Articles | Volume 21, issue 2
https://doi.org/10.5194/os-21-807-2025
https://doi.org/10.5194/os-21-807-2025
Research article
 | 
17 Apr 2025
Research article |  | 17 Apr 2025

Coupled estimation of internal tides and turbulent motions via statistical modal decomposition

Igor Maingonnat, Gilles Tissot, and Noé Lahaye

Related subject area

Approach: Numerical Models | Properties and processes: Internal waves, turbulence and mixing
Non-negligible impact of Stokes drift and wave-driven Eulerian currents on simulated surface particle dispersal in the Mediterranean Sea
Siren Rühs, Ton van den Bremer, Emanuela Clementi, Michael C. Denes, Aimie Moulin, and Erik van Sebille
Ocean Sci., 21, 217–240, https://doi.org/10.5194/os-21-217-2025,https://doi.org/10.5194/os-21-217-2025, 2025
Short summary
Process-based modelling of nonharmonic internal tides using adjoint, statistical, and stochastic approaches. Part I: statistical model and analysis of observational data
Kenji Shimizu
EGUsphere, https://doi.org/10.5194/egusphere-2024-4192,https://doi.org/10.5194/egusphere-2024-4192, 2025
Short summary
Seasonal variability in the semidiurnal internal tide – a comparison between sea surface height and energetics
Harpreet Kaur, Maarten C. Buijsman, Zhongxiang Zhao, and Jay F. Shriver
Ocean Sci., 20, 1187–1208, https://doi.org/10.5194/os-20-1187-2024,https://doi.org/10.5194/os-20-1187-2024, 2024
Short summary
Internal and forced ocean variability in the Mediterranean Sea
Roberta Benincasa, Giovanni Liguori, Nadia Pinardi, and Hans von Storch
Ocean Sci., 20, 1003–1012, https://doi.org/10.5194/os-20-1003-2024,https://doi.org/10.5194/os-20-1003-2024, 2024
Short summary
Numerical investigation of interaction between anticyclonic eddy and semidiurnal internal tide in the northeastern South China Sea
Liming Fan, Hui Sun, Qingxuan Yang, and Jianing Li
Ocean Sci., 20, 241–264, https://doi.org/10.5194/os-20-241-2024,https://doi.org/10.5194/os-20-241-2024, 2024
Short summary

Cited articles

Berkooz, G., Holmes, P., and Lumley, J.: The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows, Annu. Rev. Fluid Mech., 25, 539–575, https://doi.org/10.1146/annurev.fl.25.010193.002543, 2003. a, b
Boree, J.: Extended proper orthogonal decomposition: A tool to analyse correlated events in turbulent flows, Exp. Fluids, 35, 188–192, https://doi.org/10.1007/s00348-003-0656-3, 2003. a, b
Brunet, G. and Vautard, R.: Empirical normal modes versus empirical orthogonal functions for statistical prediction, J. Atmos. Sci., 53, 3468–3489, https://doi.org/10.1175/1520-0469(1996)053<3468:ENMVEO>2.0.CO;2, 1996. a
Bühler, O.: Waves and Mean Flows, in: 2nd Edn., Cambridge Monographs on Mechanics, Cambridge University Press, https://doi.org/10.1017/CBO9781107478701, 2014. a, b
Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D., and Brown, B. P.: Dedalus: A flexible framework for numerical simulations with spectral methods, Physical Review Research, 2, 023068, https://doi.org/10.1103/PhysRevResearch.2.023068, 2020. a
Download
Short summary

The entanglement of waves and currents in observational data complicates their respective estimation. We propose a data-driven method that provides a reduced set of modes for waves and currents. These sets of modes are correlated with each other, enabling us to perform a coupled estimation of these two physical processes. This methodology is capable of producing estimates from an instantaneous observation of sea surface height and for a strong jet signal.

Share