Articles | Volume 14, issue 6
https://doi.org/10.5194/os-14-1461-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-1461-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Linking sardine recruitment in coastal areas to ocean currents using surface drifters and HF radar: a case study in the Gulf of Manfredonia, Adriatic Sea
Roberta Sciascia
CORRESPONDING AUTHOR
Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), La Spezia, Italy
Maristella Berta
Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), La Spezia, Italy
Daniel F. Carlson
Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), La Spezia, Italy
Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA
Arctic Research Centre, Department of Bioscience, Aarhus University, Aarhus, Denmark
Annalisa Griffa
Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), La Spezia, Italy
Monica Panfili
Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM), Consiglio Nazionale delle Ricerche (CNR), Ancona,
Italy
Mario La Mesa
Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM), Consiglio Nazionale delle Ricerche (CNR), Ancona,
Italy
Lorenzo Corgnati
Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), La Spezia, Italy
Carlo Mantovani
Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), La Spezia, Italy
Elisa Domenella
Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM), Consiglio Nazionale delle Ricerche (CNR), Ancona,
Italy
Erick Fredj
Department of Computer Sciences, Jerusalem College of Technology, Jerusalem, Israel
Marcello G. Magaldi
Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), La Spezia, Italy
Johns Hopkins University, Department of Earth and Planetary Science, Baltimore, MD, USA
Raffaele D'Adamo
Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM), Consiglio Nazionale delle Ricerche (CNR), Lesina, Italy
Gianfranco Pazienza
Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM), Consiglio Nazionale delle Ricerche (CNR), Lesina, Italy
Enrico Zambianchi
Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), La Spezia, Italy
DiST, Università degli Studi di Napoli ”Parthenope” and CoNISMa, Naples, Italy
Pierre-Marie Poulain
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy
Related authors
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Giuseppe Aulicino, Antonino Ian Ferola, Laura Fortunato, Giorgio Budillon, Pasquale Castagno, Pierpaolo Falco, Giannetta Fusco, Naomi Krauzig, Giancarlo Spezie, Enrico Zambianchi, and Yuri Cotroneo
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-417, https://doi.org/10.5194/essd-2024-417, 2024
Preprint under review for ESSD
Short summary
Short summary
This study gathered water temperature data in the last 30 years from several research cruises using XBT probes between New Zealand and the Ross Sea (Antarctica). These observations, collected in the framework of Italian National Antarctic Research Program, were rigorously checked for accuracy and corrected for depth and temperature bias. The public dataset offers valuable information to get insights into the Southern Ocean's climate and improve satellite observations and oceanographic models.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, Laszlo Horvath, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Perez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamas Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3038, https://doi.org/10.5194/egusphere-2024-3038, 2024
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Qian Li, Maor Gabay, Chen Dayan, Pawel Misztal, Alex Guenther, Erick Fredj, and Eran Tas
EGUsphere, https://doi.org/10.5194/egusphere-2024-717, https://doi.org/10.5194/egusphere-2024-717, 2024
Preprint archived
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) affect the climate and air quality, while their emission from terrestrial vegetation is affected by drought in a way that is not well characterized. Our study reveals that the instantaneous intraday changes in meteorological conditions serve as a better proxy for drought-related variations in BVOCs emission rate than the absolute values of the meteorological parameters, advancing our understanding of BVOCs emission effects under climate change.
Pierre-Marie Poulain, Luca Centurioni, Carlo Brandini, Stefano Taddei, Maristella Berta, and Milena Menna
Ocean Sci., 19, 1617–1631, https://doi.org/10.5194/os-19-1617-2023, https://doi.org/10.5194/os-19-1617-2023, 2023
Short summary
Short summary
Drifters and a profiling float were deployed in the coastal waters of the southeastern Ligurian Sea to characterize the near-surface circulation at a scale of ~10 km. The drifters were trapped in an offshore-flowing filament and a cyclonic eddy that developed at the southwestern extremity of the filament. Drifter velocities are used to estimate differential kinematic properties and relative dispersion statistics of the surface currents.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Tiziana Ciuffardi, Zoi Kokkini, Maristella Berta, Marina Locritani, Andrea Bordone, Ivana Delbono, Mireno Borghini, Maurizio Demarte, Roberta Ivaldi, Federica Pannacciulli, Anna Vetrano, Davide Marini, and Giovanni Caprino
Earth Syst. Sci. Data, 15, 1933–1946, https://doi.org/10.5194/essd-15-1933-2023, https://doi.org/10.5194/essd-15-1933-2023, 2023
Short summary
Short summary
This paper presents the results of the first 2 years of the Levante Canyon Mooring, a mooring line placed since 2020 in the eastern Ligurian Sea, to study a canyon area at about 600 m depth characterized by the presence of cold-water living corals. It provides hydrodynamic and thermohaline measurements along the water column, describing a water-mass distribution coherent with previous evidence in the Ligurian Sea. The data also show a Northern Current episodic and local reversal during summer.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Giusy Fedele, Elena Mauri, Giulio Notarstefano, and Pierre Marie Poulain
Ocean Sci., 18, 129–142, https://doi.org/10.5194/os-18-129-2022, https://doi.org/10.5194/os-18-129-2022, 2022
Short summary
Short summary
Atlantic Water (AW) and Levantine Intermediate Water (LIW) are important water masses that play a crucial role in the internal variability of the Mediterranean thermohaline circulation. This work aims to characterize the inter-basin and inter-annual variability of AW and LIW in the Mediterranean Sea, taking advantage of the large observational dataset provided by Argo floats from 2001 to 2019. A clear salinification and warming trend characterizes AW and LIW over the last 2 decades.
Chen Dayan, Erick Fredj, Pawel K. Misztal, Maor Gabay, Alex B. Guenther, and Eran Tas
Atmos. Chem. Phys., 20, 12741–12759, https://doi.org/10.5194/acp-20-12741-2020, https://doi.org/10.5194/acp-20-12741-2020, 2020
Short summary
Short summary
We studied the emission of biogenic volatile organic compounds from both marine and terrestrial ecosystems in the Eastern Mediterranean Basin, a global warming hot spot. We focused on isoprene and dimethyl sulfide (DMS), which are well recognized for their effect on climate and strong impact on photochemical pollution by the former. We found high emissions of isoprene and a strong decadal decrease in the emission of DMS which can both be attributed to the strong increase in seawater temperature.
Ivan Manso-Narvarte, Erick Fredj, Gabriel Jordà, Maristella Berta, Annalisa Griffa, Ainhoa Caballero, and Anna Rubio
Ocean Sci., 16, 575–591, https://doi.org/10.5194/os-16-575-2020, https://doi.org/10.5194/os-16-575-2020, 2020
Short summary
Short summary
Our main aim is to study the feasibility of reconstructing oceanic currents by extending the data obtained from coastal multiplatform observatories to nearby areas in 3D in the SE Bay of Biscay. To that end, two different data-reconstruction methods with different approaches were tested, providing satisfactory results. This work is a first step towards the real applicability of these methods in this study area, and it shows the capabilities of the methods for a wide range of applications.
Mark J. Hopwood, Dustin Carroll, Thorben Dunse, Andy Hodson, Johnna M. Holding, José L. Iriarte, Sofia Ribeiro, Eric P. Achterberg, Carolina Cantoni, Daniel F. Carlson, Melissa Chierici, Jennifer S. Clarke, Stefano Cozzi, Agneta Fransson, Thomas Juul-Pedersen, Mie H. S. Winding, and Lorenz Meire
The Cryosphere, 14, 1347–1383, https://doi.org/10.5194/tc-14-1347-2020, https://doi.org/10.5194/tc-14-1347-2020, 2020
Short summary
Short summary
Here we compare and contrast results from five well-studied Arctic field sites in order to understand how glaciers affect marine biogeochemistry and marine primary production. The key questions are listed as follows. Where and when does glacial freshwater discharge promote or reduce marine primary production? How does spatio-temporal variability in glacial discharge affect marine primary production? And how far-reaching are the effects of glacial discharge on marine biogeochemistry?
John Lodise, Tamay Özgökmen, Annalisa Griffa, and Maristella Berta
Ocean Sci., 15, 1627–1651, https://doi.org/10.5194/os-15-1627-2019, https://doi.org/10.5194/os-15-1627-2019, 2019
Short summary
Short summary
Observations of ocean currents within the first meter of the surface are made using a large number of ocean drifters of two different draft depths (0–5 and 0–60 cm). We deconstruct the total drifter velocities using an estimate of the regional circulation and a modeled Stokes drift velocity to calculate the purely wind-driven component of each drifter type. We reveal that the wind-driven velocities rotate to the right of the wind, while also decreasing, with depth.
Isabel Jalón-Rojas, Xiao-Hua Wang, and Erick Fredj
Ocean Sci., 15, 717–724, https://doi.org/10.5194/os-15-717-2019, https://doi.org/10.5194/os-15-717-2019, 2019
Short summary
Short summary
Simplified 2-D numerical models are typically used for simulating the transport of floating microplastics. This paper demonstrates the impact of vertical mixing on the horizontal transport and fate of microplastics in a bay and therefore the importance of a 3-D approach for accurate modelling of microplastics transport. These results have important implications for the assessment and prediction of pollution hot spots in coastal systems as well as for planning effective clean-up programmes.
Charles Troupin, Ananda Pascual, Simon Ruiz, Antonio Olita, Benjamin Casas, Félix Margirier, Pierre-Marie Poulain, Giulio Notarstefano, Marc Torner, Juan Gabriel Fernández, Miquel Àngel Rújula, Cristian Muñoz, Eva Alou, Inmaculada Ruiz, Antonio Tovar-Sánchez, John T. Allen, Amala Mahadevan, and Joaquín Tintoré
Earth Syst. Sci. Data, 11, 129–145, https://doi.org/10.5194/essd-11-129-2019, https://doi.org/10.5194/essd-11-129-2019, 2019
Short summary
Short summary
The AlborEX (the Alboran Sea Experiment) consisted of an experiment in the Alboran Sea (western Mediterranean Sea) that took place between 25 and 31 May 2014, and use a wide range of oceanographic sensors. The dataset provides information on mesoscale and sub-mesoscale processes taking place in a frontal area. This paper presents the measurements obtained from these sensors and describes their particularities: scale, spatial and temporal resolutions, measured variables, etc.
Maristella Berta, Lucio Bellomo, Annalisa Griffa, Marcello G. Magaldi, Anne Molcard, Carlo Mantovani, Gian Pietro Gasparini, Julien Marmain, Anna Vetrano, Laurent Béguery, Mireno Borghini, Yves Barbin, Joel Gaggelli, and Céline Quentin
Ocean Sci., 14, 689–710, https://doi.org/10.5194/os-14-689-2018, https://doi.org/10.5194/os-14-689-2018, 2018
Short summary
Short summary
The Northern Current (NC) in the NW Mediterranean Sea is studied by HF radar, glider, vessel survey, wind station, and model. NC variability is dominated by synoptic response to wind events, studied decomposing geostrophic and ageostrophic surface components. The combination of autonomous observing platforms with classical marine surveys provides high-resolution datasets for scientific purposes and practical applications such as the management of marine resources in the Mediterranean Sea.
Reiner Onken, Heinz-Volker Fiekas, Laurent Beguery, Ines Borrione, Andreas Funk, Michael Hemming, Jaime Hernandez-Lasheras, Karen J. Heywood, Jan Kaiser, Michaela Knoll, Baptiste Mourre, Paolo Oddo, Pierre-Marie Poulain, Bastien Y. Queste, Aniello Russo, Kiminori Shitashima, Martin Siderius, and Elizabeth Thorp Küsel
Ocean Sci., 14, 321–335, https://doi.org/10.5194/os-14-321-2018, https://doi.org/10.5194/os-14-321-2018, 2018
Short summary
Short summary
In June 2014, high-resolution oceanographic data were collected in the
western Mediterranean Sea by two research vessels, 11 gliders, moored
instruments, drifters, and one profiling float. The objective
of this article is to provide an overview of the data set which
is utilised by various ongoing studies, focusing on (i) water masses and circulation, (ii) operational forecasting, (iii) data assimilation, (iv) variability of the ocean, and (v) new payloads
for gliders.
Ivica Vilibić, Hrvoje Mihanović, Ivica Janeković, Cléa Denamiel, Pierre-Marie Poulain, Mirko Orlić, Natalija Dunić, Vlado Dadić, Mira Pasarić, Stipe Muslim, Riccardo Gerin, Frano Matić, Jadranka Šepić, Elena Mauri, Zoi Kokkini, Martina Tudor, Žarko Kovač, and Tomislav Džoić
Ocean Sci., 14, 237–258, https://doi.org/10.5194/os-14-237-2018, https://doi.org/10.5194/os-14-237-2018, 2018
Maher Bouzaiene, Milena Menna, Pierre-Marie Poulain, and Dalila Elhmaidi
Ocean Sci. Discuss., https://doi.org/10.5194/os-2017-34, https://doi.org/10.5194/os-2017-34, 2017
Preprint withdrawn
Short summary
Short summary
The South Western Mediterranean, connected to the Atlantic Ocean through the Strait of Gibraltar, is a study area useful to describe the interaction between the light Atlantic Water and the denser Mediterranean Water. The spreading of fluid particles, estimated through the analysis of drifter data, is dominated by large mesoscale eddies at short times and small separation distances, and by small mesoscale structures for scale ranging between 3 and 11 km.
Maor Gabay, Mordechai Peleg, Erick Fredj, and Eran Tas
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-39, https://doi.org/10.5194/acp-2017-39, 2017
Revised manuscript not accepted
Short summary
Short summary
Accurate characterization of atmospheric mercury oxidation pathways and their kinetics is critically important for assessing the transfer of atmospheric mercury to bioaquatic systems, where it can be further converted into the highly toxic biocumulative, methyl mercury. We show that nighttime oxidation of atmospheric mercury and daytime oxidation by hydroxyl radical are both more important than has been previously reported. These findings should eventually affect mercury deposition assessment.
Yosef Ashkenazy, Erick Fredj, Hezi Gildor, Gwo-Ching Gong, and Hung-Jen Lee
Ocean Sci., 12, 733–742, https://doi.org/10.5194/os-12-733-2016, https://doi.org/10.5194/os-12-733-2016, 2016
Short summary
Short summary
Nan-Wan Bay in Taiwan and the Gulf of Elat in Israel are two different coastal environments, and as such, their currents are expected to have different statistical properties. We find that in spite of these differences, the statistical properties of the surface currents are similar in both basins. Still, surface currents are temporally asymmetric in Nan-Wan but not in Elat; we attribute this difference to the strong tides that exist in Nan-Wan but not in Elat.
M.-H. Rio, A. Pascual, P.-M. Poulain, M. Menna, B. Barceló, and J. Tintoré
Ocean Sci., 10, 731–744, https://doi.org/10.5194/os-10-731-2014, https://doi.org/10.5194/os-10-731-2014, 2014
M. Gačić, G. Civitarese, V. Kovačević, L. Ursella, M. Bensi, M. Menna, V. Cardin, P.-M. Poulain, S. Cosoli, G. Notarstefano, and C. Pizzi
Ocean Sci., 10, 513–522, https://doi.org/10.5194/os-10-513-2014, https://doi.org/10.5194/os-10-513-2014, 2014
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
M. Menna and P.-M. Poulain
Ocean Sci., 10, 155–165, https://doi.org/10.5194/os-10-155-2014, https://doi.org/10.5194/os-10-155-2014, 2014
P.-M. Poulain and S. Hariri
Ocean Sci., 9, 713–720, https://doi.org/10.5194/os-9-713-2013, https://doi.org/10.5194/os-9-713-2013, 2013
Related subject area
Approach: In situ Observations | Depth range: Surface | Geographical range: Mediterranean Sea | Phenomena: Current Field
Computation of a new mean dynamic topography for the Mediterranean Sea from model outputs, altimeter measurements and oceanographic in situ data
Geostrophic currents and kinetic energies in the Black Sea estimated from merged drifter and satellite altimetry data
Transit and residence times in the Adriatic Sea surface as derived from drifter data and Lagrangian numerical simulations
Surface circulation in the Eastern Mediterranean using drifters (2005–2007)
M.-H. Rio, A. Pascual, P.-M. Poulain, M. Menna, B. Barceló, and J. Tintoré
Ocean Sci., 10, 731–744, https://doi.org/10.5194/os-10-731-2014, https://doi.org/10.5194/os-10-731-2014, 2014
M. Menna and P.-M. Poulain
Ocean Sci., 10, 155–165, https://doi.org/10.5194/os-10-155-2014, https://doi.org/10.5194/os-10-155-2014, 2014
P.-M. Poulain and S. Hariri
Ocean Sci., 9, 713–720, https://doi.org/10.5194/os-9-713-2013, https://doi.org/10.5194/os-9-713-2013, 2013
R. Gerin, P.-M. Poulain, I. Taupier-Letage, C. Millot, S. Ben Ismail, and C. Sammari
Ocean Sci., 5, 559–574, https://doi.org/10.5194/os-5-559-2009, https://doi.org/10.5194/os-5-559-2009, 2009
Cited articles
Accornero, A., Manfra, L., Salluzzo, A., and Modestia, F.: Trace metal
pollution in surface marine waters: Nearshore concentrations along Apulia
and Albania, Chem. Ecol., 20, 195–203,
https://doi.org/10.1080/02757540310001639782, 2004. a
Agresti, A. and Coull, B. A.: Approximate is better than “ exact” for
interval estimation of binomial proportions, Am. Stat., 52,
119–126, https://doi.org/10.1080/00031305.1998.10480550, 1998. a
Artegiani, A., Paschini, E., Russo, A., Bregant, D., Raicich, F., and Pinardi,
N.: The Adriatic Sea General Circulation. Part I: Air-Sea Interactions and
Water Mass Structure, J. Phys. Oceanogr., 27, 1492–1514,
https://doi.org/10.1175/1520-0485(1997)027<1492:TASGCP>2.0.CO;2, 1997a. a
Artegiani, A., Paschini, E., Russo, A., Bregant, D., Raicich, F., and Pinardi,
N.: The Adriatic Sea General Circulation. Part II: Baroclinic Circulation
Structure, J. Phys. Oceanogr., 27, 1515–1532,
https://doi.org/10.1175/1520-0485(1997)027<1515:TASGCP>2.0.CO;2, 1997b. a
Bassin, C. J., Washburn, L., Brzezinski, M., and McPhee-Shaw, E.: Sub-mesoscale
coastal eddies observed by high frequency radar: A new mechanism for
delivering nutrients to kelp forests in the Southern California Bight,
Geophys. Res. Lett., 32, L12604, https://doi.org/10.1029/2005GL023017, 2005. a
Bellomo, L., Griffa, A., Cosoli, S., Falco, P., Gerin, R., Iermano, I.,
Kalampokis, A., Kokkini, Z., Lana, A., Magaldi, M., Mamoutos, I., Mantovani, C.,
Marmain, J., Potiris, E., Sayol, J. M., Barbin, Y., Berta, M.,
Borghini, M., Bussani, A., Corgnati, L., Dagneaux, Q.,
Gaggelli, J., Guterman, P., Mallarino, D., Mazzoldi, A., Molcard, A., Orfila, A., Poulain, P.-M.,
Quentin, C., Tintoré, J., Uttieri, M., Vetrano, A., Zambianchi, E., and Zervakis, V.: Toward an
integrated HF radar network in the Mediterranean Sea to improve search
and rescue and oil spill response: the TOSCA project experience, J. Oper. Oceanogr., 8, 95–107, https://doi.org/10.1080/1755876X.2015.1087184,
2015. a
Berta, M., Bellomo, L., Magaldi, M. G., Griffa, A., Molcard, A., Marmain, J.,
Borghini, M., and Taillandier, V.: Estimating Lagrangian transport blending
drifters with HF radar data and models: results from the TOSCA experiment
in the Ligurian Current (North Western Mediterranean Sea),
Prog. Oceanogr., 128, 15–29, https://doi.org/10.1016/j.pocean.2014.08.004,
2014. a
Berta, M., Griffa, A., Özgökmen, T. M., and Poje, A. C.: Submesoscale
evolution of surface drifter triads in the Gulf of Mexico, Geophys. Res. Lett., 43, 11751–11759, https://doi.org/10.1002/2016GL070357, 2016. a
Boehlert, G. W. and Mundy, B. C.: Vertical and onshore-offshore distributional
patterns of tuna larvae in relation to physical habitat features, Mar. Ecol.-Prog. Ser., 107, 1–13, 1994. a
Boero F., Foglini F., Fraschetti S., Goriup P., Macpherson E., Planes S., Soukissian T., and The CoCoNet Consortium: CoCoNet: towards coast to coast
networks of marine protected areas (from the shore to the high and deep sea),
coupled with sea-based wind energy potential, SCIRES-IT-SCIentific RESearch
and Information Technology, 6, 1–95, https://doi.org/10.2423/i22394303v6Sp1, 2016. a
Book, J. W., Perkins, H. T., Cavaleri, L., Doyle, J. D., and Pullen, J. D.:
ADCP observations of the western Adriatic slope current during winter of
2001, Prog. Oceanogr., 66, 270–286,
https://doi.org/10.1016/j.pocean.2004.07.014, 2005. a
Bradford, M.: Precision of recruitment predictions from early life stages of
marine fishes, Fish. B., 90, 439–453, 1992. a
Bray, L., Kassis, D., and Hall-Spencer, J.: Assessing larval connectivity for
marine spatial planning in the Adriatic, Mar. Environ. Res.,
125, 73–81, https://doi.org/10.1016/j.marenvres.2017.01.006, 2017. a, b
Brink, K. H., Limeburner, R., and Beardsley, R. C.: Properties of flow and
pressure over Georges Bank as observed with near-surface drifters, J. Geophys. Res.-Oceans, 108, 8001,
https://doi.org/10.1029/2001JC001019, 2003. a
Brochier, T., Ramzi, A., Lett, C., Machu, E., Berraho, A., Fréon, P., and
Hernández-León, S.: Modelling sardine and anchovy ichthyoplankton transport
in the Canary Current System, J. Plankton Res., 30, 1133–1146,
https://doi.org/10.1093/plankt/fbn066, 2008. a
Burchard, H., Craig, P. D., Gemmrich, J. R., van Haren, H., Mathieu, P. P, Markus Meier, H. E, Nimmo Smith, W. A. M.,
Prandke, H., Rippeth, T. P., Skyllingstad, E. D., Smyth, W. D., Welsh, D. J. S., Wijesekera, H. W.: Observational and numerical modeling methods for quantifying
coastal ocean turbulence and mixing, Prog. Oceanogr., 76, 399–442,
https://doi.org/10.1016/j.pocean.2007.09.005, 2008. a
Burrage, D., Book, J., and Martin, P.: Eddies and filaments of the Western
Adriatic Current near Cape Gargano: analysis and prediction, J. Mar. Syst., 78, S205–S226, https://doi.org/10.1016/j.jmarsys.2009.01.024, 2009. a, b, c, d
Campana, S. E. and Jones, C. M.: Analysis of otolith microstructure data,
Otolith microstructure examination and analysis, edited by: Stevenson, D. K. and
Campana, S. E., Can. Spec. Publ. Fish. Aquat. Sci, 117, 73–100, 1992. a
Campanelli, A., Cabrini, M., Grilli, F., Fornasaro, D., Penna, P., Kljajic, Z.,
and Marini, M.: Physical, biochemical and biological characterization of two
opposite areas in the Southern Adriatic Sea (Mediterranean Sea),
Open J. Mar. Sci., 3, 120–131, https://doi.org/10.4236/ojms.2013.32013, 2013. a, b, c, d, e, f, g, h, i
Carlson, D. F., Griffa, A., Zambianchi, E., Suaria, G., Corgnati, L., Magaldi, M. G., Poulain, P. M., Russo, A., Bellomo, L.,
Mantovani, C., Celentano, P., Molcard, A., and Borghini, M.:
Observed and modeled surface Lagrangian transport between coastal regions
in the Adriatic Sea with implications for marine protected areas,
Cont. Shelf Res., 118, 23–48, https://doi.org/10.1016/j.csr.2016.02.012,
2016. a, b, c, d, e, f, g, h
Carlson, D. F., Suaria, G., Aliani, S., Fredj, E., Fortibuoni, T., Griffa, A.,
Russo, A., and Melli, V.: Combining litter observations with a regional ocean
model to identify sources and sinks of floating debris in a semi-enclosed
basin: the Adriatic Sea, Front. Mar. Sci., 4, 78,
https://doi.org/10.3389/fmars.2017.00078, 2017. a
Carpi, P., Morello, E. B., Uriarte, A., Panfili, M., Roel, B., Santojanni, A.,
Donato, F., Arneri, E., and Emory Anderson, H.: Impact of the fishery
for late-larval European sardine (Sardina pilchardus) on the adult
stock in the Adriatic Sea, ICES J. Mar. Sci., 74, 728–740,
https://doi.org/10.1093/icesjms/fsw208, 2016. a
Carpi, P., Scarcella, G., and Cardinale, M.: The Saga of the Management of
Fisheries in the Adriatic Sea: History, Flaws, Difficulties, and Successes
toward the Application of the Common Fisheries Policy in the Mediterranean,
Front. Mar. Sci., 4, 423, https://doi.org/10.3389/fmars.2017.00423, 2017. a, b
Casale, P. and Simone, G.: Seasonal residency of loggerhead turtles
Caretta caretta tracked from the Gulf of Manfredonia, south
Adriatic, Mediterr. Mar. Sci., 18, 4–10, https://doi.org/10.12681/mms.1663,
2017. a
Casale, P., Simone, G., Conoscitore, C., Conoscitore, M., and Salvemini, P.:
The Gulf of Manfredonia: a new neritic foraging area for loggerhead sea
turtles in the Adriatic Sea, Acta Herpetol., 7, 1–12,
https://doi.org/10.13128/Acta_Herpetol-9897, 2012. a, b, c, d
Cianelli, D., D'Alelio, D., Uttieri, M., Sarno, D., Zingone, A., Zambianchi,
E., and d'Alcalá, M. R.: Disentangling physical and biological drivers
of phytoplankton dynamics in a coastal system, Sci. Rep., 7,
15868, https://doi.org/10.1038/s41598-017-15880-x, 2017. a
Condie, S., Waring, J., Mansbridge, J., and Cahill, M.: Marine connectivity
patterns around the Australian continent, Environ. Modell. Softw., 20, 1149–1157, https://doi.org/10.1016/j.envsoft.2004.07.005, 2005. a
Corgnati, L., Mantovani, C., Griffa, A., Penna, P., Celentano, P., Bellomo, L.,
Carlson, D., and D'Adamo, R.: Implementation and validation of the ISMAR
High Frequency Coastal Radar Network in the Gulf of Manfredonia
(Mediterranean Sea), IEEE J. Oceanic Eng., in press, 1–22,
https://doi.org/10.1109/JOE.2018.2822518, 2018 a, b, c, d, e, f, g, h, i
Costalago, D.: Review on the links between the distribution of larvae and
juveniles of anchovy and sardine with their ecological dynamics in the
northwestern Mediterranean, Vie et Milieu, Life and Environment, 2,
101–113, 2015. a
Costalago, D., Garrido, S., and Palomera, I.: Comparison of the feeding
apparatus and diet of European sardines Sardina pilchardus of
Atlantic and Mediterranean waters: ecological implications, J. Fish Biol., 86, 1348–1362, https://doi.org/10.1111/jfb.12645, 2015. a
Cowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B., and Olson, D. B.:
Connectivity of Marine Populations: Open or Closed?, Science, 287, 857–859,
https://doi.org/10.1126/science.287.5454.857, 2000. a
Davis, R. E., deSzoeke, R., and Niiler, P.: Variability in the upper ocean during MILE.
Part II: Modeling the mixed layer response, Deep-Sea Res. Pt. I, 28, 1453–1475,
https://doi.org/10.1016/0198-0149(81)90092-3, 1981. a
Davis, R. E.: Drifter observations of coastal surface currents during CODE:
The statistical and dynamical views, J. Geophys. Res.-Oceans,
90, 4756–4772, https://doi.org/10.1029/JC090iC03p04756, 1985. a, b
Depellegrin, D., Menegon, S., Farella, G., Ghezzo, M., Gissi, E., Sarretta, A.,
Venier, C., and Barbanti, A.: Multi-objective spatial tools to inform
maritime spatial planning in the Adriatic Sea, Sci. Total
Environ., 609, 1627–1639, https://doi.org/10.1016/j.scitotenv.2017.07.264, 2017. a
D'Ortenzio, F., Iudicone, D., de Boyer Montegut, C., Testor, P., Antoine, D.,
Marullo, S., Santoleri, R., and Madec, G.: Seasonal variability of the mixed
layer depth in the Mediterranean Sea as derived from in situ profiles,
Geophys. Res. Lett., 32,
L12605, https://doi.org/10.1029/2005GL022463, 2005. a
Efron, B. and Tibshirani, R.: Bootstrap methods for standard errors, confidence
intervals, and other measures of statistical accuracy, Stat. Sci.,
1, 54–75, 1986. a
Essington, T. E., Moriarty, P. E., Froehlich, H. E., Hodgson, E. E., Koehn,
L. E., Oken, K. L., Siple, M. C., and Stawitz, C. C.: Fishing amplifies
forage fish population collapses, P. Natl. Acad.
Sci. USA, 112, 6648–6652, https://doi.org/10.1073/pnas.1422020112, 2015. a
Falco, P., Buonocore, B., Cianelli, D., De Luca, L., Giordano, A., Iermano, I., Kalampokis, A., Saviano, S., Uttieri, M., Zambardino, G., and Zambianchi, E.: Dynamics
and sea state in the Gulf of Naples: potential use of high-frequency
radar data in an operational oceanographic context, J. Oper. Oceanogr., 9, s33–s45, https://doi.org/10.1080/1755876X.2015.1115633, 2016. a
Focardi, S., Specchiulli, A., Spagnoli, F., Fiesoletti, F., and Rossi, C.: A
combinated approach to investigate the biochemistry and hydrography of a
shallow bay in the South Adriatic Sea: the Gulf of Manfredonia
(Italy), Environ. Monit. Ass., 153, 209–220,
https://doi.org/10.1007/s10661-008-0350-2, 2009. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Fogarty, M. J. and Botsford, L. W.: Population Connectivity and Spatial
Management of Marine Fisheries, Oceanography, 20, 112–123,
https://doi.org/10.2307/24860101, 2007. a
Fredj, E., Roarty, H., Kohut, J., Smith, M., and Glenn, S.: Gap Filling of the
Coastal Ocean Surface Currents from HFR Data: Application to the
Mid-Atlantic Bight HFR Network, J. Atmos. Ocean.
Tech., 33, 1097–1111, https://doi.org/10.1175/JTECH-D-15-0056.1, 2016. a
Fuiman, L. A., Poling, K. R., and Higgs, D. M.: Quantifying Developmental
Progress for Comparative Studies of Larval Fishes, Copeia, 1998, 602–611,
https://doi.org/10.2307/1447790, 1998. a
Gamulin, T. and Hure, J.: The spawning and spawning areas of pelagic fishes
(Sardina plichardus, Engraulis encrasicolus, Scomber scombrus, Sardinella
aurita and Sprattus sprattus sprattus) in the Adriatic Sea, Acta Adriat.,
24, 97–131, 1983. a
Garcia, D. A., Bruschi, D., Cumo, F., and Gugliermetti, F.: The Oil Spill
Hazard Index (OSHI) elaboration. An oil spill hazard assessment concerning
Italian hydrocarbons maritime traffic, Ocean Coast. Manage., 80,
1–11, https://doi.org/10.1016/j.ocecoaman.2013.03.016, 2013. a
Garrido, S., Cristóvão, A., Caldeira, C., Ben-Hamadou, R., Baylina, N.,
Batista, H., Saiz, E., Peck, M., Ré, P., and Santos, A.: Effect of
temperature on the growth, survival, development and foraging behaviour of
Sardina pilchardus larvae, Mar. Ecol.-Prog. Ser., 559, 131–145,
https://doi.org/10.1016/j.pocean.2017.10.006, 2016. a
Garrido, S., Silva, A., Marques, V., Figueiredo, I., Bryère, P., Mangin, A.,
and Santos, A. M. P.: Temperature and food-mediated variability of European
Atlantic sardine recruitment, Prog. Oceanogr., 159, 267–275,
https://doi.org/10.1016/j.pocean.2017.10.006, 2017. a
Gawarkiewicz, G., Monismith, S., and Largier, J.: Observing larval transport
processes affecting population connectivity: progress and challenges,
Oceanography, 20, 40–53, 2007. a
Govoni, J. J. and Pietrafesa, L. J.: Eulerian views of layered water currents,
vertical distribution of some larval fishes, and inferred advective transport
over the continental shelf off North Carolina, USA, in winter,
Fish. Oceanogr., 3, 120–132,
https://doi.org/10.1111/j.1365-2419.1994.tb00054.x, 1994. a
Gramolini, R., Russo, A., Coluccelli, A., La Mesa, M., Panfili, M., Morello,
E. B., and Arneri, E.: Numerical simulations of small pelagic fishes eggs and
larvae in the Adriatic Sea, in: Rapp. Comm. Int. Mer Medit., 39,
622, 2010. a
Grilli, F., Marini, M., Book, J. W., Campanelli, A., Paschini, E., and Russo,
A.: Flux of nutrients between the middle and southern Adriatic Sea
(Gargano-Split section), Mar. Chem., 153, 1–14,
https://doi.org/10.1016/j.marchem.2013.04.005, 2013. a
Grilli, L. and Falcone, P. M.: Quantitative Analysis of the Fishing Activity in
the Gulf of Manfredonia (Gargano, South-Italy), J.
Environ. Protect., 1, 117–120, https://doi.org/10.4236/jep.2010.12015, 2010. a
Gurgel, K.-W., Barbin, Y., and Schlick, T.: Radio frequency interference
suppression techniques in FMCW modulated HF radars, in: OCEANS
2007-Europe, 1–4, IEEE, https://doi.org/10.1109/OCEANSE.2007.4302289, 2007. a
Hare, J. A., Churchill, J. H., Cowen, R. K., Berger, T. J., Cornillon, P. C.,
Dragos, P., Glenn, S. M., Govoni, J. J., and Lee, T. N.: Routes and rates of
larval fish transport from the southeast to the northeast United States
continental shelf, Limnol. Oceanogr., 47, 1774–1789,
https://doi.org/10.4319/lo.2002.47.6.1774, 2002. a
Haza, A. C., Griffa, A., Martin, P., Molcard, A., Özgökmen, T. M., Poje, A. C.,
Barbanti, R., Book, J. W., Poulain, P. M., Rixen, M., and Zanasca, P.: Model-based directed
drifter launches in the Adriatic Sea: Results from the DART
experiment, Geophys. Res. Lett., 34, L10605,
https://doi.org/10.1029/2007GL029634, 2007. a
Helbig, J. A. and Pepin, P.: The effects of short space and time scale current
variability on the predictability of passive ichthyoplankton distributions:
an analysis based on HF radar observations, Fish. Oceanogr., 11,
175–188, https://doi.org/10.1046/j.1365-2419.2002.00195.x, 2002. a
Iermano, I., Moore, A., and Zambianchi, E.: Impacts of a 4-dimensional
variational data assimilation in a coastal ocean model of southern
Tyrrhenian Sea, J. Mar. Syst., 154, 157–171,
https://doi.org/10.1016/j.jmarsys.2015.09.006, 2016. a
Infante, M., Marsico, A., and Pennetta, L.: Some results of coastal defences
monitoring by ground laser scanning technology, Environ. Earth Sci.,
67, 2449–2458, https://doi.org/10.1007/s12665-012-1695-y, 2012. a
Jönsson, B. F. and Watson, J. R.: The timescales of global surface-ocean
connectivity, Nat. Commun., 7, 11239, https://doi.org/10.1038/ncomms11239,
2016. a
Kalampokis, A., Uttieri, M., Poulain, P.-M., and Zambianchi, E.: Validation of
HF radar-derived currents in the Gulf of Naples with Lagrangian data,
IEEE Geosci. Remote S., 13, 1452–1456,
https://doi.org/10.1109/LGRS.2016.2591258, 2016. a
Kohut, J. T. and Glenn, S. M.: Improving HF radar surface current
measurements with measured antenna beam patterns, J. Atmos.
Ocean. Tech., 20, 1303–1316,
https://doi.org/10.1175/1520-0426(2003)020<1303:IHRSCM>2.0.CO;2, 2003. a
Largier, J. L.: Considerations in Estimating Larval Dispersal Distances from
Oceanographic Data, Ecol. Appl., 13, S71–S89,
https://doi.org/10.1890/1051-0761(2003)013[0071:CIELDD]2.0.CO;2, 2003. a
Lasker, R.: Factors Contributing to Variable Recruitment of the Northern
Anchovy (Engraulis mordax) in the California Current:
Contrasting Years, 1975 Through 1978, Rapp. P.-v. Réun. Cons. int. Explor.
Mer, 178, 375–388, 1981. a
Laws, K., Paduan, J. D., and Vesecky, J.: Estimation and assessment of errors
related to antenna pattern distortion in CODAR SeaSonde high-frequency
radar ocean current measurements, J. Atmos. Ocean.
Tech., 27, 1029–1043, https://doi.org/10.1175/2009JTECHO658.1, 2010. a
Lotze, H. K., Coll, M., and Dunne, J. A.: Historical changes in marine
resources, food-web structure and ecosystem functioning in the Adriatic
Sea, Mediterranean, Ecosystems, 14, 198–222,
https://doi.org/10.1007/s10021-010-9404-8, 2011. a, b
Lumpkin, R., Özgökmen, T., and Centurioni, L.: Advances in the
application of surface drifters, Annu. Rev. Mar. Sci., 9, 59–81,
https://doi.org/10.1146/annurev-marine-010816-060641, 2017. a
Marini, M., Campanelli, A., Sanxhaku, M., Kljajić, Z., Betti, M., and
Grilli, F.: Late spring characterization of different coastal areas of the
Adriatic Sea, Acta Adriat., 56, 27–46, 2015. a
Maximenko, N., Hafner, J., and Niiler, P.: Pathways of marine debris derived
from trajectories of Lagrangian drifters, Mar. Pollut. Bullet., 65, 51–62, https://doi.org/10.1016/j.marpolbul.2011.04.016, 2012. a
Menna, M., Mercatini, A., Uttieri, M., Buonocore, B., and Zambianchi, E.:
Wintertime transport processes in the Gulf of Naples investigated by HF
radar measurements of surface currents, Nuovo Cimento C, 30, 605–622,
https://doi.org/10.1393/ncc/i2008-10270-0, 2007. a
Menna, M., Gerin, R., Bussani, A., and Poulain, P.-M.: Surface currents and temperature data,
https://doi.org/10.6092/7a8499bc-c5ee-472c-b8b5-03523d1e73e9, 2018 a
Monticelli, L., Caruso, G., Decembrini, F., Caroppo, C., and Fiesoletti, F.:
Role of prokaryotic biomasses and activities in carbon and phosphorus cycles
at a coastal, thermohaline front and in offshore waters (Gulf of
Manfredonia, Southern Adriatic Sea), Microb. Ecol., 67, 501–519,
https://doi.org/10.1007/s00248-013-0350-9, 2014. a, b, c, d, e, f
Morello, E. and Arneri, E.: Anchovy and sardine in the Adriatic Sea: an
ecological review, in: Oceanography and Marine Biology: An Annual Review,
edited by: Gibson, R., Atkinson, R., and Gordon, J.,
CRC Press, Boca Raton, Florida, USA, 47, 209–256, https://doi.org/10.1201/9781420094220.ch5, 2009. a, b, c, d, e, f, g, h, i, j, k, l
Morgan, S. G., Fisher, J. L., McAfee, S. T., Largier, J. L., and Halle, C. M.:
Limited recruitment during relaxation events: Larval advection and behavior
in an upwelling system, Limnol. Oceanogr., 57, 457–470,
https://doi.org/10.4319/lo.2012.57.2.0457, 2012. a
Nikolioudakis, N., Palomera, I., Machias, A., and Somarakis, S.: Diel feeding
intensity and daily ration of the sardine Sardina pilchardus, Mar. Ecol.-Prog. Ser., 437, 215–228, https://doi.org/10.3354/meps09275, 2011. a
Olivar, M. P., Salat, J., and Palomera, I.: Comparative study of spatial
distribution patterns of the early stages of anchovy and pilchard in the NW
Mediterranean Sea, Mar. Ecol.-Prog. Ser., 217, 111–120,
https://doi.org/10.3354/meps217111, 2001. a
Orlić, M., Kuzmić, M., and Pasarić, Z.: Response of the Adriatic
Sea to the bora and sirocco forcing, Cont. Shelf Res., 14,
91–116, https://doi.org/10.1016/0278-4343(94)90007-8, 1994. a, b
Paduan, J. D. and Washburn, L.: High-frequency radar observations of ocean
surface currents, Annu. Rev. Mar. Sci., 5, 115–136,
https://doi.org/10.1146/annurev-marine-121211-172315, 2013. a
Palomera, I., Olivar, M., Salat, J., Sabatés, A., Coll, M., García, A.,
and Morales-Nin, B.: Small pelagic fish in the NW Mediterranean Sea: An
ecological review, Prog. Oceanogr., 74, 377–396,
https://doi.org/10.1016/j.pocean.2007.04.012, 2007. a
Pasarić, Z., Belušić, D., and Klaić, Z. B.:
Orographic influences on the Adriatic sirocco wind, Ann. Geophys., 25, 1263–1267, https://doi.org/10.5194/angeo-25-1263-2007, 2007. a
Pasarić, Z., Belušić, D., and Chiggiato, J.: Orographic effects
on meteorological fields over the Adriatic from different models, J. Mar. Syst., 78, S90–S100, https://doi.org/10.1016/j.jmarsys.2009.01.019, 2009. a
Peterson, I. and Wroblewski, J. S.: Mortality Rate of Fishes in the Pelagic
Ecosystem, Can. J. Fish. Aquat. Sci., 41,
1117–1120, 1984. a
Pikitch, E. K., Rountos, K. J., Essington, T. E., Santora, C., Pauly, D., Watson, R., Sumaila, U. R., Boersma, P. D.,
Boyd, I. L., Conover, D. O., Cury, P. , Heppell, S. S., Houde, E. D., Mangel, M. , Plagányi, É. , Sainsbury, K. , Steneck, R. S.,
Geers, T. M., Gownaris, N., and Munch, S. B.: The global contribution of forage fish to marine fisheries and
ecosystems, Fish Fish., 15, 43–64, https://doi.org/10.1111/faf.12004, 2014. a
Poulain, P.-M. and Hariri, S.: Transit and residence times in the Adriatic Sea surface as derived from drifter data and Lagrangian numerical
simulations, Ocean Sci., 9, 713–720, https://doi.org/10.5194/os-9-713-2013, 2013. a, b
Poulain, P.-M., Mauri, E., and Ursella, L.: Unusual upwelling event and current
reversal off the Italian Adriatic coast in summer 2003, Geophys. Res. Lett., 31, L05303, https://doi.org/10.1029/2003GL019121, 2004. a
Poulain, P.-M., Gerin, R., Mauri, E., and Pennel, R.: Wind effects on drogued
and undrogued drifters in the Eastern Mediterranean, J.
Atmos. Ocean. Tech., 26, 1144–1156,
https://doi.org/10.1175/2008JTECHO618.1, 2009. a
Pullen, J., Doyle, J. D., Hodur, R., Ogston, A., Book, J. W., Perkins, H., and
Signell, R.: Coupled ocean-atmosphere nested modeling of the Adriatic Sea
during winter and spring 2001, J. Geophys. Res.-Oceans, 108,
3320, https://doi.org/10.1029/2003JC001780, 2003. a
Regner, S.: Effects of environmental changes on early stages and reproduction
of anchovy in the Adriatic Sea, Sci. Mar., 60, 167–177, 1996. a
Regner, S., Piccinetti-Manfrin, G., and Piccinetti, C.: The spawning of the sardine,
Sardina pilchardus (Walb.) in the Adriatic as related to the distribution of temperature, FAO Fish. Rep. 394, 127–132, 1988. a
Rubio, A., Mader, J., Corgnati, L., Mantovani, C., Griffa, A., Novellino, A., Quentin, C., Wyatt, L., Schulz-Stellenfleth, J.,
Horstmann, J., Lorente, P., Zambianchi, E., Hartnett, M., Fernandes, C., Zervakis, V., Gorringe, P., Melet, A., and Puillat, I.: HF
Radar Activity in European Coastal Seas: Next Steps toward a Pan-European
HF Radar Network, Front. Mar. Sci., 4, 8,
https://doi.org/10.3389/fmars.2017.00008, 2017. a
Rypina, I. I., Fertitta, D., Macdonald, A., Yoshida, S., and Jayne, S.:
Multi-Iteration Approach to Studying Tracer Spreading Using Drifter Data,
J. Phys. Oceanogr., 47, 339–351,
https://doi.org/10.1175/JPO-D-16-0165.1, 2017. a, b
Sabatés, A. and Olivar, M. P.: Variation of larval fish distributions
associated with variability in the location of a shelf-slope front, Mar. Ecol.-Prog. Ser., 135, 11–20, 1996. a
Sanchez-Velasco, L., Valdez-Holguın, J., Shirasago, B., Cisneros-Mata,
M. A., and Zarate, A.: Changes in the spawning environment of
Sardinops caeruleus in the Gulf of California during El
Nino 1997–1998, Estuar. Coast. Shelf Sci., 54, 207–217,
https://doi.org/10.1006/ecss.2001.0840, 2002. a
Santojanni, A., Arneri, E., Bernardini, V., Cingolani, N., Di Marco, M., and
Russo, A.: Effects of environmental variables on recruitment of anchovy in
the Adriatic Sea, Clim. Res., 31, 181–193, 2006. a
Santos, A., Peliz, A., Dubert, J., Oliveira, P., Angèlico, M., and Rè,
P.: Impact of a winter upwelling event on the distribution and transport of
sardine (Sardina pilchardus) eggs and larvae off western Iberia: a retention
mechanism, Cont. Shelf Res., 24, 149–165,
https://doi.org/10.1016/j.csr.2003.10.004, 2004. a
Santos, A., Nieblas, A.-E., Verley, P., Teles-Machado, A., Bonhommeau, S.,
Lett, C., Garrido, S., and Peliz, A.: Sardine (Sardina pilchardus) larval
dispersal in the Iberian upwelling system, using coupled biophysical
techniques, Prog. Oceanogr., 162, 83–97,
https://doi.org/10.1016/j.pocean.2018.02.011,
2018. a
Santos, A. M. P., Rè, P., dos Santos, A., and Peliz, A.: Vertical
distribution of the European sardine (Sardina pilchardus) larvae and its
implications for their survival, J. Plankton Res., 28, 523–532,
https://doi.org/10.1093/plankt/fbi137, 2006. a
Santos, M., Fernàndez, R., Lòpez, A., Martìnez, J., and Pierce, G.:
Variability in the diet of bottlenose dolphin, Tursiops truncatus, in
Galician waters, north-western Spain, 1990–2005, J. Mar. Biol. Assoc. UK, 87, 231–241,
https://doi.org/10.1017/S0025315407055233, 2007. a
Shanks, A. L.: Pelagic larval duration and dispersal distance revisited,
Biol. Bull., 216, 373–385, https://doi.org/10.1086/BBLv216n3p373, 2009. a
Silva, L., Faria, A., Teodósio, M. A., and Garrido, S.: Ontogeny of
swimming behaviour in sardine Sardina pilchardus larvae and effect of larval
nutritional condition on critical speed, Mar. Ecol.-Prog. Ser., 504,
287–300, https://doi.org/10.3354/meps10758, 2014. a
Sinovčić, G.: Small pelagic fish from the Croatian fishing grounds,
Priority topics to Small Pelagic Fishery Resources of the Adriatic Sea.
FAO-MiPAF Scientific cooperation to Support Responsible Fisheries in the
Adriatic Sea. GcP/REP//ItA/td-03, termoli, AdriaMed tech. doc, 53–58,
2001. a
Sinovčić, G.: Long-term investigations of small pelagic fish in the
Adriatic Sea, Meditteranean biological time series, 22, 89–92, 2003. a
Sinovčić, G. and Alegriahernandez, V.: Variation in abundance and
size of the sardine Sardina pilchardus (Walbaum) in the eastern Adriatic,
Oceanol. Acta, 20, 201–206, 1997. a
Spagnoli, F., Bartholini, G., Marini, M., and Giordano, P.: Biogeochemical processes in sediments of the
Manfredonia Gulf (Southern Adriatic Sea): early diagenesis of carbon and nutrient and benthic exchange,
Biogeosciences Discuss., 1, 803–823, https://doi.org/10.5194/bgd-1-803-2004, 2004. a, b
Spagnoli, F., Bartholini, G., Dinelli, E., and Giordano, P.: Geochemistry and
particle size of surface sediments of Gulf of Manfredonia (Southern
Adriatic Sea), Estuar. Coast. Shelf Sci., 80, 21–30,
https://doi.org/10.1016/j.ecss.2008.07.008, 2008. a, b
Specchiulli, A., Bignami, F., Marini, M., Fabbrocini, A., Scirocco, T.,
Campanelli, A., Penna, P., Santucci, A., and D'Adamo, R.: The role of forcing
agents on biogeochemical variability along the southwestern Adriatic coast:
The Gulf of Manfredonia case study, Estuar. Coast. Shelf Sci.,
183, 136–149, https://doi.org/10.1016/j.ecss.2016.10.033, 2016. a, b, c, d, e, f, g
Suaria, G. and Aliani, S.: Floating debris in the Mediterranean Sea, Mar. Pollut. Bull., 86, 494–504, https://doi.org/10.1016/j.marpolbul.2014.06.025,
2014.
a
Ungaro, N., Casavola, N., Marano, G., and Rizzi, E.: “Bianchetto” and
“rossetto” fry fisheries in the Manfredonia Gulf: effort exerted and
catch composition, Oebalia, 20, 99–106, 1994. a
Vaccarella, R., Paparella, P., Bello, G., and Marano, G.: The smooth scallop,
Chlamys glabra, fishery in the Gulf of Manfredonia
(south-western Adriatic Sea), Rapp. Comm. int. Mer Médit, 35,
500–501, 1998. a
van Sebille, E., England, M. H., and Froyland, G.: Origin, dynamics and
evolution of ocean garbage patches from observed surface drifters,
Environ. Res. Lett., 7, 044040, https://doi.org/10.1088/1748-9326/7/4/044040,
2012. a
van Sebille, E., Wilcox, C., Lebreton, L., Maximenko, N., Hardesty, B. D., van
Franeker, J. A., Eriksen, M., Siegel, D., Galgani, F., and Law, K. L.: A
global inventory of small floating plastic debris, Environ. Res.
Lett., 10, 124006, https://doi.org/10.1088/1748-9326/10/12/124006, 2015. a
Short summary
Understanding the role of ocean currents in the recruitment of commercially important fish is an important step toward developing sustainable resource management guidelines. Here, we attempt to elucidate the role of surface ocean transport in supplying recruits of European sardines to the Gulf of Manfredonia, a known recruitment area in the Adriatic Sea. We find that transport to the Gulf of Manfredonia from remote spawing areas in the Adriatic is more likely than local spawning and retention.
Understanding the role of ocean currents in the recruitment of commercially important fish is an...