolution grants.
The aim of SOSSTA is to formulate an efficient OO for sea
surface temperature (SST) DA that accounts for the diurnal
variability of the ocean skin temperature. The results of the
project are presented in multiple publications. The modelling
of the diurnal cycle of SST is described in Pimentel et al.
(2019), while the current paper focuses on the method for
constructing the OO. The project includes pilot studies in the
Mediterranean Sea and the Aegean Sea that will be described
in forthcoming publications.

The paper is organised as follows: Sect. 2 provides a quick
review of CCA; Sect. 3 discusses how CCA can be used to
construct the OO matrix; Sect. 4 applies the CCA OO to the
modelling of satellite sea surface temperature (SST) mea-
surements in oceanographic models; and Sect. 5 discusses
the performance of the method and other possible applica-
tions. Conclusions are presented in Sect. 6.

2 The CCA method

CCA (Hotelling, 1936) is a method to find cross-correlations
between two datasets X and Y. The datasets are considered
to be matrices structured such that the columns represent dif-
ferent variables and the rows represent the measurements of
these variables. CCA then aims to find transformation matri-
ces A and B that transform the anomaly of the variables of X
and Y, denoted X′ and Y′, into the set of canonical variables
F and G:

F= X′A G= Y′B. (1)

The structure of F and G matches that of X and Y. The
canonical variables are constructed such that the variable Fi

is maximally correlated with the variable Gi . At the same
time, both Fi and Gi are uncorrelated with Fj and Gj for
i 6= j ; therefore, each additional canonical variable describes
the maximal remaining correlation between the two datasets.
The number of canonical variables that can be obtained with
this procedure is limited to the smallest number of variables
in X or Y.

The calculation of the matrices A and B is relatively
straightforward using the algorithm of Björck and Golub
(1973). Writing the requirements outlined above in equation
form yields

FT F=GT G= I, (2a)

FT G= D, (2b)

with I the unit matrix and D a diagonal matrix. The algorithm
uses a QR decomposition to decompose both X′ and Y′ into
an orthogonal matrix Q and an upper-triangular matrix R:

X′ =QxRx Y′ =QyRy . (3)

The algorithm proceeds by applying a singular value decom-
position (SVD) on the product QT

x Qy :

QT
x Qy = USVT . (4)

By trying the ansatz,

A≡ R−1
x U B≡ R−1

y V, (5)

the orthonormality requirement of Eq. (2a) becomes

FT F= AT X′T X′A

=

(
UT

(
R−1

x

)T
)(

RT
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x

)
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(
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(6)

and an analogous result follows for GT G.
The orthogonality requirement of Eq. (2b) becomes

D= FT G= AT X′T Y′B
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(7)

Ocean Sci., 15, 1023–1032, 2019 www.ocean-sci.net/15/1023/2019/



E. Jansen et al.: Using CCA to produce dynamically based, highly efficient statistical OOs 1025

Therefore, the ansatz of Eq. (5) is a valid solution for the ma-
trices A and B. Moreover, by counting the number of degrees
of freedom in these matrices and the number of constraints
provided by Eq. (1), it can be shown that all solutions are
permutations of Eq. (5) (Press, 2011). The canonical basis is
therefore uniquely defined. In the case that X and Y contain
different numbers of variables Nx and Ny , the SVD of Eq. (4)
selects the N largest correlations, with N =min(Nx,Ny).

As QR decomposition and SVD are common matrix op-
erations that are efficiently implemented in most numerical
libraries, this algorithm is straightforward to implement in
most programming languages.

3 Using CCA to construct an OO

The CCA method can be used to construct an OO. Let X be
a set of (possibly) relevant model state variables and Y the
corresponding observation values. Here Y could be obtained
from a specialised model but also from a historical dataset
of real observations. Applying the algorithm of Sect. 2 yields
the matrices A, B, and D. The first two convert the mean sub-
tracted model states X′ and observation values Y′ into their
canonical counterparts F and G. The diagonal matrix D holds
for each pair of canonical variables i the best fit to the slope
of the correlation: Dii = dGi/dFi .

Assuming that Nx ≥Ny – i.e. the number of model state
variables is at least equal to the number of observed variables
– it is possible to calculate Y′ from X′ by passing through
canonical space and applying the fitted slope D,

Y′ = X′ADB−1
≡ X′M, (8)

defining the CCA OO matrix,

M≡ ADB−1, (9)

of size Nx×Ny . As the CCA considers only the anomaly of X
and Y, an additional offset term needs to be considered to ac-
commodate the mean values of X and Y in the input dataset.
However, the mean values of X and Y can be combined by
applying the matrix M:

Y−Y=
(

X−X
)

M

Y= XM+K,

(10)

with

K ≡ Y−XM, (11)

a combined offset vector of length Ny .
During the training phase of the CCA OO, the datasets

X and Y are used to calculate the matrix M and the offset
K . Once computed, they can be used to form an observation
operator H that transforms a state x as

H(x)= xM+K. (12)

Furthermore, the tangent-linear approximation used in varia-
tional DA schemes requires that

H(x)∼ H(xb)+H′dx, (13)

where H′ is the tangent-linear version of the OO, xb the back-
ground state, and dx the deviation from the background. The
CCA OO is straightforward to implement in this scheme,
since for H′ and its adjoint H′T it follows that

H′ =MT H′T =M. (14)

4 Use case: satellite SST

One possible application of the new CCA OO is the assimi-
lation of SST in ocean general circulation models (OGCMs).
In recent years OGCMs have seen significant improvements
in vertical resolution, particularly near the surface, where the
first layer has been reduced to a thickness of the order of 1 m
or less. At this resolution, the diurnal cycle of SST should be
taken into account. Although diurnal variability is included
to some extent (Marullo et al., 2014), the vertical resolution
of OGCMs is still insufficient to fully resolve the variability
of the skin and subskin ocean temperature.

This issue becomes particularly evident when assimilat-
ing satellite SST observations. The different types of sen-
sors used on satellites probe the ocean temperature at dif-
ferent depths. Infrared (IR) sensors measure the tempera-
ture at about 10 µm, a layer that is referred to as the ocean
skin. Microwave (MW) sensors, on the other hand, measure
the temperature of the layer below that, the subskin, with a
depth of about 1 mm. This is much shallower than the ver-
tical resolution of a typical OGCM, while these layers are
strongly affected by the atmospheric conditions. The ocean
skin cools due to thermodynamic processes at the air–sea in-
terface, while the absorption of solar heat causes a warm-
ing of the subskin. At the same time, wind can mix the skin
and subskin with the water below, smoothing the tempera-
ture variations. During days of low wind and/or high insola-
tion conditions the amplitude of the SST diurnal cycle can
be larger than the combined accuracy of the model and ob-
servations, causing a straightforward assimilation of SST to
degrade the performance of the model (Marullo et al., 2016).
Under favourable conditions this amplitude is typically of the
order of a few degrees (see e.g. Flament et al., 1994), but
values as high as 6 ◦C have been observed (Merchant et al.,
2008).

Representation errors have been extensively discussed
within ocean applications (Oke and Sakov, 2008; Janjić et al.,
2018) and generally include errors due to e.g. limited spatial
resolution or unrepresented processes. However, the diurnal
variability of skin SST represents a potentially systematic er-
ror that requires a proper treatment rather than just increasing
the representation component of the observational error.
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An important source of SST observational data is the Spin-
ning Enhanced Visible and Infrared Imager (SEVIRI) in-
strument onboard the Meteosat satellites of the second gen-
eration. As these are geostationary satellites, SEVIRI can
provide continuous measurements of the same area with a
15 min temporal resolution. Although the IR imager is sensi-
tive to skin temperature, the calibration algorithm of SEVIRI
corrects for the cool-skin bias, and the resulting SST products
should be considered the subskin temperature (Saux Picart
and Legendre, 2018). For wind speeds greater than 6 m s−1

the skin temperature may be calculated as Tskin = Tsubskin−

0.17 ◦C (Donlon et al., 2002), but this is only an approxima-
tion.

This section will discuss how to use the output of a water
column model specifically tuned for modelling the diurnal
cycle of SST together with the CCA OO to build an observa-
tion operator for SST that accounts for the diurnal variability.

4.1 General Ocean Turbulence Model

The SST diurnal cycle is modelled using the General
Ocean Turbulence Model (GOTM). The GOTM is a one-
dimensional water column model that includes multiple tur-
bulence closure schemes (Burchard et al., 1999; Umlauf
et al., 2005). It has been successfully adapted to model the
near-surface variability of ocean temperature, including both
the diurnal cycle and the cool-skin effect (Pimentel et al.,
2008a, b). Recently it has been used to systematically sim-
ulate the atmospheric and oceanographic conditions in the
Mediterranean Sea (Pimentel et al., 2019). The latter study
has resulted in a multi-year dataset modelling the diurnal cy-
cle in the Mediterranean Sea on a grid of 0.75◦×0.75◦ reso-
lution with hourly time resolution. For this dataset the GOTM
is configured with the k-ε turbulent kinetic energy parameter-
isation with internal waves. The top 75 m of the water column
is resolved using 122 vertical layers with fine resolution near
the surface and gradually becoming coarser with depth. The
uppermost 1 m contains a total of 21 layers, with the highest
level at 1.5 cm of depth. This dataset is used in the present
paper to build the CCA OO for SST.

The subskin SST represents the temperature at the base
of the conductive laminar sub-layer of the ocean surface; for
practical purposes it is represented by the temperature of the
top model layer of the GOTM (1.5 cm). The conductive sub-
layer of the air–sea interface, associated with the cool-skin
effect, is parameterised and dynamically computed within
the GOTM to produce a modelled skin SST. Further details
are provided in Pimentel et al. (2019).

4.2 Operator setup

The aim for the CCA OO is to parameterise the IR and MW
satellite SST observations as a function of temperature in
the water column below. While the dataset of Pimentel et al.
(2019) uses a fine vertical resolution to calculate the SST ob-

servations, the CCA OO will consider only the levels of a
typical OGCM. Within the SOSSTA project this OGCM is
the CMEMS Mediterranean Forecasting System (MFS) (Si-
moncelli et al., 2014), but the parameterisation can be per-
formed for any vertical distribution of levels.

The magnitude of the diurnal signal depends strongly on
the atmospheric conditions, most importantly the insolation
and wind speed. Insolation causes the ocean skin to heat up
during the course of the day, while wind mixes the upper lay-
ers of the ocean, leading to the dissipation of the heat. Due
to latent heat loss, the ocean skin may even cool down be-
low the bulk temperature. To accommodate a non-linear de-
pendence on the different insolation and wind scenarios in
the CCA OO, the GOTM dataset is divided into 12 insola-
tion and 8 wind categories. Insolation and wind are defined
in each location as the daily mean value in local mean time
(LMT). The category boundaries were chosen to equally di-
vide the dataset. The magnitude of the diurnal warming for
the different categories is shown in Fig. 1.

The GOTM dataset has been compared to SEVIRI data at
the skin level in Pimentel et al. (2019) and was found to be in
good agreement over the whole period of 2013 and 2014.
However, after dividing the dataset into atmospheric cate-
gories, it is found that categories with high diurnal warming
may have a warm bias of up to 0.5 ◦C and categories with
low diurnal warming a cold bias of typically 0.1–0.2 ◦C. This
category bias is corrected for by subtracting the mean differ-
ence between SEVIRI and GOTM at subskin level for each
category.

For each category of wind and insolation, and at hourly
time resolution, the CCA OO is calculated to project the
10 uppermost levels of the MFS model onto the skin and sub-
skin SST temperatures. The 10 levels extend down to a depth
of approximately 40 m, which was chosen to be well below
the depth influenced by the diurnal cycle of temperature. Fig-
ure 2a shows the correlation between the model temperature
at various depths and the two SST observation types. As ex-
pected, the SST is strongly correlated with the highest lev-
els and the correlation decreases with depth. It is important
to note that in this case the various levels are also strongly
correlated with each other. Figure 2b shows the correlation
after transforming to canonical coordinates. It can be seen
that the strongest correlation has not significantly changed,
as the first canonical variable is very similar to the highest
model level. The second pair of canonical variables (F2,G2),
however, describes an additional correlation of around 60 %
between model water temperature and SST.

4.3 Validation

The CCA OO is validated by comparing its performance to
that of the full GOTM. To use the operator effectively in a
DA system, it should be able to provide an accurate approx-
imation of the GOTM results. The validation is performed
against GOTM profiles that are withheld from the CCA OO
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Figure 1. The magnitude of the diurnal warming at the subskin level as a function of the time of the day for different wind and insolation
categories. The diurnal warming is measured with respect to the SST at local sunrise. The wind categories are represented by the different
panels, while the insolation categories are shown as different curves within each panel.

Figure 2. The correlation coefficients between the model variables and observations (a), with the canonical equivalent of these variables (b).

calculation. The GOTM dataset is split in two, withholding
every other profile in the zonal direction from the calculation.
The validation then uses the withheld profiles and extracts the
depths corresponding to the MFS levels, mimicking the use
of the operator inside a DA system. The CCA OO, based on
the atmospheric category and closest time, is subsequently
applied to project the model temperature onto the skin and
subskin SST. The projected SST values are then compared to
the values in the original GOTM profile.

Some examples of the validation are shown in Fig. 3. Each
panel shows a profile from the GOTM dataset, together with
the model levels that were used as input to the CCA OO.
The output of the CCA OO is superimposed onto the GOTM
profile so that a comparison can be made. Figure 3a shows
a temperature profile in the early morning, during a day of
low wind and high insolation. At this time, diurnal warming
is limited, and due to the clear-sky conditions the skin and
subskin temperatures have cooled down slightly below the
temperature of the first model level. Figure 3b shows an after-

www.ocean-sci.net/15/1023/2019/ Ocean Sci., 15, 1023–1032, 2019
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Figure 3. Examples of temperature profiles in various conditions and at different times. The GOTM profiles are shown by the red curve,
while the filled circles indicate the values used as input to the CCA OO. The output of the CCA OO is shown by the black triangles. (a) Low
wind, high insolation, early morning; (b) low wind, high insolation, afternoon; (c) high wind, high insolation, afternoon; (d) high wind, low
insolation, afternoon.

noon profile on a similar day. At this time, diurnal warming is
around its maximum, and the skin temperature has increased
about 1 ◦C above the first level of the model. In the case of
high wind speed, the increased mixing of the upper layer of
the ocean can completely cancel the effect of the high inso-
lation, as shown in Fig. 3c. In this situation the temperature
in the upper 10 m of the ocean is almost constant. When high
wind conditions coincide with low insolation, the surface can
also cool quite significantly, as shown in Fig. 3d. The CCA
OO is able to correctly reproduce the GOTM skin and sub-
skin temperature under different atmospheric conditions. The
atmospheric categories with strong diurnal warming have a
root mean square error (RMSE) of up to 0.4 ◦C; for all other
categories the RMSE is around 0.1 ◦C. The bias of the CCA
OO compared to the GOTM was found to be negligible.

5 Performance and discussion

The performance of the GOTM-based CCA OO for SST is
compared to other commonly used methods. For this com-
parison the GOTM dataset is again split along the zonal di-
rection using every other profile to calculate the CCA OO.
The remaining profiles are matched to SEVIRI subskin re-
trievals using only profiles matched to a measurement with
an acceptable (4) or good (5) quality control level. The per-
formance can be conveniently expressed in terms of the skill
score (SS), defined by Murphy (1988) as

SS= 1−
MSEmodel

MSEreference
. (15)

The skill score is based on the mean square error (MSE) of
the model under testing and of a reference model. Specifi-
cally, it expresses the difference in MSE as a fraction of the
reference MSE. The skill score is straightforward to inter-
pret: a perfect model (MSE= 0) results in a skill score of
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Figure 4. Skill score of the CCA OO compared to the OGCM upper layer for all wind and insolation categories at midnight (a) and in the
afternoon (b).

1, while a model that shows no improvement over the refer-
ence model receives a skill score of 0. Negative skill scores
indicate that the model performs worse and its MSE has in-
creased with respect to the reference. In this case the CCA
OO will be used as the model and the reference will be an-
other commonly used OO. The MSE is calculated with re-
spect to the SEVIRI subskin temperature.

The simplest method of assimilating satellite SST observa-
tions in a model that insufficiently describes the diurnal cycle
of SST is to assimilate only at night or during high wind; see,
for example, Waters et al. (2015). During the night the cycle
of SST is close to its minimum value and the temperature of
the upper layer of an OGCM forms a reasonable approxima-
tion for the skin temperature. In this situation the assimila-
tion is performed without additional corrections. Figure 4a
shows the skill score of the CCA OO at midnight local time
using the temperature of the OGCM upper layer as a refer-
ence method. Figure 4b shows the same situation, but in the
afternoon. For high wind and low insolation the CCA OO
performs, as expected, similarly to using the upper OGCM
layer. However, for low wind speeds and high insolation the
CCA OO shows a clear improvement, even at midnight. This
can be explained by the fact that at midnight some diurnal
signal still remains and, even using the wind and insolation
values of the next day, this is correctly modelled by the CCA
OO.

A more advanced solution is the parameterisation of
Bernie et al. (2007), which estimates the diurnal signal as
a function of wind, insolation, and time. This is a commonly
used parameterisation; for example, it is included with the
NEMO ocean model (Madec et al., 1998). Figure 5 shows the
skill score for the CCA OO compared to the parameterisation
of Bernie et al. (2007) at the peak of the diurnal cycle (a) and
in the early evening (b). It can be seen that for high insolation
and low wind, conditions for which the diurnal warming is

largest, both methods perform similarly. However, the CCA
OO is better at accommodating different atmospheric condi-
tions and shows significant improvements for the intermedi-
ate insolation and wind categories. Moreover, Fig. 5b shows
that the CCA OO is able to better parameterise the cooling
of the subskin in the late afternoon–evening after the peak of
the diurnal warming has passed.

Using the CCA OO to improve the description of SST
has many potential applications. For example, the CCA OO
could be used as a parameterisation of diurnally varying skin
SST within an OGCM as part of the air–sea flux calcula-
tions. The skin SST is the true interface temperature for air–
sea fluxes, so this approach should result in improved air–
sea heat transfer in OGCMs and coupled ocean–atmosphere
models. See, for example, Marullo et al. (2016). Another pos-
sibility would be the use of the CCA OO as a parameterisa-
tion of diurnally varying SST within a climate model. The di-
urnal cycle is a fundamental signal of the climate system, yet
for climate models the lack of vertical structure (and tempo-
ral resolution) is even more critical. See, for example, Large
and Caron (2015).

Due to the way in which it is constructed, the CCA OO is
an inherently linear operator. This makes it straightforward
to implement in DA schemes that require linearised and dif-
ferentiable OOs. However, non-linear effects can be accom-
modated to some extent by constructing a series of CCA OOs
conditioned on such a non-linear dependency. For example,
in the case of SST, this method has been used to condition
the CCA OO on insolation, wind, and time. The only require-
ment in this case is that the datasets X and Y of Sect. 3 are
sufficiently large to divide them by such a dependent vari-
able.

The minimum size of the input dataset required ultimately
depends on the number of model variables used (Nx) and the
number of observation variables to predict (Ny). The number
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Figure 5. Skill score of the CCA OO compared to the parameterisation of Bernie et al. (2007) in the afternoon (a) and early evening (b).

of free parameters in the CCA OO matrix M and the offset
K equals (Nx+1)Ny . As each entry in the input dataset also
provides Ny observation values, Eq. (4) requires a minimum
of Nx +1 entries to be mathematically solvable. However, at
this point the CCA OO will be overfitted. It will simply be
able to memorise the input datasets rather than being based
on general characteristics of the data. Care has to be taken
to avoid this situation, making sure the input dataset contains
a number of entries n with n>>Nx . Whether a given size
n is sufficient should be tested using independent data. One
possible method for this test is to withhold part of the input
dataset from the CCA OO calculation and then use this subset
to calculate the CCA OO performance.

6 Conclusions

Observation operators (OOs) form a central component in
any data assimilation (DA) system, as they transform the
state variables of a numerical model into real-world observ-
able variables. Often, an OO also needs to correct for pro-
cesses that are not fully described by the parent model. Such
processes may be best modelled by interfacing the OO to a
specialised model, but this is generally not feasible due to
computational constraints.

The assimilation of satellite sea surface temperature (SST)
in ocean general circulation models (OGCMs) is a prime ex-
ample of a situation in which insufficiently modelled pro-
cesses play an important role. The diurnal cycle of SST
causes a discrepancy in the temperature of the very thin up-
per layer measured by a satellite and the rather coarse up-
per layer in a typical OGCM. On a clear summer day with
low wind, this discrepancy can amount to as much as 2 ◦C or
more (Pimentel et al., 2019).

The current paper presented a method, based on canonical
correlation analysis (CCA), to build parameterisations based
on an output dataset of a specialised model. These parameter-

isations, referred to as the CCA OO, can provide an efficient
approximation to the results of the specialised model and are
therefore well-suited for use in DA systems.

The case of SST assimilation has been used to demonstrate
the new CCA OO. Using an output dataset of the General
Ocean Turbulence Model (GOTM), a high-resolution wa-
ter column model specifically tuned for modelling the diur-
nal cycle of SST, a new CCA OO has been derived. Subse-
quently, the operator has been applied to reduced-resolution
temperature profiles from the GOTM to simulate its use in a
DA system. The approximations provided by the CCA OO
are found to be in good agreement with the GOTM at vari-
ous times of the day and across all atmospheric conditions.
The results indicate that the CCA OO could be used to en-
able the assimilation of SST in conditions under which this
was previously not possible. Moreover, the atmospheric cat-
egories that were introduced in the construction of the CCA
OO for SST show that the linear assumption implicit in CCA
can be partially relaxed. This makes the CCA OO versatile
for any condition. Compared to commonly used methods for
SST assimilation, the CCA OO can provide substantial im-
provements. This is especially true for measurements of the
skin SST, since the CCA OO profits from the modelling of
the cool-skin effect that is included in the GOTM.

The ability of the CCA OO to handle complicated physi-
cal models in a relatively simple way is attractive for a large
number of problems in DA, for which reduced-order OOs
are desirable due to computational constraints. Remotely
sensed data are the obvious target given the complexity of
their relationships with state variables. Observations in cou-
pled assimilations (e.g. ocean–atmosphere, ocean–sea ice, or
ocean–biogeochemistry) are examples of challenging prob-
lems that could be investigated in the future with the CCA
OO.
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