Damveld, J. H., van der Reijden, K. J., Cheng, C., Koop, L., Haaksma, L. R., Walsh, C. A., Soetaert, K., Borsje, B. W., Govers, L. L., Roos, P. C., Olff, H., and Hulscher, S. J.: Video Transects Reveal That Tidal Sand Waves Affect the Spatial Distribution of Benthic Organisms and Sand Ripples, Geophys. Res. Lett., 45, 837–11,
https://doi.org/10.1029/2018GL079858, 2018.
a
Dannheim, J., Bergström, L., Birchenough, S. N., Brzana, R., Boon, A. R., Coolen, J. W., Dauvin, J. C., De Mesel, I., Derweduwen, J., Gill, A. B., Hutchison, Z. L., Jackson, A. C., Janas, U., Martin, G., Raoux, A., Reubens, J., Rostin, L., Vanaverbeke, J., Wilding, T. A., Wilhelmsson, D., and Degraer, S.: Benthic effects of offshore renewables: identification of knowledge gaps and urgently needed research, ICES J. Mar. Sci., 77, 1092–1108,
https://doi.org/10.1093/ICESJMS/FSZ018, 2020.
a
Dewey, R. and Stringer, S.: Reynolds Stresses and Turbulent Kinetic Energy Estimates from Various ADCP Beam Configurations: Theory, unpublished manuscript, 2007. a
Dorrell, R. M., Lloyd, C. J., Lincoln, B. J., Rippeth, T. P., Taylor, J. R., Caulfield, C. c. P., Sharples, J., Polton, J. A., Scannell, B. D., Greaves, D. M., Hall, R. A., and Simpson, J. H.: Anthropogenic Mixing in Seasonally Stratified Shelf Seas by Offshore Wind Farm Infrastructure, Front. Mar. Sci., 9, 830927,
https://doi.org/10.3389/FMARS.2022.830927, 2022.
a,
b
Eames, I., Jonsson, C., and Johnson, P. B.: The growth of a cylinder wake in turbulent flow, J. Turbul., 12, 1–16,
https://doi.org/10.1080/14685248.2011.619985, 2011.
a,
b
Equinor: Hywind Scotland,
https://www.equinor.com/energy/hywind-scotland (last access: 3 July 2024), 2023. a
European Commission, Directorate-General for Energy: Communication from the commission to the European parliament, the council, the european economic and social committee and the committee of the regions, delivering on the EU offshore renewable energy ambitions, Tech. Rep. COM(2023) 668, Document 52023DC0688, European Commission, Brussels,
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2020:741:FIN&qid=1605792629666 (last access: 3 July 2024), 2023. a
Gates, A. R., Horton, T., Serpell-Stevens, A., Chandler, C., Grange, L. J., Robert, K., Bevan, A., and Jones, D. O.: Ecological Role of an Offshore Industry Artificial Structure, Front. Mar. Sci., 6, 472903,
https://doi.org/10.3389/fmars.2019.00675, 2019.
a
Isaksson, N., Scott, B. E., Hunt, G. L., Benninghaus, E., Declerck, M., Gormley, K., Harris, C., Sjöstrand, S., Trifonova, N. I., Waggitt, J. J., Wihsgott, J. U., Williams, C., Zampollo, A., and Williamson, B. J.: A paradigm for understanding whole ecosystem effects of offshore wind farms in shelf seas, ICES J. Mar. Sci., fsae044,
https://doi.org/10.1093/ICESJMS/FSAD194, 2023.
a
McCarron, C. J., Van Landeghem, K. J., Baas, J. H., Amoudry, L. O., and Malarkey, J.: The hiding-exposure effect revisited: A method to calculate the mobility of bimodal sediment mixtures, Marine Geology, 410, 22–31,
https://doi.org/10.1016/J.MARGEO.2018.12.001, 2019.
a
Pearson, B. C., Grant, A. L., Polton, J. A., and Belcher, S. E.: Langmuir Turbulence and Surface Heating in the Ocean Surface Boundary Layer, J. Phys. Oceanogr., 45, 2897–2911,
https://doi.org/10.1175/JPO-D-15-0018.1, 2015.
a
Rennau, H., Schimmels, S., and Burchard, H.: On the effect of structure-induced resistance and mixing on inflows into the Baltic Sea: A numerical model study, Coast. Eng., 60, 53–68,
https://doi.org/10.1016/J.COASTALENG.2011.08.002, 2012.
a
Rippeth, T. P., Fisher, N. R., and Simpson, J. H.: The Cycle of Turbulent Dissipation in the Presence of Tidal Straining, J. Phys. Oceanogr., 31, 2458–2471, 2001.
a,
b
Rippeth, T. P., Williams, E., and Simpson, J. H.: Reynolds Stress and Turbulent Energy Production in a Tidal Channel, J. Phys. Oceanogr., 32, 1242–1251,
https://doi.org/10.1175/1520-0485(2002)032<1242:RSATEP>2.0.CO;2, 2002.
a,
b
Rippeth, T. P., Simpson, J. H., Williams, E., and Inall, M. E.: Measurement of the Rates of Production and Dissipation of Turbulent Kinetic Energy in an Energetic Tidal Flow: Red Wharf Bay Revisited, J. Phys. Oceanogr., 33, 1889–1901, 2003.
a,
b,
c
Rodríguez, I., Lehmkuhl, O., Chiva, J., Borrell, R., and Oliva, A.: On the flow past a circular cylinder from critical to super-critical Reynolds numbers: Wake topology and vortex shedding, Int. J. Heat Fluid Fl., 55, 91–103,
https://doi.org/10.1016/J.IJHEATFLUIDFLOW.2015.05.009, 2015.
a
Scannell, B. D., Rippeth, T. P., Simpson, J. H., Polton, J. A., and Hopkins, J. E.: Correcting surface wave bias in structure function estimates of turbulent kinetic energy dissipation rate, J. Atmos. Ocean. Technol., 34, 2257–2273,
https://doi.org/10.1175/JTECH-D-17-0059.1, 2017.
a,
b
Schultze, L. K., Merckelbach, L. M., Horstmann, J., Raasch, S., and Carpenter, J. R.: Increased Mixing and Turbulence in the Wake of Offshore Wind Farm Foundations, J. Geophys. Res.-Ocean., 125, e2019JC015858,
https://doi.org/10.1029/2019JC015858, 2020.
a,
b,
c
Scott, R., Martínez-Tossas, L., Bossuyt, J., Hamilton, N., and Cal, R. B.: Evolution of eddy viscosity in the wake of a wind turbine, Wind Energ. Sci, 8, 449–463,
https://doi.org/10.5194/wes-8-449-2023, 2023.
a,
b
Sharples, J., Moore, C. M., Rippeth, T. P., Holligan, P. M., Hydes, D. J., Fisher, N. R., and Simpson, J. H.: Phytoplankton distribution and survival in the thermocline, Limnol.Oceanogr., 46, 486–496,
https://doi.org/10.4319/LO.2001.46.3.0486, 2001.
a
Simpson, J. H., Burchard, H., Fisher, N. R., and Rippeth, T. P.: The semi-diurnal cycle of dissipation in a ROFI: model-measurement comparisons, Cont. Shelf Res., 22, 1615–1628, 2002. a
Soulsby, R. L. and Clarke, S.: Bed Shear-stresses Under Combined Waves and Currents on Smooth and Rough Beds, Defra Project FD1905 (EstProc), TR137, 1–52, 2005. a
TCE: Offshore Wind Report, Tech. rep., The Crown Estate, United Kingdom,
https://www.thecrownestate.co.uk/media/4378/final-published_11720_owoperationalreport_2022_tp_250423.pdf (last access: 3 July 2024), 2022. a
Trifonova, N. I. and Scott, B. E.: Ecosystem indicators: predicting population responses to combined climate and anthropogenic changes in shallow seas, Ecography, 2024, e06925,
https://doi.org/10.1111/ECOG.06925, 2023.
a
UKHO: Contains United Kingdom Hydrographic Office data Crown copyright and database right, Tech. Rep., United Kingdom Hydrographic Office, United Kingdom,
https://seabed.admiralty.co.uk/ (last access: 3 July 2024), 2024. a
Unsworth, C. A., Austin, M. J., Van Landeghem, K. J., Couldrey, A. J., Whitehouse, R. J., Lincoln, B., Doole, S., and Worrall, P.: Field measurements of cable self-burial in a sandy marine environment, Coast. Eng., 184, 104309,
https://doi.org/10.1016/J.COASTALENG.2023.104309, 2023.
a,
b,
c
van der Kooij, J., Scott, B. E., and Mackinson, S.: The effects of environmental factors on daytime sandeel distribution and abundance on the Dogger Bank, J. Sea Res., 60, 201–209,
https://doi.org/10.1016/J.SEARES.2008.07.003, 2008.
a
van Rijn, L.: Mathematical modelling of morphological processes in the case of suspended sediment transport, Ph.D. thesis, Delft Technical University, Delft Hydraulics, P.O. Box 152, Emmeloord, the Netherlands, 1987. a
Wiles, P. J., Rippeth, T. P., Simpson, J. H., and Hendricks, P. J.: A novel technique for measuring the rate of turbulent dissipation in the marine environment, Geophys. Res. Lett., 33, L21608,
https://doi.org/10.1029/2006GL027050, 2006.
a,
b
Williamson, C. H.: Vortex dynamics in the cylinder wake, Annu. Rev. Fluid Mech., 28, 477–539, 1996.
a,
b