Articles | Volume 11, issue 1
https://doi.org/10.5194/os-11-67-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-11-67-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project
M. Ablain
CORRESPONDING AUTHOR
Collecte Localisation Satellite (CLS), Ramonville Saint-Agne, France
A. Cazenave
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), Toulouse, France
G. Larnicol
Collecte Localisation Satellite (CLS), Ramonville Saint-Agne, France
M. Balmaseda
European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK
P. Cipollini
National Oceanography Centre (NOC), Southampton, UK
Y. Faugère
Collecte Localisation Satellite (CLS), Ramonville Saint-Agne, France
M. J. Fernandes
Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, 4050-123 Porto, Portugal
O. Henry
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), Toulouse, France
J. A. Johannessen
Nansen Environmental and Remote Sensing Center (NERSC), Bergen, Norway
P. Knudsen
Technical University of Denmark (DTU), Lyngby, Denmark
O. Andersen
Technical University of Denmark (DTU), Lyngby, Denmark
J. Legeais
Collecte Localisation Satellite (CLS), Ramonville Saint-Agne, France
B. Meyssignac
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), Toulouse, France
N. Picot
Centre National d'Etudes Spatiales (CNES), Toulouse, France
M. Roca
isardSAT, Barcelona, Catalonia, Spain
S. Rudenko
Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Telegrafenberg 14473 Potsdam, Germany
M. G. Scharffenberg
University of Hamburg, Hamburg, Germany
D. Stammer
University of Hamburg, Hamburg, Germany
G. Timms
CGI, London, UK
J. Benveniste
European Space Agency (ESA), ESRIN, Frascati, Italy
Related authors
Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, Hao Zuo, Johnny A. Johannessen, Martin G. Scharffenberg, Luciana Fenoglio-Marc, M. Joana Fernandes, Ole Baltazar Andersen, Sergei Rudenko, Paolo Cipollini, Graham D. Quartly, Marcello Passaro, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 10, 281–301, https://doi.org/10.5194/essd-10-281-2018, https://doi.org/10.5194/essd-10-281-2018, 2018
Short summary
Short summary
Sea level is one of the best indicators of climate change and has been listed as one of the essential climate variables. Sea level measurements have been provided by satellite altimetry for 25 years, and the Climate Change Initiative (CCI) program of the European Space Agency has given the opportunity to provide a long-term, homogeneous and accurate sea level record. It will help scientists to better understand climate change and its variability.
This article is included in the Encyclopedia of Geosciences
Graham D. Quartly, Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, M. Joana Fernandes, Sergei Rudenko, Loren Carrère, Pablo Nilo García, Paolo Cipollini, Ole B. Andersen, Jean-Christophe Poisson, Sabrina Mbajon Njiche, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 9, 557–572, https://doi.org/10.5194/essd-9-557-2017, https://doi.org/10.5194/essd-9-557-2017, 2017
Short summary
Short summary
We have produced an improved monthly record of mean sea level for 1993–2015. It is developed by careful processing of the records from nine satellite altimeter missions, making use of the best available orbits, instrumental corrections and geophysical corrections. This paper details the selection process and the processing method. The data are suitable for investigation of sea level changes at scales from seasonal to long-term sea level rise, including interannual variations due to El Niño.
This article is included in the Encyclopedia of Geosciences
Christopher J. Merchant, Frank Paul, Thomas Popp, Michael Ablain, Sophie Bontemps, Pierre Defourny, Rainer Hollmann, Thomas Lavergne, Alexandra Laeng, Gerrit de Leeuw, Jonathan Mittaz, Caroline Poulsen, Adam C. Povey, Max Reuter, Shubha Sathyendranath, Stein Sandven, Viktoria F. Sofieva, and Wolfgang Wagner
Earth Syst. Sci. Data, 9, 511–527, https://doi.org/10.5194/essd-9-511-2017, https://doi.org/10.5194/essd-9-511-2017, 2017
Short summary
Short summary
Climate data records (CDRs) contain data describing Earth's climate and should address uncertainty in the data to communicate what is known about climate variability or change and what range of doubt exists. This paper discusses good practice for including uncertainty information in CDRs for the essential climate variables (ECVs) derived from satellite data. Recommendations emerge from the shared experience of diverse ECV projects within the European Space Agency Climate Change Initiative.
This article is included in the Encyclopedia of Geosciences
Marie-Isabelle Pujol, Yannice Faugère, Guillaume Taburet, Stéphanie Dupuy, Camille Pelloquin, Michael Ablain, and Nicolas Picot
Ocean Sci., 12, 1067–1090, https://doi.org/10.5194/os-12-1067-2016, https://doi.org/10.5194/os-12-1067-2016, 2016
Loren Carrere, Yannice Faugère, and Michaël Ablain
Ocean Sci., 12, 825–842, https://doi.org/10.5194/os-12-825-2016, https://doi.org/10.5194/os-12-825-2016, 2016
Short summary
Short summary
New dynamic atmospheric (DAC_ERA) and dry tropospheric (DT_ERA) correction have been computed for the altimeter period using the ERA-Interim meteorological reanalysis. The corrections improve sea level estimations in Southern Ocean and in shallow waters; the impact is the most important for the first decade of altimetry, when operational meteorological models had a weaker quality. DT_ERA remains better in the recent period. New corrections significantly impact long-term regional trends.
This article is included in the Encyclopedia of Geosciences
Jean-François Legeais, Pierre Prandi, and Stéphanie Guinehut
Ocean Sci., 12, 647–662, https://doi.org/10.5194/os-12-647-2016, https://doi.org/10.5194/os-12-647-2016, 2016
Short summary
Short summary
Sea level is a key indicator of climate change and has been monitored by satellite altimetry for more than 2 decades. The evaluation of the performances of the altimeter missions can be performed by comparison with in situ-independent measurements from Argo profiling floats. This allows for the detection of altimeter drift and the estimation of the impact of a new altimeter standard. This study aims at characterizing the errors of the method thanks to sensitivity analyses to different parameters.
This article is included in the Encyclopedia of Geosciences
L. Zawadzki and M. Ablain
Ocean Sci., 12, 9–18, https://doi.org/10.5194/os-12-9-2016, https://doi.org/10.5194/os-12-9-2016, 2016
Short summary
Short summary
The reference mean sea level (MSL) record, essential for understanding climate evolution, is derived from the altimetric measurements of the TOPEX/Poseidon mission, followed by Jason-1 and later Jason-2 on the same orbit. Soon, Jason-3 will be launched on the same historical orbit, followed by Sentinel-3a on a new one. This paper shows linking missions with the same orbit enables meeting climate user requirements regarding the MSL trend while using Sentinel-3a would increase the uncertainty.
This article is included in the Encyclopedia of Geosciences
H. B. Dieng, A. Cazenave, K. von Schuckmann, M. Ablain, and B. Meyssignac
Ocean Sci., 11, 789–802, https://doi.org/10.5194/os-11-789-2015, https://doi.org/10.5194/os-11-789-2015, 2015
J.-F. Legeais, M. Ablain, and S. Thao
Ocean Sci., 10, 893–905, https://doi.org/10.5194/os-10-893-2014, https://doi.org/10.5194/os-10-893-2014, 2014
Marie Bouih, Anne Barnoud, Chunxue Yang, Andrea Storto, Alejandro Blazquez, William Llovel, Robin Fraudeau, and Anny Cazenave
EGUsphere, https://doi.org/10.5194/egusphere-2024-3945, https://doi.org/10.5194/egusphere-2024-3945, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Present-day sea level rise is not uniform regionally. For better understanding of regional sea level variations, a classical approach is to compare the observed sea level trend patterns with those of the sum of the contributions. If the regional sea level budget is not closed, this allows to detect errors in the observing systems. Our study based on this approach shows the the budget is not closed in the North Atlantic Ocean and identifies as main suspect, errors in Argo-based salinity data.
This article is included in the Encyclopedia of Geosciences
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
This article is included in the Encyclopedia of Geosciences
Yihao Wu, Hongkai Shi, Dongzhen Jia, Ole Baltazar Andersen, Xiufeng He, Zhicai Luo, Yu Li, Shiyuan Chen, Xiaohuan Si, Sisu Diao, Yihuang Shi, and Yanglin Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-443, https://doi.org/10.5194/essd-2024-443, 2024
Preprint under review for ESSD
Short summary
Short summary
We developed a high-quality and cost-effective shallow-water depth model for >120 islands in the South China Sea, using ICESat-2 and Sentinel-2 satellite data. This model accurately maps water depths with an accuracy of ~1 m. Our findings highlight the limitations of existing global bathymetry models in shallow regions. Our model exhibited superior performance in capturing fine-scale bathymetric features with unprecedented spatial resolution, providing essential data for marine applications.
This article is included in the Encyclopedia of Geosciences
Florence Marti, Benoit Meyssignac, Victor Rousseau, Michaël Ablain, Robin Fraudeau, Alejandro Blazquez, and Sébastien Fourest
State Planet, 4-osr8, 3, https://doi.org/10.5194/sp-4-osr8-3-2024, https://doi.org/10.5194/sp-4-osr8-3-2024, 2024
Short summary
Short summary
As space geodetic observations are used to monitor the global ocean heat content change, they allow estimating the Earth energy imbalance (EEI). Over 1993–2022, the space geodetic EEI estimate shows a positive trend of 0.29 W m−2 per decade, indicating accelerated warming of the ocean in line with other independent estimates. The study highlights the importance of comparing various estimates and their uncertainties to reliably assess EEI changes.
This article is included in the Encyclopedia of Geosciences
Michaël Ablain, Noémie Lalau, Benoit Meyssignac, Robin Fraudeau, Anne Barnoud, Gérald Dibarboure, Alejandro Egido, and Craig James Donlon
EGUsphere, https://doi.org/10.5194/egusphere-2024-1802, https://doi.org/10.5194/egusphere-2024-1802, 2024
Short summary
Short summary
This study proposes a novel cross-validation method to assess the instrumental stability in sea level trends. The method involves implementing a second tandem flight phase between two successive altimeter missions a few years after the first. The trend in systematic instrumental differences made during the two tandem phases can be estimated below ±0.1 mm/yr (16–84 % confidence level) on a global scale, for time intervals between the tandem phases of four years or more.
This article is included in the Encyclopedia of Geosciences
Gerald Dibarboure, Cécile Anadon, Frédéric Briol, Emeline Cadier, Robin Chevrier, Antoine Delepoulle, Yannice Faugère, Alice Laloue, Rosemary Morrow, Nicolas Picot, Pierre Prandi, Marie-Isabelle Pujol, Matthias Raynal, Anaelle Treboutte, and Clément Ubelmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1501, https://doi.org/10.5194/egusphere-2024-1501, 2024
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) mission delivers unprecedented swath altimetry products. In this paper, we describe how we extended the Level-3 algorithms to handle SWOT’s unique swath-altimeter data. We also illustrate and discuss the benefits, relevance, and limitations of Level-3 swath-altimeter products for various research domains.
This article is included in the Encyclopedia of Geosciences
Jérôme Benveniste, Salvatore Dinardo, Luciana Fenoglio-Marc, Christopher Buchhaupt, Michele Scagliola, Marcello Passaro, Karina Nielsen, Marco Restano, Américo Ambrózio, Giovanni Sabatino, Carla Orrù, and Beniamino Abis
Proc. IAHS, 385, 457–463, https://doi.org/10.5194/piahs-385-457-2024, https://doi.org/10.5194/piahs-385-457-2024, 2024
Short summary
Short summary
This paper presents the RDSAR, SAR/SARin & FF-SAR altimetry processors available in the ESA Altimetry Virtual Lab (AVL) hosted on the EarthConsole® platform. An overview on processors and features as well as preliminary analyses using AVL output data are reported to demonstrate the quality of the ESA Altimetry Virtual Lab altimetry services in providing innovative solutions to the radar altimetry community. https://earthconsole.eu//
This article is included in the Encyclopedia of Geosciences
Julia Pfeffer, Anny Cazenave, Alejandro Blazquez, Bertrand Decharme, Simon Munier, and Anne Barnoud
Hydrol. Earth Syst. Sci., 27, 3743–3768, https://doi.org/10.5194/hess-27-3743-2023, https://doi.org/10.5194/hess-27-3743-2023, 2023
Short summary
Short summary
The GRACE (Gravity Recovery And Climate Experiment) satellite mission enabled the quantification of water mass redistributions from 2002 to 2017. The analysis of GRACE satellite data shows here that slow changes in terrestrial water storage occurring over a few years to a decade are severely underestimated by global hydrological models. Several sources of errors may explain such biases, likely including the inaccurate representation of groundwater storage changes.
This article is included in the Encyclopedia of Geosciences
Ole Baltazar Andersen, Stine Kildegaard Rose, Adili Abulaitijiang, Shengjun Zhang, and Sara Fleury
Earth Syst. Sci. Data, 15, 4065–4075, https://doi.org/10.5194/essd-15-4065-2023, https://doi.org/10.5194/essd-15-4065-2023, 2023
Short summary
Short summary
The mean sea surface (MSS) is an important reference for mapping sea-level changes across the global oceans. It is widely used by space agencies in the definition of sea-level anomalies as mapped by satellite altimetry from space. Here a new fully global high-resolution mean sea surface called DTU21MSS is presented, and a suite of evaluations are performed to demonstrate its performance.
This article is included in the Encyclopedia of Geosciences
Anny Cazenave, Julia Pfeffer, Mioara Mandea, and Veronique Dehant
Earth Syst. Dynam., 14, 733–735, https://doi.org/10.5194/esd-14-733-2023, https://doi.org/10.5194/esd-14-733-2023, 2023
Short summary
Short summary
While a 6-year oscillation has been reported for some time in the motions of the fluid outer core of the Earth, in the magnetic field and in the Earth rotation, novel results indicate that the climate system also oscillates at this 6-year frequency. This strongly suggests the existence of coupling mechanisms affecting the Earth system as a whole, from the deep Earth interior to the surface fluid envelopes.
This article is included in the Encyclopedia of Geosciences
Victor Rousseau, Robin Fraudeau, Matthew Hammond, Odilon Joël Houndegnonto, Michaël Ablain, Alejandro Blazquez, Fransisco Mir Calafat, Damien Desbruyères, Giuseppe Foti, William Llovel, Florence Marti, Benoît Meyssignac, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-236, https://doi.org/10.5194/essd-2023-236, 2023
Preprint withdrawn
Short summary
Short summary
The estimation of regional Ocean Heat Content (OHC) is crucial for climate analysis and future climate predictions. In our study, we accurately estimate regional OHC changes in the Atlantic Ocean using satellite and in situ data. Findings reveal significant warming in the Atlantic basin from 2002 to 2020 with a mean trend of 0.17W/m², representing 230 times the power of global nuclear plants. The product has also been successfully validated in the North Atlantic basin using in situ data.
This article is included in the Encyclopedia of Geosciences
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
This article is included in the Encyclopedia of Geosciences
Adrien Guérou, Benoit Meyssignac, Pierre Prandi, Michaël Ablain, Aurélien Ribes, and François Bignalet-Cazalet
Ocean Sci., 19, 431–451, https://doi.org/10.5194/os-19-431-2023, https://doi.org/10.5194/os-19-431-2023, 2023
Short summary
Short summary
Based on the latest satellite observations published by the French space agency CNES, we present the current state of the sea level at the scale of the planet and assess its rise and acceleration over the past 29 years. To support scientific research we provide updated estimations of our confidence in our estimations and highlight key technological and scientific fields. Making progress on that will help to better characterize the sea level in the future.
This article is included in the Encyclopedia of Geosciences
Anne Barnoud, Julia Pfeffer, Anny Cazenave, Robin Fraudeau, Victor Rousseau, and Michaël Ablain
Ocean Sci., 19, 321–334, https://doi.org/10.5194/os-19-321-2023, https://doi.org/10.5194/os-19-321-2023, 2023
Short summary
Short summary
The increase in ocean mass due to land ice melting is responsible for about two-thirds of the global mean sea level rise. The ocean mass variations are monitored by GRACE and GRACE Follow-On gravimetry satellites that faced instrumental issues over the last few years. In this work, we assess the robustness of these data by comparing the ocean mass gravimetry estimates to independent observations (other satellite observations, oceanographic measurements and land ice and water models).
This article is included in the Encyclopedia of Geosciences
Maxime Ballarotta, Clément Ubelmann, Pierre Veillard, Pierre Prandi, Hélène Etienne, Sandrine Mulet, Yannice Faugère, Gérald Dibarboure, Rosemary Morrow, and Nicolas Picot
Earth Syst. Sci. Data, 15, 295–315, https://doi.org/10.5194/essd-15-295-2023, https://doi.org/10.5194/essd-15-295-2023, 2023
Short summary
Short summary
We present a new gridded sea surface height and current dataset produced by combining observations from nadir altimeters and drifting buoys. This product is based on a multiscale and multivariate mapping approach that offers the possibility to improve the physical content of gridded products by combining the data from various platforms and resolving a broader spectrum of ocean surface dynamic than in the current operational mapping system. A quality assessment of this new product is presented.
This article is included in the Encyclopedia of Geosciences
Vidar S. Lien, Angelika H. H. Renner, Mari S. Myksvoll, Johnny A. Johannessen, Jeremy Cook, Helene Spurkeland, and Ronald Toppe
State Planet Discuss., https://doi.org/10.5194/sp-2022-12, https://doi.org/10.5194/sp-2022-12, 2022
Preprint withdrawn
Short summary
Short summary
The One Ocean Expedition, a part of the United Nations Ocean Decade, is a sailing voyage where a traditional tall ship equipped with state-of-the-art ocean observation technology is circumnavigating the globe with a crew consisting of students, scientists, trainees and professionals. The focus for the expedition is awareness raising and education through showcasing ocean science using a traditional tall ship as a platform.
This article is included in the Encyclopedia of Geosciences
Marie-Isabelle Pujol, Stéphanie Dupuy, Oscar Vergara, Antonio Sánchez-Román, Yannice Faugère, Pierre Prandi, Mei-Ling Dabat, Quentin Dagneaux, Marine Lievin, Emeline Cadier, Gérald Dibarboure, and Nicolas Picot
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-292, https://doi.org/10.5194/essd-2022-292, 2022
Manuscript not accepted for further review
Short summary
Short summary
An altimeter sea level along-track level-3 product with a 5 Hz (~1.2 km) sampling is proposed. It takes advantage of recent advances in radar altimeter processing, and improvements made to different stages of the processing chain. Compared to the conventional 1 Hz (~7 km) product, it significantly improves the observability of the short wavelength signal in open ocean and near coast areas (> 5 km). It also contributes to improving high resolution numerical model outputs via data assimilation.
This article is included in the Encyclopedia of Geosciences
Stefania Camici, Gabriele Giuliani, Luca Brocca, Christian Massari, Angelica Tarpanelli, Hassan Hashemi Farahani, Nico Sneeuw, Marco Restano, and Jérôme Benveniste
Geosci. Model Dev., 15, 6935–6956, https://doi.org/10.5194/gmd-15-6935-2022, https://doi.org/10.5194/gmd-15-6935-2022, 2022
Short summary
Short summary
This paper presents an innovative approach, STREAM (SaTellite-based Runoff Evaluation And Mapping), to derive daily river discharge and runoff estimates from satellite observations of soil moisture, precipitation, and terrestrial total water storage anomalies. Potentially useful for multiple operational and scientific applications, the added value of the STREAM approach is the ability to increase knowledge on the natural processes, human activities, and their interactions on the land.
This article is included in the Encyclopedia of Geosciences
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
Short summary
Global mean sea-level change observed from 1993 to 2016 (mean rate of 3.05 mm yr−1) matches the combined effect of changes in water density (thermal expansion) and ocean mass. Ocean-mass change has been assessed through the contributions from glaciers, ice sheets, and land water storage or directly from satellite data since 2003. Our budget assessments of linear trends and monthly anomalies utilise new datasets and uncertainty characterisations developed within ESA's Climate Change Initiative.
This article is included in the Encyclopedia of Geosciences
Florence Marti, Alejandro Blazquez, Benoit Meyssignac, Michaël Ablain, Anne Barnoud, Robin Fraudeau, Rémi Jugier, Jonathan Chenal, Gilles Larnicol, Julia Pfeffer, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 229–249, https://doi.org/10.5194/essd-14-229-2022, https://doi.org/10.5194/essd-14-229-2022, 2022
Short summary
Short summary
The Earth energy imbalance at the top of the atmosphere due to the increase in greenhouse gases and aerosol concentrations is responsible for the accumulation of energy in the climate system. With its high thermal inertia, the ocean accumulates most of this energy excess in the form of heat. The estimation of the global ocean heat content through space geodetic observations allows monitoring of the energy imbalance with realistic uncertainties to better understand the Earth’s warming climate.
This article is included in the Encyclopedia of Geosciences
Carsten Bjerre Ludwigsen, Ole Baltazar Andersen, and Stine Kildegaard Rose
Ocean Sci., 18, 109–127, https://doi.org/10.5194/os-18-109-2022, https://doi.org/10.5194/os-18-109-2022, 2022
Short summary
Short summary
This study uses a novel satellite-independent approach to quantify the components of Arctic sea level change. The 21-year time series allows studying climate-related changes in Arctic sea level. The decomposition shows that fresh water is governing sea level change, while Arctic land ice loss contributes to a small Arctic sea level rise. The reconstruction yields good agreement with sea level observations from altimetry, despite both datasets being challenged by the harsh environment.
This article is included in the Encyclopedia of Geosciences
Denise Dettmering, Felix L. Müller, Julius Oelsmann, Marcello Passaro, Christian Schwatke, Marco Restano, Jérôme Benveniste, and Florian Seitz
Earth Syst. Sci. Data, 13, 3733–3753, https://doi.org/10.5194/essd-13-3733-2021, https://doi.org/10.5194/essd-13-3733-2021, 2021
Short summary
Short summary
In this study, a new gridded altimetry-based regional sea level dataset for the North Sea is presented, named North SEAL. It is based on long-term multi-mission cross-calibrated altimetry data consistently preprocessed with coastal dedicated algorithms. On a 6–8 km wide triangular mesh, North SEAL provides time series of monthly sea level anomalies as well as sea level trends and amplitudes of the mean annual sea level cycle for the period 1995–2019 for various applications.
This article is included in the Encyclopedia of Geosciences
Sandrine Mulet, Marie-Hélène Rio, Hélène Etienne, Camilia Artana, Mathilde Cancet, Gérald Dibarboure, Hui Feng, Romain Husson, Nicolas Picot, Christine Provost, and P. Ted Strub
Ocean Sci., 17, 789–808, https://doi.org/10.5194/os-17-789-2021, https://doi.org/10.5194/os-17-789-2021, 2021
Short summary
Short summary
Satellite altimetry has revolutionized ocean observation by allowing the sea level to be monitored with very good spatiotemporal coverage. However, only the sea level anomalies are retrieved; to monitor the whole oceanic signal a temporal mean (called mean dynamic topography, MDT) must be added to these anomalies. In this study we present the newly updated CNES-CLS18 MDT. An evaluation of this new solution shows significant improvements in both strong currents and coastal areas.
This article is included in the Encyclopedia of Geosciences
Florent H. Lyard, Damien J. Allain, Mathilde Cancet, Loren Carrère, and Nicolas Picot
Ocean Sci., 17, 615–649, https://doi.org/10.5194/os-17-615-2021, https://doi.org/10.5194/os-17-615-2021, 2021
Short summary
Short summary
Since the mid-1990s, a series of FES (finite element solution) global ocean tidal atlases has been produced with the primary objective to provide altimetry missions with a tidal de-aliasing correction. We describe the underlying hydrodynamic/data assimilation design and accuracy assessments for the FES2014 release. The FES2014 atlas shows overall improved performance and has consequently been integrated in satellite altimetry and gravimetric data processing and adopted in ITRF standards.
This article is included in the Encyclopedia of Geosciences
Loren Carrere, Brian K. Arbic, Brian Dushaw, Gary Egbert, Svetlana Erofeeva, Florent Lyard, Richard D. Ray, Clément Ubelmann, Edward Zaron, Zhongxiang Zhao, Jay F. Shriver, Maarten Cornelis Buijsman, and Nicolas Picot
Ocean Sci., 17, 147–180, https://doi.org/10.5194/os-17-147-2021, https://doi.org/10.5194/os-17-147-2021, 2021
Short summary
Short summary
Internal tides can have a signature of several centimeters at the ocean surface and need to be corrected from altimeter measurements. We present a detailed validation of several internal-tide models using existing satellite altimeter databases. The analysis focuses on the main diurnal and semidiurnal tidal constituents. Results show the interest of the methodology proposed, the quality of the internal-tide models tested and their positive contribution for estimating an accurate sea level.
This article is included in the Encyclopedia of Geosciences
Clara Lázaro, Maria Joana Fernandes, Telmo Vieira, and Eliana Vieira
Earth Syst. Sci. Data, 12, 3205–3228, https://doi.org/10.5194/essd-12-3205-2020, https://doi.org/10.5194/essd-12-3205-2020, 2020
Short summary
Short summary
In satellite altimetry (SA), the wet tropospheric correction (WTC) accounts for the path delay induced mainly by atmospheric water vapour. In coastal regions, the accuracy of the WTC determined by the on-board radiometer deteriorates. The GPD+ methodology, developed by the University of Porto in the remit of ESA-funded projects, computes improved WTCs for SA. Global enhanced products are generated for all past and operational altimetric missions, forming a relevant dataset for coastal altimetry.
This article is included in the Encyclopedia of Geosciences
Yvan Gouzenes, Fabien Léger, Anny Cazenave, Florence Birol, Pascal Bonnefond, Marcello Passaro, Fernando Nino, Rafael Almar, Olivier Laurain, Christian Schwatke, Jean-François Legeais, and Jérôme Benveniste
Ocean Sci., 16, 1165–1182, https://doi.org/10.5194/os-16-1165-2020, https://doi.org/10.5194/os-16-1165-2020, 2020
Short summary
Short summary
This study provides for the first time estimates of sea level anomalies very close to the coastline based on high-resolution retracked altimetry data, as well as corresponding sea level trends, over a 14-year time span. This new information has so far not been provided by standard altimetry data.
This article is included in the Encyclopedia of Geosciences
Michael Kern, Robert Cullen, Bruno Berruti, Jerome Bouffard, Tania Casal, Mark R. Drinkwater, Antonio Gabriele, Arnaud Lecuyot, Michael Ludwig, Rolv Midthassel, Ignacio Navas Traver, Tommaso Parrinello, Gerhard Ressler, Erik Andersson, Cristina Martin-Puig, Ole Andersen, Annett Bartsch, Sinead Farrell, Sara Fleury, Simon Gascoin, Amandine Guillot, Angelika Humbert, Eero Rinne, Andrew Shepherd, Michiel R. van den Broeke, and John Yackel
The Cryosphere, 14, 2235–2251, https://doi.org/10.5194/tc-14-2235-2020, https://doi.org/10.5194/tc-14-2235-2020, 2020
Short summary
Short summary
The Copernicus Polar Ice and Snow Topography Altimeter will provide high-resolution sea ice thickness and land ice elevation measurements and the capability to determine the properties of snow cover on ice to serve operational products and services of direct relevance to the polar regions. This paper describes the mission objectives, identifies the key contributions the CRISTAL mission will make, and presents a concept – as far as it is already defined – for the mission payload.
This article is included in the Encyclopedia of Geosciences
Maxime Ballarotta, Clément Ubelmann, Marie-Isabelle Pujol, Guillaume Taburet, Florent Fournier, Jean-François Legeais, Yannice Faugère, Antoine Delepoulle, Dudley Chelton, Gérald Dibarboure, and Nicolas Picot
Ocean Sci., 15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, https://doi.org/10.5194/os-15-1091-2019, 2019
Short summary
Short summary
This study investigates the resolving capabilities of the DUACS gridded products delivered through the CMEMS catalogue. Our method is based on the noise-to-signal ratio approach. While altimeter along-track data resolve scales on the order of a few tens of kilometers, we found that the merging of these along-track data into continuous maps in time and space leads to effective resolution ranging from ~ 800 km wavelength at the Equator to 100 km wavelength at high latitude.
This article is included in the Encyclopedia of Geosciences
Michaël Ablain, Benoît Meyssignac, Lionel Zawadzki, Rémi Jugier, Aurélien Ribes, Giorgio Spada, Jerôme Benveniste, Anny Cazenave, and Nicolas Picot
Earth Syst. Sci. Data, 11, 1189–1202, https://doi.org/10.5194/essd-11-1189-2019, https://doi.org/10.5194/essd-11-1189-2019, 2019
Short summary
Short summary
A description of the uncertainties in the Global Mean Sea Level (GMSL) record has been performed; 25 years of satellite altimetry data were used to estimate the error variance–covariance matrix for the GMSL record to derive its confidence envelope. Then a least square approach was used to estimate the GMSL trend and acceleration uncertainties over any time periods. A GMSL trend of 3.35 ± 0.4 mm/yr and a GMSL acceleration of 0.12 ± 0.07 mm/yr² have been found within a 90 % confidence level.
This article is included in the Encyclopedia of Geosciences
Malcolm McMillan, Alan Muir, Andrew Shepherd, Roger Escolà, Mònica Roca, Jérémie Aublanc, Pierre Thibaut, Marco Restano, Américo Ambrozio, and Jérôme Benveniste
The Cryosphere, 13, 709–722, https://doi.org/10.5194/tc-13-709-2019, https://doi.org/10.5194/tc-13-709-2019, 2019
Short summary
Short summary
Melting of the Greenland and Antarctic ice sheets is one of the main causes of current sea level rise. Understanding ice sheet change requires large-scale systematic satellite monitoring programmes. This study provides the first assessment of a new long-term source of measurements, from Sentinel-3 satellite altimetry. We estimate the accuracy of Sentinel-3 across Antarctica, show that the satellite can detect regions that are rapidly losing ice, and identify signs of subglacial lake activity.
This article is included in the Encyclopedia of Geosciences
Sergei Rudenko, Saskia Esselborn, Tilo Schöne, and Denise Dettmering
Solid Earth, 10, 293–305, https://doi.org/10.5194/se-10-293-2019, https://doi.org/10.5194/se-10-293-2019, 2019
Short summary
Short summary
A terrestrial reference frame (TRF) realization is a basis for precise orbit determination of Earth-orbiting artificial satellites and sea level studies. We investigate the impact of a switch from an older TRF realization (ITRF2008) to a new one (ITRF2014) on the quality of orbits of three altimetry satellites (TOPEX/Poseidon, Jason-1, and Jason-2) for 1992–2015, but especially from 2009 onwards, and on altimetry products computed using the satellite orbits derived using ITRF2014.
This article is included in the Encyclopedia of Geosciences
Christian Gruber, Sergei Rudenko, Andreas Groh, Dimitrios Ampatzidis, and Elisa Fagiolini
Earth Surf. Dynam., 6, 1203–1218, https://doi.org/10.5194/esurf-6-1203-2018, https://doi.org/10.5194/esurf-6-1203-2018, 2018
Short summary
Short summary
By using a set of evaluation methods involving GPS, ICESat, hydrological modelling and altimetry satellite orbits, we show that the novel radial basis function (RBF) processing technique can be used for processing the Gravity Recovery and Climate Experiment (GRACE) data yielding global gravity field models which fit independent reference values at the same level as commonly accepted global geopotential models based on spherical harmonics.
This article is included in the Encyclopedia of Geosciences
WCRP Global Sea Level Budget Group
Earth Syst. Sci. Data, 10, 1551–1590, https://doi.org/10.5194/essd-10-1551-2018, https://doi.org/10.5194/essd-10-1551-2018, 2018
Short summary
Short summary
Global mean sea level is an integral of changes occurring in the climate system in response to unforced climate variability as well as natural and anthropogenic forcing factors. Studying the sea level budget, i.e., comparing observed global mean sea level to the sum of components (ocean thermal expansion, glaciers and ice sheet mass loss as well as changes in land water storage) improves our understanding of processes at work and provides constraints on missing contributions (e.g., deep ocean).
This article is included in the Encyclopedia of Geosciences
Chao Xiong, Hermann Lühr, Michael Schmidt, Mathis Bloßfeld, and Sergei Rudenko
Ann. Geophys., 36, 1141–1152, https://doi.org/10.5194/angeo-36-1141-2018, https://doi.org/10.5194/angeo-36-1141-2018, 2018
Graham D. Quartly, Eero Rinne, Marcello Passaro, Ole B. Andersen, Salvatore Dinardo, Sara Fleury, Kevin Guerreiro, Amandine Guillot, Stefan Hendricks, Andrey A. Kurekin, Felix L. Müller, Robert Ricker, Henriette Skourup, and Michel Tsamados
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-148, https://doi.org/10.5194/tc-2018-148, 2018
Revised manuscript not accepted
Short summary
Short summary
Radar altimetry is a high-precision technique for measuring sea level and sea ice thickness from space, which are important for monitoring ocean circulation, sea level rise and changes in the Arctic ice cover. This paper reviews the processing techniques needed to best extract the information from complicated radar echoes, and considers the likely developments in the coming decade.
This article is included in the Encyclopedia of Geosciences
Fabrice Ardhuin, Yevgueny Aksenov, Alvise Benetazzo, Laurent Bertino, Peter Brandt, Eric Caubet, Bertrand Chapron, Fabrice Collard, Sophie Cravatte, Jean-Marc Delouis, Frederic Dias, Gérald Dibarboure, Lucile Gaultier, Johnny Johannessen, Anton Korosov, Georgy Manucharyan, Dimitris Menemenlis, Melisa Menendez, Goulven Monnier, Alexis Mouche, Frédéric Nouguier, George Nurser, Pierre Rampal, Ad Reniers, Ernesto Rodriguez, Justin Stopa, Céline Tison, Clément Ubelmann, Erik van Sebille, and Jiping Xie
Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, https://doi.org/10.5194/os-14-337-2018, 2018
Short summary
Short summary
The Sea surface KInematics Multiscale (SKIM) monitoring mission is a proposal for a future satellite that is designed to measure ocean currents and waves. Using a Doppler radar, the accurate measurement of currents requires the removal of the mean velocity due to ocean wave motions. This paper describes the main processing steps needed to produce currents and wave data from the radar measurements. With this technique, SKIM can provide unprecedented coverage and resolution, over the global ocean.
This article is included in the Encyclopedia of Geosciences
Saskia Esselborn, Sergei Rudenko, and Tilo Schöne
Ocean Sci., 14, 205–223, https://doi.org/10.5194/os-14-205-2018, https://doi.org/10.5194/os-14-205-2018, 2018
Short summary
Short summary
Global and regional sea level changes are the subject of public and scientific concern. Sea level data from satellite radar altimetry rely on precise knowledge of the orbits. We assess the orbit-related uncertainty of sea level on seasonal to decadal timescales for the 1990s from a set of TOPEX/Poseidon orbit solutions. Orbit errors may hinder the estimation of global mean sea level rise acceleration. The uncertainty of sea level trends due to orbit errors reaches regionally up to 1.2 mm yr−1.
This article is included in the Encyclopedia of Geosciences
Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, Hao Zuo, Johnny A. Johannessen, Martin G. Scharffenberg, Luciana Fenoglio-Marc, M. Joana Fernandes, Ole Baltazar Andersen, Sergei Rudenko, Paolo Cipollini, Graham D. Quartly, Marcello Passaro, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 10, 281–301, https://doi.org/10.5194/essd-10-281-2018, https://doi.org/10.5194/essd-10-281-2018, 2018
Short summary
Short summary
Sea level is one of the best indicators of climate change and has been listed as one of the essential climate variables. Sea level measurements have been provided by satellite altimetry for 25 years, and the Climate Change Initiative (CCI) program of the European Space Agency has given the opportunity to provide a long-term, homogeneous and accurate sea level record. It will help scientists to better understand climate change and its variability.
This article is included in the Encyclopedia of Geosciences
Graham D. Quartly, Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, M. Joana Fernandes, Sergei Rudenko, Loren Carrère, Pablo Nilo García, Paolo Cipollini, Ole B. Andersen, Jean-Christophe Poisson, Sabrina Mbajon Njiche, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 9, 557–572, https://doi.org/10.5194/essd-9-557-2017, https://doi.org/10.5194/essd-9-557-2017, 2017
Short summary
Short summary
We have produced an improved monthly record of mean sea level for 1993–2015. It is developed by careful processing of the records from nine satellite altimeter missions, making use of the best available orbits, instrumental corrections and geophysical corrections. This paper details the selection process and the processing method. The data are suitable for investigation of sea level changes at scales from seasonal to long-term sea level rise, including interannual variations due to El Niño.
This article is included in the Encyclopedia of Geosciences
Christopher J. Merchant, Frank Paul, Thomas Popp, Michael Ablain, Sophie Bontemps, Pierre Defourny, Rainer Hollmann, Thomas Lavergne, Alexandra Laeng, Gerrit de Leeuw, Jonathan Mittaz, Caroline Poulsen, Adam C. Povey, Max Reuter, Shubha Sathyendranath, Stein Sandven, Viktoria F. Sofieva, and Wolfgang Wagner
Earth Syst. Sci. Data, 9, 511–527, https://doi.org/10.5194/essd-9-511-2017, https://doi.org/10.5194/essd-9-511-2017, 2017
Short summary
Short summary
Climate data records (CDRs) contain data describing Earth's climate and should address uncertainty in the data to communicate what is known about climate variability or change and what range of doubt exists. This paper discusses good practice for including uncertainty information in CDRs for the essential climate variables (ECVs) derived from satellite data. Recommendations emerge from the shared experience of diverse ECV projects within the European Space Agency Climate Change Initiative.
This article is included in the Encyclopedia of Geosciences
Eva Boergens, Karina Nielsen, Ole B. Andersen, Denise Dettmering, and Florian Seitz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-217, https://doi.org/10.5194/hess-2017-217, 2017
Revised manuscript not accepted
Short summary
Short summary
The water levels of the Mekong River are observed with the SAR altimeter measurements of CryoSat-2. Even small rivers in the river system with a width of 50 m can be observed due to the higher resolution of the SAR measurements. To identify the rivers regardless of a land-water-mask we employ an unsupervised classification on features derived from the SAR measurements. The river water levels are validated and compared to gauge and Envisat data which shows the good performance of the SAR data.
This article is included in the Encyclopedia of Geosciences
Marie-Isabelle Pujol, Yannice Faugère, Guillaume Taburet, Stéphanie Dupuy, Camille Pelloquin, Michael Ablain, and Nicolas Picot
Ocean Sci., 12, 1067–1090, https://doi.org/10.5194/os-12-1067-2016, https://doi.org/10.5194/os-12-1067-2016, 2016
Jun She, Icarus Allen, Erik Buch, Alessandro Crise, Johnny A. Johannessen, Pierre-Yves Le Traon, Urmas Lips, Glenn Nolan, Nadia Pinardi, Jan H. Reißmann, John Siddorn, Emil Stanev, and Henning Wehde
Ocean Sci., 12, 953–976, https://doi.org/10.5194/os-12-953-2016, https://doi.org/10.5194/os-12-953-2016, 2016
Short summary
Short summary
This white paper addresses key scientific challenges and research priorities for the development of operational oceanography in Europe for the next 5–10 years. Knowledge gaps and deficiencies are identified in relation to common scientific challenges in four EuroGOOS knowledge areas: European ocean observations, modelling and forecasting technology, coastal operational oceanography, and operational ecology.
This article is included in the Encyclopedia of Geosciences
Loren Carrere, Yannice Faugère, and Michaël Ablain
Ocean Sci., 12, 825–842, https://doi.org/10.5194/os-12-825-2016, https://doi.org/10.5194/os-12-825-2016, 2016
Short summary
Short summary
New dynamic atmospheric (DAC_ERA) and dry tropospheric (DT_ERA) correction have been computed for the altimeter period using the ERA-Interim meteorological reanalysis. The corrections improve sea level estimations in Southern Ocean and in shallow waters; the impact is the most important for the first decade of altimetry, when operational meteorological models had a weaker quality. DT_ERA remains better in the recent period. New corrections significantly impact long-term regional trends.
This article is included in the Encyclopedia of Geosciences
Lionel Zawadzki, Michaël Ablain, Loren Carrere, Richard D. Ray, Nikita P. Zelensky, Florent Lyard, Amandine Guillot, and Nicolas Picot
Ocean Sci. Discuss., https://doi.org/10.5194/os-2016-19, https://doi.org/10.5194/os-2016-19, 2016
Preprint withdrawn
Short summary
Short summary
Mean sea level (MSL) is a prominent indicator of climatic change, and is therefore of great scientific and societal interest. Since the beginning of the altimeter mission TOPEX/Poseidon and its successors Jason-1 and Jason-2, MSL products became essential for climate applications. Since 1995, a suspicious signal is apparent in the corresponding MSL record. Since 2010, scientific teams have been working on reducing this error. This paper assesses, characterizes and quantifies this reduction.
This article is included in the Encyclopedia of Geosciences
Jean-François Legeais, Pierre Prandi, and Stéphanie Guinehut
Ocean Sci., 12, 647–662, https://doi.org/10.5194/os-12-647-2016, https://doi.org/10.5194/os-12-647-2016, 2016
Short summary
Short summary
Sea level is a key indicator of climate change and has been monitored by satellite altimetry for more than 2 decades. The evaluation of the performances of the altimeter missions can be performed by comparison with in situ-independent measurements from Argo profiling floats. This allows for the detection of altimeter drift and the estimation of the impact of a new altimeter standard. This study aims at characterizing the errors of the method thanks to sensitivity analyses to different parameters.
This article is included in the Encyclopedia of Geosciences
L. Zawadzki and M. Ablain
Ocean Sci., 12, 9–18, https://doi.org/10.5194/os-12-9-2016, https://doi.org/10.5194/os-12-9-2016, 2016
Short summary
Short summary
The reference mean sea level (MSL) record, essential for understanding climate evolution, is derived from the altimetric measurements of the TOPEX/Poseidon mission, followed by Jason-1 and later Jason-2 on the same orbit. Soon, Jason-3 will be launched on the same historical orbit, followed by Sentinel-3a on a new one. This paper shows linking missions with the same orbit enables meeting climate user requirements regarding the MSL trend while using Sentinel-3a would increase the uncertainty.
This article is included in the Encyclopedia of Geosciences
H. B. Dieng, A. Cazenave, K. von Schuckmann, M. Ablain, and B. Meyssignac
Ocean Sci., 11, 789–802, https://doi.org/10.5194/os-11-789-2015, https://doi.org/10.5194/os-11-789-2015, 2015
J.-F. Legeais, M. Ablain, and S. Thao
Ocean Sci., 10, 893–905, https://doi.org/10.5194/os-10-893-2014, https://doi.org/10.5194/os-10-893-2014, 2014
S. Rudenko, N. Schön, M. Uhlemann, and G. Gendt
Solid Earth, 4, 23–41, https://doi.org/10.5194/se-4-23-2013, https://doi.org/10.5194/se-4-23-2013, 2013
E. de Boisséson, M. A. Balmaseda, F. Vitart, and K. Mogensen
Ocean Sci., 8, 1071–1084, https://doi.org/10.5194/os-8-1071-2012, https://doi.org/10.5194/os-8-1071-2012, 2012
Related subject area
Approach: Remote Sensing | Depth range: Surface | Geographical range: All Geographic Regions | Phenomena: Sea Level
Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales
A comparison of methods to estimate vertical land motion trends from GNSS and altimetry at tide gauge stations
GEM: a dynamic tracking model for mesoscale eddies in the ocean
El Niño, La Niña, and the global sea level budget
DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years
Major improvement of altimetry sea level estimations using pressure-derived corrections based on ERA-Interim atmospheric reanalysis
Accuracy of the mean sea level continuous record with future altimetric missions: Jason-3 vs. Sentinel-3a
Technical Note: Watershed strategy for oceanic mesoscale eddy splitting
Evaluation of wet troposphere path delays from atmospheric reanalyses and radiometers and their impact on the altimeter sea level
From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography
Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean
Saskia Esselborn, Sergei Rudenko, and Tilo Schöne
Ocean Sci., 14, 205–223, https://doi.org/10.5194/os-14-205-2018, https://doi.org/10.5194/os-14-205-2018, 2018
Short summary
Short summary
Global and regional sea level changes are the subject of public and scientific concern. Sea level data from satellite radar altimetry rely on precise knowledge of the orbits. We assess the orbit-related uncertainty of sea level on seasonal to decadal timescales for the 1990s from a set of TOPEX/Poseidon orbit solutions. Orbit errors may hinder the estimation of global mean sea level rise acceleration. The uncertainty of sea level trends due to orbit errors reaches regionally up to 1.2 mm yr−1.
This article is included in the Encyclopedia of Geosciences
Marcel Kleinherenbrink, Riccardo Riva, and Thomas Frederikse
Ocean Sci., 14, 187–204, https://doi.org/10.5194/os-14-187-2018, https://doi.org/10.5194/os-14-187-2018, 2018
Short summary
Short summary
Tide gauges observe sea level changes, but are also affected by vertical land motion (VLM). Estimation of absolute sea level requires a correction for the local VLM. VLM is either estimated from GNSS observations or indirectly by subtracting tide gauge observations from satellite altimetry observations. Because altimetry and GNSS observations are often not made at the tide gauge location, the estimates vary. In this study we determine the best approach for both methods.
This article is included in the Encyclopedia of Geosciences
Qiu-Yang Li, Liang Sun, and Sheng-Fu Lin
Ocean Sci., 12, 1249–1267, https://doi.org/10.5194/os-12-1249-2016, https://doi.org/10.5194/os-12-1249-2016, 2016
Short summary
Short summary
The Genealogical Evolution Model (GEM) is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern with a two-dimensional vector. All of the computational steps are linear and do not include iteration. It is very fast and is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.
This article is included in the Encyclopedia of Geosciences
Christopher G. Piecuch and Katherine J. Quinn
Ocean Sci., 12, 1165–1177, https://doi.org/10.5194/os-12-1165-2016, https://doi.org/10.5194/os-12-1165-2016, 2016
Short summary
Short summary
We use satellite and in situ data to elucidate global-mean sea level (GMSL) changes related to El Niño-Southern Oscillation (ENSO) over 2005–2015. Steric and mass effects make comparable contributions to the GMSL budget during ENSO, in contrast to previous interpretations based largely on hydrological models, which emphasize mass contributions. Results exemplify the usefulness of the Global Ocean Observing System for understanding the Earth's radiation imbalance and hydrological cycle.
This article is included in the Encyclopedia of Geosciences
Marie-Isabelle Pujol, Yannice Faugère, Guillaume Taburet, Stéphanie Dupuy, Camille Pelloquin, Michael Ablain, and Nicolas Picot
Ocean Sci., 12, 1067–1090, https://doi.org/10.5194/os-12-1067-2016, https://doi.org/10.5194/os-12-1067-2016, 2016
Loren Carrere, Yannice Faugère, and Michaël Ablain
Ocean Sci., 12, 825–842, https://doi.org/10.5194/os-12-825-2016, https://doi.org/10.5194/os-12-825-2016, 2016
Short summary
Short summary
New dynamic atmospheric (DAC_ERA) and dry tropospheric (DT_ERA) correction have been computed for the altimeter period using the ERA-Interim meteorological reanalysis. The corrections improve sea level estimations in Southern Ocean and in shallow waters; the impact is the most important for the first decade of altimetry, when operational meteorological models had a weaker quality. DT_ERA remains better in the recent period. New corrections significantly impact long-term regional trends.
This article is included in the Encyclopedia of Geosciences
L. Zawadzki and M. Ablain
Ocean Sci., 12, 9–18, https://doi.org/10.5194/os-12-9-2016, https://doi.org/10.5194/os-12-9-2016, 2016
Short summary
Short summary
The reference mean sea level (MSL) record, essential for understanding climate evolution, is derived from the altimetric measurements of the TOPEX/Poseidon mission, followed by Jason-1 and later Jason-2 on the same orbit. Soon, Jason-3 will be launched on the same historical orbit, followed by Sentinel-3a on a new one. This paper shows linking missions with the same orbit enables meeting climate user requirements regarding the MSL trend while using Sentinel-3a would increase the uncertainty.
This article is included in the Encyclopedia of Geosciences
Q. Y. Li and L. Sun
Ocean Sci., 11, 269–273, https://doi.org/10.5194/os-11-269-2015, https://doi.org/10.5194/os-11-269-2015, 2015
Short summary
Short summary
This study established a splitting strategy that could separate multinuclear eddies into mononuclear eddies. As the values of eddy parameters (e.g. SLA, geostrophic potential vorticity, Okubo–Weiss parameter) are similar to basins in a map, the natural divisions of the basins are the watersheds between them. It can also be applied to automatic identification of troughs and ridges from weather charts. We denoted it the Universal Splitting Technology for Circulations (USTC) method.
This article is included in the Encyclopedia of Geosciences
J.-F. Legeais, M. Ablain, and S. Thao
Ocean Sci., 10, 893–905, https://doi.org/10.5194/os-10-893-2014, https://doi.org/10.5194/os-10-893-2014, 2014
P. Y. Le Traon
Ocean Sci., 9, 901–915, https://doi.org/10.5194/os-9-901-2013, https://doi.org/10.5194/os-9-901-2013, 2013
D. P. Chambers and J. A. Bonin
Ocean Sci., 8, 859–868, https://doi.org/10.5194/os-8-859-2012, https://doi.org/10.5194/os-8-859-2012, 2012
Cited articles
Ablain, M., Cazenave, A., Valladeau, G., and Guinehut, S.: A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008, Ocean Sci., 5, 193–201, https://doi.org/10.5194/os-5-193-2009, 2009.
Ablain, M., Philipps, S., Urvoy, M., Tran, N., and Picot, N.: Detection of Long-Term Instabilities on Altimeter Backscattering Coefficient Thanks to Wind Speed Data Comparisons from Altimeters and Models, Mar. Geodesy, 35, 42–60, https://doi.org/10.1080/01490419.2012.718675, 2012.
Ablain, M., Ollivier, A., Philipps, S., and Picot, N.: Why altimetry errors at climate scales are larger in the first decade (1993–2002)?, OSTST Boulders, October 2013, available at: http://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2013/posters/Ablain_AltimetryErrorAtClimateScales.pdf (last access: 20 June 2014), 2013.
Altamimi, Z., Collilieux, X., and Métivier, L.: ITRF2008: An improved solution of the International Terrestrial Reference Frame, J. Geodesy, 85, 457–473, https://doi.org/10.1007/s00190-011-0444-4, 2011.
Andersen, O. B.: The DTU10 Gravity field and Mean sea surface (2010) Second international symposium of the gravity field of the Earth (IGFS2), 20–22 September 2010, Fairbanks, Alaska: available at: http://www.space.dtu.dk/english/ /media/Institutter/Space/English/scientific_data_and_models/global_marine_gravity_field/dtu10.ashx (last access: 20 June 2014), 2010.
Balmaseda, M. A., Mogensen, K., and Weaver, A. T.: Evaluation of the ECMWF ocean reanalysis system ORAS4, Q. J. R. Meteorol. Soc., 139, 1132–1161, https://doi.org/10.1002/qj.2063, 2013.
Balmaseda, M. A., Hernandez, F., Storto, A., Palmer, M. D., Alves, O., Shi, L., Smith, G. C., Toyoda, T., Valdivieso, M., Barnier, B., Behringer, D., Boyer, T., Chang, Y-S., Chepurin, G. A., Ferry, N., Forget, G., Fujii, Y., Good, S., Guinehut, S., Haines, K., Ishikawa Y., Keeley, S., Köhl, A., Lee, T., Martin, M., Masina, S., Masuda, S., Meyssignac, B., Mogensen, K., Parent, L., Peterson, K. A., Tang, Y. M., Yin, Y., Vernieres, G., Wang, X., Waters, J., Wedd, R., Wang, O., Xue, Y., Chevallier, M., Lemieux, J.-F., Dupont, F., Kuragano, T., Kamachi, M., Awaji, T., Caltabiano, A., Wilmer-Becker, K., and Gaillard, F.: The Ocean Reanalyses Intercomparison Project (ORA-IP), J. Operational Oceanography, submitted, 2014.
Brown, S., Desai, S., Keihm, S., and Lu, W.: Microwave radiometer calibration on decadal time scales using on-earth brightness temperature references: application to the TOPEX Microwave radiometer, J. Atmos. Oceanic Technol., 26, 2579–2591, 2009.
Carrere, L., Faugère, Y., and Ablain, M.: Improvement of pressure derived corrections for altimetry using the ERA-Interim dataset, Ocean Sci. Discuss. in preparation, 2014.
Chambers, D. P. and Bonin, J. A.: Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean, Ocean Sci., 8, 859–868, https://doi.org/10.5194/os-8-859-2012, 2012.
Couhert, A., Cerri, L., Legeais, J.-F., Ablain, M., Zelensky, N. P., Haines, B. J., Lemoine, F. G., Bertiger, W. I., Desai, S. D., and Otten, M.: Towards the 1 mm/y stability of the radial orbit error at regional scales, Adv. Space Res., 55, 2–23, https://doi.org/10.1016/j.asr.2014.06.041, 2015.
Dee, D. P.: ERA-CLIM: Final Publishable Summary Report, available at: http://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCMQFjAA&url=http A F Fwww.era-clim.eu FFR_20140228.pdf&ei=ifKsVM6bLMuAUaSfhNAJ&usg=AFQjCNHMvrEekOqszSUT_Jti_8n3oF1saw&sig2=yGNI0LhN3NBThCwNsqAC1A&bvm=bv.83134100,d.d24 (last access: 18 August 2014), 2014.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011
Dibarboure, G., Pujol, M.-I., Briol, F., Le Traon, P. Y., Larnicol, G., Picot, N., Mertz, F., and Ablain, M.: Jason-2 in DUACS: Updated System Description, First Tandem Results and Impact on Processing and Products, Mar. Geodesy, 34, 214–241, 2011.
Ducet, N., Le Traon, P. Y., and Reverdin, G.: Global high resolution mapping of ocean circulation from the combination of TOPEX/POSEIDON and ERS-1/2, J. Geophys. Res.-Ocean., 105, 19477–19498, 2000.
Fernandes, M. J., Lázaro, C., Nunes, A. L., Pires, N., Bastos, L., and Mendes, V. B.: GNSS-derived Path Delay: an approach to compute the wet tropospheric correction for coastal altimetry, IEEE Geosci. Remote Sens Lett., 7, 596–600, https://doi.org/10.1109/LGRS.2010.2042425, 2010.
Fernandes, M. J., Lázaro, C., and Nunes, A. L.: Improved Wet Path Delays for all ESA and Reference altimetric missions, Remote Sens. Environ., in preparation, 2014.
Garcia, P. and Roca, M.: ISARD_ESA_L1B_ESL_CCN_PRO_064, issue 1.b, 15 November 2010, "On-board PTR processing analysis: MSL drift differences", 2010.
GCOS: Systematic Observation Requirements for Satellite-Based Data Products for Climate (2011 Update) – Supplemental details to the satellite-based component of the "Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update)", GCOS-154, WMO, December 2011.
Henry, O., Ablain, M., Meyssignac, B., Cazenave, A., Masters, D., Nerem, S., and Garric, G.: Effect of the processing methodology on satellite altimetry-based global mean sea level rise over the Jason-1 operating period, J. Geodesy, 88, 351–361, https://doi.org/10.1007/s00190-013-0687-3, 2014.
Hernandez, F., Ferry, N., Balmaseda, M., Chang, Y.-S., Chepurin, G., Fujii, Y., Guinehut, S., Kohl, A., Martin, M., Meyssignac, B., Parent, L., Peterson, K. A., Storto, A., Toyoda, T., Valdivieso, M., Vernieres, G., Wang, O., Wang, X., Xue, Y., and Yin, Y.: Sea level intercomparison: Inital resutls, Clivar Exchanges, 64, 18–21, 2014.
Kölh, A.: Evaluation of the GECCO2 Ocean Synthesis: Transports of Volume, Heat and Freshwater in the Atlantic, Q. J. Roy. Meteor. Soc., https://doi.org/10.1002/qj.2347, 2014.
Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M.: CryoSat-2 estimates of Arctic sea ice thickness and volume, Geophys. Res. Lett., 40, 732–737, https://doi.org/10.1002/grl.50193, 2013.
Legeais, J.-F., Ablain, M., and Thao, S.: Evaluation of wet troposphere path delays from atmospheric reanalyses and radiometers and their impact on the altimeter sea level, Ocean Sci., 10, 893–905, https://doi.org/10.5194/os-10-893-2014, 2014.
Le Traon, P. Y., Faugère, Y., Hernandez, F., Dorandeu, J., Mertz, F., and Ablain, M.: Can we merge GEOSAT Follow-On with TOPEX/POSEIDON and ERS-2 for an improved description of the ocean circulation?, J. Atmos. Ocean. Technol., 20, 889–895, 2003.
Morrison, H., Zuidema, P., Ackerman, A. S., Avramov, A., de Boer, G., Fan, J., Fridlind, A. M., Hashino, T., Harrington, J. Y., Luo, Y., Ovchinnikov, M., and Shipway, B.: Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE, J. Adv. Model. Earth Syst., 3, M06003, https://doi.org/10.1029/2011MS000066, 2011.
Ollivier, A., Faugère, Y., Picot, N., Ablain, M., Femenias, P., and Benveniste, J.: Envisat Ocean Altimeter Becoming Relevant for Mean Sea Level Trend Studies, Mar. Geodesy, 35, 118–136, 2012.
Philipps, S. and Roinard, H.: Jason-2 reprocessing impact on ocean data (cycles 001 to 145), available at: http://www.aviso.altimetry.fr/fileadmin/documents/calval/validation_report/J2/Jason2ReprocessingReport-v2.1.pdf (last access: 20 June 2014), 2013.
Pujol, M. I., Faugère, Y., Ablain, M., Larnicol, G., Picot, N., and Bronner, E.: 20 years of High Resolution DUACS/Aviso Products Reprocessed, Mar. Geodesy, in preparation, 2014.
Ray, R. D.: Precise comparisons of bottom-pressure and altimetric ocean tides, J. Geophys. Res.-Ocean., 118, 4570–4584, https://doi.org/10.1002/jgrc.20336, 2013.
Roca, M. and Thibaut, P.: ISARD_CLS_SALP_PTR_TN_042, Issue 1.a, 19 November 2009, "PTR study(3) -SALP Project- ", 2009.
Rudenko, S., Otten, M., Visser, P., Scharroo, R., Schöne, T., and Esselborn, S.: New improved orbit solutions for the ERS-1 and ERS-2 satellites, Adv. Space Res., 49, 1229–1244, 2012.
Rudenko, S., Dettmering, D., Esselborn, S., Schöne, T., Förste, Ch., Lemoine, J.-M., Ablain, M., Alexandre, D., and Neumayer, K.-H.: Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends, Adv. Space Res., 54, 92–118, https://doi.org/10.1016/j.asr.2014.03.010, 2014.
Scharroo, R. and Smith, W. H. F.: A global positioning system based climatology for the total electron content in the ionosphere, J. Geophys. Res., 115, A10318, https://doi.org/10.1029/2009JA014719, 2010.
SL_cci Product Validation Plan (PVP): available at: http://www.esa-sealevel-cci.org/webfm_send/101, last access: 20 June 2014.
SL_cci Product Specification Document (PSD): available at: http://www.esa-sealevel-cci.org/webfm_send/229, last access: 20 June 2014.
SL_cci Product User Guide (PUG): available at: http://www.esa-sealevel-cci.org/webfm_send/212, last access: 20 June 2014.
SL_cci User Requirement Document (URD): available at: http://www.esa-sealevel-cci.org/webfm_send/235, last access: 20 June 2014.
SL_cci Product Validation Internal Report (PVIR): available at: http://www.esa-sealevel-cci.org/webfm_send/234, last access: 20 June 2014.
SL_cci Validation Report: Executive Summary available at: http://www.esa-sealevel-cci.org/webfm_send/187, last access: 20 June 2014.
SL_cci Validation Report: Instrumental Corrections, available at: http://www.esa-sealevel-cci.org/webfm_send/175, last access: 20 June 2014.
SL_cci Validation Report: Orbit Calculation, available at: http://www.esa-sealevel-cci.org/webfm_send/176, last access: 20 June 2014.
SL_cci Validation Report: Wet Troposphere Correction, available at: http://www.esa-sealevel-cci.org/webfm_send/177, last access: 20 June 2014.
SL_cci Validation Report: Atmospherical corrections (Dynamical, Atmospherical correction, Inverse Barometer, Dry Troposphere) available at: http://www.esa-sealevel-cci.org/webfm_send/181, last access: 20 June 2014.
SL_cci Validation Report: Ionosphere correction, available at: http://www.esa-sealevel-cci.org/webfm_send/178, last access: 20 June 2014.
SL_cci Validation Report: Sea State Bias correction, available at: http://www.esa-sealevel-cci.org/webfm_send/179, last access: 20 June 2014.
SL_cci Validation Report: Ocean tides correction, available at: http://www.esa-sealevel-cci.org/webfm_send/180, last access: 20 June 2014.
SL_cci Validation Report: Regional SSH bias corrections between altimetry missions, available at: http://www.esa-sealevel-cci.org/webfm_send/182, last access: 20 June 2014.
SL_cci Validation Report: Impact of altimeter satellite constellation, available at: http://www.esa-sealevel-cci.org/webfm_send/183, last access: 20 June 2014.
SL_cci Validation Report: Mapping Methods, available at: http://www.esa-sealevel-cci.org/webfm_send/184, last access: 20 June 2014.
SL_cci Validation Report: High latitudes areas, available at: http://www.esa-sealevel-cci.org/webfm_send/185, last access: 20 June 2014.
SL_cci Validation Report: Coastal areas, available at: http://www.esa-sealevel-cci.org/webfm_send/186, last access: 20 June 2014.
Thao, S., Eymard, L., Obligis, E., and Picard, B.: Trend and Variability of the Atmospheric Water Vapor: a Mean Sea Level issue, J. Atmos. Ocean. Technol., 31 1881–1901, 2014.
Thibaut, P.: PTR position and drift analysis – Theoretical Approach", RA-2 Quality Working Group presentation, Reading, UK, May 2010.
Valladeau, G., Legeais, J. F., Ablain, M., Guinehut, S., and Picot, N.: Comparing Altimetry with Tide Gauges and Argo Profiling Floats for Data Quality Assessment and Mean Sea Level Studies, Mar. Geodesy, 35, 42–60, 2012.
von Schuckmann, K. and Le Traon, P.-Y.: How well can we derive Global Ocean Indicators from Argo data?, Ocean Sci., 7, 783–791, https://doi.org/10.5194/os-7-783-2011, 2011.
Short summary
This paper presents various respective data improvements achieved within the European Space Agency (ESA) Climate Change Initiative (ESA CCI) project on sea level during its first phase (2010-2013), using multi-mission satellite altimetry data over the 1993-2010 time span.
This paper presents various respective data improvements achieved within the European Space...