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Abstract. We present a data-driven modal-decomposition
method that extracts the part of an incoherent internal tidal
wave that correlates with the proper orthogonal decomposi-
tion (POD) of a turbulent mesoscale flow. This method ex-
ploits the a priori knowledge that the incoherent internal tide
arises from interactions between an incident wave and the
turbulent flow and also exploits the corresponding statistical
correlation between the two types of motions. The method
is presented and tested in an idealised framework based on
the rotating-shallow-water model, where we provide a phys-
ical interpretation for the decomposition method based on
theoretical considerations. Using idealised simulations with
a plane wave propagating through a zonal turbulent jet, we
first propose the use of the modal-decomposition method as
a data analysis technique to understand how the wave is scat-
tered by the flow. In a second step, we construct an estimation
algorithm capable of separating the entangled contributions
of the wave and mesoscale motions from a single sea surface
height snapshot. This algorithm, which consists of estimat-
ing the POD coefficients of the turbulent flow shared by the
wave and jet modes, is particularly suitable for configurations
where the jet contribution to the sea surface height (SSH) is
larger than that of the wave.

1 Introduction

Internal tides (ITs) are internal waves generated by the in-
teraction of the barotropic tide with the irregular topogra-
phy, such as ridges or continental slopes, that propagate
mainly at tidal frequencies. They are ubiquitous in the ocean

and play a crucial role in vertical mixing and energy trans-
port, especially in the deep ocean (Munk and Wunsch, 1998;
Vic et al., 2019). Propagating over large distances, they en-
counter regions with energetic mesoscale turbulence and lose
their fixed-phase relationship with the astronomical forcing
through non-linear interactions with this turbulence. The re-
sulting incoherent internal-tide field (often called a “non-
phase-locked” or “non-stationary” internal tide in the liter-
ature), which is highly unpredictable, complicates, for ex-
ample, our ability to disentangle internal tides and low-
frequency turbulent signals from satellite data (Richman
et al., 2012). Due to their large coverage and overall impact
on the ocean (Zaron, 2017; Nelson et al., 2019), there is a
need to understand how incoherent waves propagate, which
includes developing algorithms for estimating and separating
the surface signature of internal tides and the mesoscale flow
from observational data.

In the physical oceanography community, various stud-
ies have examined the impact of a low-frequency turbulent
flow on internal waves using various methodological ap-
proaches. Ponte and Klein (2015) demonstrated, using ide-
alised numerical experiments featuring a plane wave prop-
agating through a zonal baroclinic jet, that the increase in
the energy of the turbulent jet enhances the loss of coher-
ence in the internal-tide field. Savva and Vanneste (2018)
described, based on kinetic transport theory, how random
quasi-geostrophic and barotropic flows impact energy ex-
changes in a scattered plane wave. Dunphy et al. (2017),
Kelly et al. (2016), and Rainville and Pinkel (2006), among
others, studied the propagation of ITs using reduced-order
models derived from a Galerkin projection onto a basis of
vertical modes. Ward and Dewar (2010) applied a multi-
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scale analysis to the rotating-shallow-water model (RSW)
to study the scattering of inertia–gravity waves (IGWs) by
the low-frequency flow. The authors showed that waves
that resonantly interact with the jet transfer their energy to
waves of equal wavelength and that this transfer is inten-
sified for short-wavelength and strongly turbulent flows. A
consequence of the non-linear interactions between the ITs
and the low-frequency flows is a spectral broadening, of-
ten referred to as “cusps” (Colosi and Munk, 2006; Zaron,
2022), which is a direct translation of the loss of coherence
in the signal. Indeed, the quadratic non-linear term becomes,
in time–frequency space, a convolution operator between the
wave and the mesoscale fluctuations. The spectrum of co-
herent ITs, which corresponds to a finite Dirac sum, is thus
broadened by the mesoscale flow, giving rise to an incoherent
broadband spectrum. Spectral broadening is a general char-
acteristic of scattered-wave fields, widely studied in other
disciplines (e.g. in aero-acoustics; Campos, 1978; Clair and
Gabard, 2016).

Recently, several methodological approaches have been
developed to address the issue of the separation of ITs and
balanced motions (BMs), motivated, in particular, by the
launch of the SWOT mission (Fu et al., 2024). Due to the
presence of an incoherent component, similar wavelengths,
and a large time lag between two swaths, simple filtering
or harmonic decomposition strategies are often ineffective.
Some methods are based on physical approaches, such as in
the study of Ponte et al. (2017), who assumed a weak sig-
nature of ITs on surface density fields and considered poten-
tial vorticity dynamics to identify the BMs from the observa-
tions. In the realm of data assimilation methods, Le Guillou
et al. (2021) developed a coupled iterative approach based on
a 4D-Var algorithm for ITs and back-and-forth nudging for
BMs. In the range of data-driven methods, there has been a
recent focus on deep-learning approaches to disentangle low-
and high-frequency signals (Wang et al., 2022; Gao et al.,
2024). Gao et al. (2024) address, in particular, the difficulty
caused by the long revisit time of altimeters by developing a
method based on single sea surface height (SSH) snapshots.
In closer connection to the methodology that will be pre-
sented in this paper, Egbert and Erofeeva (2021) and Tchili-
bou et al. (2024) proposed methods based on a proper or-
thogonal decomposition (POD) of the IT sea surface height
(SSH) field, computed based on a HYCOM-based realistic
simulation in the case of the former and based on a filtered
daily SWOT swath in the case of the latter.

In this paper, we introduce a data-driven modal decom-
position of a wave field scattered by a turbulent mesoscale
jet. We focus on methods based on the POD (Berkooz et al.,
2003; Lumley, 1967). The POD (often called empirical or-
thogonal functions – EOFs – in the geophysical fluid dynam-
ics community) is a modal-decomposition method designed
to extract recurrent phenomena from flow data (Long et al.,
2021). We propose two different methods, namely the broad-
band POD (BBPOD) and an algorithm based on the extended

POD (EPOD; Boree, 2003). Both methods rely on the phys-
ical consideration that the scattering of the wave field, cor-
responding to the time evolution of its complex amplitude,
is driven by the mesoscale dynamics and therefore occurs
at a similar timescale (Bühler, 2014). With this considera-
tion in mind, the BBPOD algorithm corresponds to a POD of
the complex demodulated variables and extracts the most en-
ergetic modes of variability of a high-frequency component
associated with a broadband spectrum. It shares similarities
with the spectral POD algorithm (Welch, 1967; Towne et al.,
2018), as will be discussed further in the paper. The second
method applies the extended POD method to the complex
wave amplitude in order to extract spatial modes that are cor-
related with the POD modes of the jet, thereby providing a
decomposition of the flow that takes into account the cou-
pling between the mesoscale dynamics and the wave.

Then, we take advantage of this EPOD-based decom-
position method to build an algorithm for estimating the
mesoscale dynamics and wave fields – including velocities –
from a single SSH observation. In particular, we address con-
figurations where the jet component dominates the flow, in
which case the weak internal-tide signal can still be estimated
by the coupling induced by their correlation. The algorithm
is tested on idealised simulations of a one-layer RSW model
representing such a configuration.

The structure of this paper is as follows. We begin in
Sect. 2 by describing the RSW model on which this study
is based. Derivation of the equations for the ansatz of the
complex amplitudes is then given in order to complement
the data-driven methods with a physical interpretation. In
Sect. 3, the BBPOD- and EPOD-based methods are first pre-
sented (Sects. 3.1 and 3.2) before a description of the algo-
rithm to disentangle observations (Sect. 3.3). Finally, Sect. 4
gathers the numerical results computed from five idealised
simulations, including a data analysis of the variability of the
wave field (Sect. 4.2), and results from the estimates of the
mesoscale jet and the internal tide are given in Sect. 4.3.

2 Non-linear interactions between mesoscale
turbulence and high-frequency waves

We present in this section the (dimensionless) one-layer
rotating-shallow-water model (RSW), which is an adequate
idealistic model to analyse non-linear interactions between
high-frequency waves and a low-frequency turbulent flow
(e.g. Vallis, 2006; Ward and Dewar, 2010). A set of asymp-
totic equations is then derived for the complex wave ampli-
tude and the evolution of the incoherent part. We mention
that, since internal tides interacting with mesoscale turbu-
lence are the main target of this study, the waves will be often
referred to as internal tides (ITs), and the low-frequency tur-
bulent flow will be referred to as mesoscale flow throughout
the paper.
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2.1 One-layer rotating-shallow-water model

For this specific analysis, the RSW equations are non-
dimensionalised as follows:

t] = f−1
0 t;(x],y])= (lx, ly);v] = (u],v])= (Uu,Uv),

h] =Ho
Ro

Bu
h,

where the superscript .] refers to the dimensional variables.
The parameter f0 is the Coriolis frequency; v is the hori-
zontal velocity; and h is the SSH, with a layer thickness at
rest of Ho. The dimensionless parameters are the Rossby
number Ro = U/f0l and the Burger number Bu = R

2
d/l

2,

where Rd =
√
gH0
f0

is the Rossby deformation radius. The
characteristic timescale is taken here as the inertial time
T = f−1

0 , which is well suited for studying IT propagation
as it is the lower-frequency bound of the internal-wave spec-
trum. The reference length scale l and the reference cur-
rent U are chosen to be of the typical jet thickness and ve-
locity, respectively. The Coriolis frequency follows the beta-
plane approximation, which writes (in dimensionless form)
f (y)= 1+βy, where β = Rd/(RT

√
Bu), with RT being the

Earth radius. Including the β term is necessary to maintain
a zonal jet structure (Vallis, 2006). Finally, we consider a
monochromatic wave forcing term f q,ω = (fh,ω,f v,ω)

T
=

<(f̃ q,ω(x,y)e
iωt ) (which will be specified in Sect. 4.1).

Introducing this non-dimensionalisation into the RSW
model leads to the following set of equations, defined based
on R+×�, where �⊂ R2 is the bounded spatial domain:

∂th+Budiv(v)=−Ro[(v · ∇)h+hdiv(v)] + fh,ω, (1a)

∂tv+ (1+βy)v⊥+∇h=−Ro(v · ∇)v+f v,ω, (1b)

where v⊥ = (−v,u)T.

2.2 Complex wave amplitude ansatz

The total wave field qω = (uω,vω,hω)
T is expressed as fol-

lows:

qω(t)=<(q̃ω(t)e
iωt ), (2)

where q̃ω(t) is the complex wave amplitude vector, and
ω is the dominant wave frequency (the same as in the forc-
ing term). It is assumed that the complex wave amplitude
is slowly varying (in time), which reflects that the wave is
scattered by the low-frequency mesoscale flow; i.e. we as-
sume scale separation (in time) between the mesoscale flow
and the ITs (see Sect. 2.3). This ansatz is borrowed from
high-frequency asymptotic methods, such as ray tracing or
WKB methods (see Bühler, 2014), and also corresponds to
the dominant term of a scattered wave in standard multiscale
analysis (e.g. in the framework of the RSW model; Ward and
Dewar, 2010; Reznik et al., 2001).

We further decompose the wave field into a coherent and
incoherent component. The coherent part is obtained by ap-
plying a time average 〈·〉 = limT→∞

1
T

∫ T
0 · dt to the complex

wave amplitude,

qcoh,ω(t)=<
(〈
q̃ω
〉
eiωt

)
, (3)

while the incoherent part is the residual:

q incoh,ω(t)= qω(t)− qcoh,ω(t)=<
(
q̃ ′ω(t)e

iωt
)
, (4)

where q̃ ′ω(t)= q̃ω(t)−〈q̃ω〉 is the incoherent complex am-
plitude. From the definition (Eq. 3), we arrive at the fact that
the coherent wave is phase-locked to a monochromatic forc-
ing with frequency ω.

The timescale separation between the mesoscale and the
wave allows for the extraction of the complex wave ampli-
tude from the data q = (u,v,h)T by means of a complex de-
modulation technique:

q̃ω = 2qe−iωt , (5)

where · is a low-pass filter (in time) selecting the broadband
spectrum of the wave.

2.3 Equations for the complex wave amplitude

From the RSW model (Eq. 1), we derive idealised equations
for the coherent and incoherent complex amplitudes in or-
der to provide a theoretical framework for the interpretation
and justification of the extended POD method presented in
Sect. 3.2. However, a reader more interested in the estima-
tion algorithm could skip this section and go directly to the
description of the extended POD technique (Sect. 3.2).

2.3.1 Mesoscale–wave separation

In order to simplify forthcoming developments, we assume
that the wave field is of small amplitude. This hypothesis
allows for the separation of the equations into one for the
mesoscale flow and one for the waves (a possible relaxation
of this hypothesis will be discussed below). The state vec-
tor is decomposed as q = q jet+ εqω, where q jet is the slow
mesoscale component, and ε is the small parameter of the
perturbation expansion. Likewise, the forcing term is also of
the order O(ε).

At the leading order, one obtains the following equation
for the mesoscale flow (which is not the focus of this study):

∂thjet+Budiv(vjet)=−Ro[(vjet · ∇)hjet+hjetdiv(vjet)], (6a)

∂tvjet+ (1+βy)v⊥jet+∇hjet =−Ro(vjet · ∇)vjet. (6b)

The equation for the wave is obtained at order ε1:
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∂thω+Budiv(vω)=−Ro[(vjet · ∇)hω+ (vω · ∇)hjet

+hjetdiv(vω)+hωdiv(vjet)] + fh,ω, (7a)

∂tvω+ (1+βy)v⊥ω +∇hω =−Ro[(vjet · ∇)vω

+ (vω · ∇)vjet] +f v,ω. (7b)

For conciseness, we rewrite the above system of equations
in terms of linear and bilinear operators:

∂tqω+L(qω)=−RoB(q jet,qω)+f q,ω, (8)

with,

L(qω)=

(
Budiv(vω)

(1+βy)v⊥ω +∇hω

)
,

B(q jet,qω)=

 (vjet · ∇)hω+ (vω · ∇)hjet
+hjetdiv(vω)+hωdiv(vjet)

(vjet · ∇)vω+ (vω · ∇)vjet

 .
L is a linear operator, and B is a symmetric bilinear map

associated with the non-linear interactions with the jet. Fi-
nally, we derive an equation for the wave amplitude by inject-
ing the ansatz Eq. (2) into Eq. (8) and then performing a com-
plex demodulation operation with Eq. (5), with a filter elimi-
nating dynamics at frequencies higher than typical mesoscale
frequencies (e.g. frequencies at 2ω, resulting from complex
demodulation). This reiterates the hypothesis (Sect. 2.2) that
the frequency ω of ITs is much higher than the frequency of
mesoscale flows. We thus obtain the following:

∂t q̃ω+ iωq̃ω+L
(
q̃ω
)
=−RoB

(
q jet, q̃ω

)
+ f̃ q,ω. (9)

2.3.2 Equations for the coherent and incoherent waves

A Reynolds decomposition of the jet component into a mean
and a fluctuating part q jet = 〈q jet〉+q

′

jet and of the wave into
its coherent and incoherent parts q̃ω = 〈q̃ω〉+ q

′
ω gives the

following equation:

∂t q̃
′
ω+ iω

(〈
q̃ω
〉
+ q̃ ′ω

)
+L

(〈
q̃ω
〉
+ q̃ ′ω

)
+RoB

(
〈q jet〉,

〈
q̃ω
〉
+ q̃ ′ω

)
=−RoB

(
q ′jet,

〈
q̃ω
〉
+ q̃ ′ω

)
+ f̃ q,ω. (10)

Taking the time average of Eq. (10) leads to an equation
for the coherent-wave amplitude:

iω
〈
q̃ω
〉
+L

(〈
q̃ω
〉)
+RoB

(
〈q jet〉, 〈q̃ω〉

)
,

=−Ro

〈
B
(
q ′jet, q̃

′
ω

)〉
+ f̃ q,ω (11a)〈

q̃ω
〉
=R

[
f̃ q,ω−Ro

〈
B
(
q ′jet, q̃

′
ω

)〉]
, (11b)

where R = [iωI +L+B(〈q jet〉, ·)]
−1 is the resolvent opera-

tor, which allows us to write the equation in a more compact
form. The resolvent operator can be viewed as the integral

operator associated with Green’s function (Cavalieri et al.,
2019) and is well defined if −iω is not an eigenvalue of
L+B(〈q jet〉, ·). This equation means that the coherent-wave
field is the sum of the linear response to the forcing f̃ q,ω and
of the averaged interaction between the jet fluctuations and
the incoherent-wave field.

Finally, subtracting Eq. (11a) from Eq. (10) leads to the
equation for the incoherent-wave amplitude:

∂t q̃
′
ω+ iωq̃

′
ω+L

(
q̃ ′ω
)
+RoB

(
〈q jet〉, q̃

′
ω

)
=−RoB

(
q ′jet,

〈
q̃ω
〉)
−RoB

(
q ′jet, q̃

′
ω

)
+Ro

〈
B
(
q ′jet, q̃

′
ω

)〉
(12a)

R∂t q̃
′
ω(t)+ q̃

′
ω(t)

=RoR
[〈
B
(
q ′jet(t), q̃

′
ω(t)

)〉
−B

(
q ′jet(t), q̃

′
ω(t)

)]
︸ ︷︷ ︸

multiple scattering

,

−RoRB
(
q ′jet(t),

〈
q̃ω
〉)︸ ︷︷ ︸

single scattering

. (12b)

In this equation, the non-linear interactions are decom-
posed into a single-scattering term, which is the interaction
between the coherent-wave 〈q̃ω〉 and the jet fluctuations, and
a multiple-scattering term, which is the interaction with the
jet fluctuations and the incoherent-wave component.

If we now neglect the slow variations in the complex am-
plitude, assuming that they evolve over long timescales rel-
ative to the wave period 2π/ω, we obtain the following re-
duced equation:

q̃ ′ω(t)= RoR
[〈
B
(
q ′jet(t), q̃

′
ω(t)

)〉
−B

(
q ′jet(t), q̃

′
ω(t)

)]
︸ ︷︷ ︸

multiple scattering

−RoRB
(
q ′jet(t),

〈
q̃ω
〉)

︸ ︷︷ ︸
single scattering

. (13)

It can be noted that this timescale separation can also be
interpreted as assuming that the resolvent operator is approx-
imately constant over the frequency band considered for the
broadband scattered wave since the bilinear term is broad-
band but R is defined at the frequency ω. This approxima-
tion consists of considering a jet to be “frozen” with respect
to the propagation time of the wave in travelling through the
domain. This becomes limiting in large domains where the
propagation time cannot be neglected compared to the typ-
ical times of the balanced flow. This is the limit of the use
of instantaneous correlations between the jet and the wave
in the EPOD method (see Sect. 3) and is referred to as the
local-scattering hypothesis.

The above developments can be justified without assuming
a small wave amplitude, but this would be asymptotic based
on the assumption of the separation of timescales, using per-
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turbation theory (chapter 4 of Sutherland, 2010). This in-
volves introducing the change in variable q̃ω(εt) and retain-
ing the dominant term of a multiscale decomposition of the
wave. As a consequence, Reynolds stresses remain at order 0,
and generalised Reynolds stresses associated with the rise of
higher harmonics arise in Eq. (7b) at order 1. A similar sep-
aration of equations has been generalised to high-amplitude
waves by means of multiple-scale analysis, as in Dewar and
Killworth (1995) for a one-layer quasi-geostrophic model, as
in Reznik et al. (2001); Thomas (2016) for RSW models,
and as in Sect. 2 of Thomas (2023) for a primitive-equation
model in view of investigating the impact of internal waves
on the balanced flow. It can be noticed that this is not a critical
issue since we focus on the impact of the jet flow on the wave
(and not the inverse) and because the identified modes are
extracted by means of modal decomposition from the non-
linear simulation, as will be presented in Sect. 3.

3 Methods

This section details the data-driven methods, derived from
POD, that are adapted to decompose a wave scattered by a
turbulent flow. These methods are the broadband POD (BB-
POD – Sect. 3.1) and the extended POD (EPOD – Sect. 3.2).
We then propose an algorithm that uses the EPOD decompo-
sition to disentangle the mesoscale flow and the wave field
from SSH observations (Sect. 3.3).

3.1 The broadband POD method

The algorithm that we call the broadband POD (BBPOD)
consists of performing a POD on a complex demodulated
(wave) field in order to capture its most energetic modes
of variability from time series data. This algorithm enables
capturing the finite-width frequency band dynamics with a
single basis. The proposed algorithm can be related to the
spectral proper orthogonal decomposition (SPOD; Towne
et al., 2018; Schmidt and Colonius, 2020), as detailed in Ap-
pendix A. It is also similar to a POD on wavelet-transformed
(in time) variables in the sense that the complex demodu-
lation provides, like the wavelet transform, a temporal de-
scription of the signal at a given frequency ω. Such a method
has been applied in the context of ocean internal waves by
Wang et al. (2000); Pairaud and Auclair (2005), who named
the method “wavelet EOF” and performed the transformation
along either the vertical direction or the time coordinate.

We consider a set of data q containing a broadband peak
centred around a frequency ω. The algorithm to build a BB-
POD basis at frequency ω consists of the following steps.
We first compute the complex demodulation of q at the fre-
quency ω, q̃ω (Eq. 5), with the choice of an appropriate filter
to capture the broadband structure of the data. We assume
that the slowly varying wave amplitude is statistically sta-
tionary (at least at the first and second order), which is a re-

quirement for the POD technique (Towne et al., 2018). We
next compute the space auto-correlation tensor of the com-
plex amplitudes:

C(x,y,x′,y′)=
〈
q̃ω(x,y, t)⊗ q̃

∗
ω(x
′,y′, t)

〉
, (14)

where ⊗ is the dyadic product, corresponding to the matrix
of the product of the components (qiqj )i,j, and the super-
script ·∗ denotes the transpose–conjugate operation.

Before solving the POD problem, we define an inner prod-
uct that is representative of the quadratic energy E of the
model in Eq. (1), encoded with a positive definite matrix WE:

‖q‖2WE
= (q,WEq)L2(�)

=
1
2

∫
�

(u2
+ v2)dxdy+

1
2Bu

∫
�

h2dxdy. (15)

This norm corresponds to the kinetic and potential en-
ergy for a small perturbation (e.g. Vallis, 2006). The BBPOD
modes (ψn,ω)n are then defined as the solution to the Fred-
holm equation:∫
�

C(x,y,x′,y′)WE(x
′,y′)ψn,ω(x

′,y′)dx′dy′

= λn,ωψn,ω(x,y), (16)

with non-negative eigenvalues λn,ω. The BBPOD modes
form an orthonormal basis of square integrable functions (in
space) with respect to to the inner product defined in Eq. (15).
The complex demodulated field can be expressed by the fol-
lowing decomposition:

q̃ω(t,x,y)=

∞∑
n=0

an,ω(t)ψn,ω(x,y), (17)

where an,ω(t)=
∫
�
ψ∗n,w(x,y)WEq̃ω(t,x,y)dxdy is the

nth projection coefficient. The modes are also decorrelated
from each other and are optimal to express the quadratic
mean energy at frequency ω, calculated as follows:〈∥∥q̃ω∥∥2

WE

〉
=

∞∑
n=0

λn,ω. (18)

In practice, the method of snapshots (Schmidt and Colo-
nius, 2020) is considered for numerical implementation. In
the literature, POD usually applies to a zero-mean process,
and the mean is subtracted beforehand from the data. How-
ever, provided the mean field is a solution to the Fredholm
equation above (Eq. 16), the procedure remains unchanged if
we consider the total field or only the fluctuations. Since the
mean quantities are relevant both to examining the wave scat-
tering and to the estimation algorithm presented in Sect. 4.3,
we keep the total field in our application. The reader can re-
fer to the literature for more details on the theoretical back-
grounds of POD methods (Towne et al., 2018; Schmidt and
Colonius, 2020; Berkooz et al., 2003).
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3.2 The extended POD method

In this section, we present the extended POD method (Boree,
2003), which consists of extracting the component of a sig-
nal that is correlated with the POD mode of a second signal.
Here, we apply this method to the context of wave–current
interactions by expressing a decomposition of the wave cor-
related to a POD decomposition of the mesoscale flow. There
is, indeed, a natural correlation between these two compo-
nents as the variability of the wave field is driven by the
mesoscale fluctuations via the bilinear term B(q jet, q̃ω) in
Eq. (12a).

Given a POD decomposition of the mesoscale flow, the
nth extended POD mode of the wave is defined by

χn
(
q̃ω,q jet

)
=

〈
q̃ω(t,x,y)an(t)

〉
λn

, (19)

where an(t) ∈ R is the projection coefficient of the jet com-
ponent onto its POD basis at time t (for the inner product
defined in Eq. 15), and λn is the associated eigenvalue. In
order to lighten the notation in the following, we will drop
the second argument q jet and denote this by χn(q̃ω) in the
nth EPOD mode. As the POD modes of the jet are decorre-
lated from one another, the nth EPOD contribution anχn(q̃ω)
is the part of the wave correlated to the nth POD mode of
the jet, but it is completely decorrelated from the other POD
modes of the jet. It provides a decomposition of the wave
component q̃c,ω that is correlated with the N -order trunca-
tion POD decomposition of the turbulent jet:

q̃c,ω(t,x,y)=

N∑
n=0

an(t)χn
(
q̃ω
)
(x,y). (20)

This decomposition filters out all wave contributions
decorrelated from the jet based on �. These may come from
outside the domain or from other sources of variability, such
as variations in stratification (Zilberman et al., 2011). We will
show now that the EPOD modes of the wave and the POD
modes of the jet are not only correlated with each other but
also dynamically linked through the resolvent operator. They
are the response to the non-linear interactions between the
wave and the jet through scattering, thus conferring an eas-
ier interpretation of this correlation-based technique. Let us
consider Eq. (13) for the incoherent complex amplitude in a
regime where the multiple-scattering terms can be neglected,
e.g. if the interaction zone remains of limited extent (Olbers,
1981). Taking the time average of this equation multiplied by
a POD coefficient of the fluctuations a′n associated with mode
ψ ′n = (ψ

′
u,ψ

′
v,ψ

′

h)
T, one obtains the following equation:〈

a′nq̃
′
ω

〉
λ′n
=−RoRB


〈
a′nq
′

jet

〉
λ′n

,
〈
q̃ω
〉 ,

that is,

χn
(
q ′ω
)
=−RoRB

(
ψ ′n,

〈
q̃ω
〉)
. (21)

This equation indicates that the EPOD modes of the in-
coherent complex amplitude are the instantaneous response
to the interaction between the coherent wave and the POD
modes of the jet fluctuations. We point out that the extended
POD modes actually extract multiple scattering interactions
from the data, but the link with the POD modes of the tur-
bulent fluctuations is then no longer direct. This correspon-
dence has been successfully numerically tested in Main-
gonnat (2024) based on a configuration similar to the one
studied in the present paper. A dynamical link between POD
and EPOD has also been exploited in the context of wall-
bounded turbulent flows (Karban et al., 2022) and turbulent
jet flows (Karban et al., 2023).

Finally, we would like to point out that the numerical cal-
culation of jet POD modes and EPOD modes can be carried
out in a single operation. This is done by calculating a POD
using the snapshot method based on the “extended” vector

(q jet, q̃ω)
T and considering the weight matrix

(
WE 0

0 0

)
,

i.e. without considering any weight on the wave.

3.3 Estimation algorithm

We now propose a data-driven method that uses the EPOD
formalism to estimate and distinguish the mesoscale and
internal-tide fields from a snapshot of SSH observations. We
consider potentially sparse observations: Y(t)= hobs(t)=

1�obsh(t), where �obs is the observation mask.
The proposed method, described in Algorithm 1, consists

of two distinct stages, namely a training phase (1) and the
estimation per se (2). In the former, the POD modes of the
jet ψ(q jet) and the extended POD modes of the wave field
χn(q̃ω) are computed over an initial – “learning” – time
window. As in the previous sections (Sects. 3.1 and 3.2),
the training dataset is time resolved such that the separa-
tion of ITs and mesoscale flow is possible by means of time
filtering. The estimation consists of extracting the projec-
tion coefficients of the mesoscale part, which link mesoscale
modes and IT EPOD modes from observations issued from
test set snapshots. We stress that the test snapshots do not be-
long to the training window but are taken at sufficiently far-
apart time instants. Furthermore, they can be isolated in the
sense that they are not time resolved. One may notice that the
minimisation method is a simple least-squared regression, as
seen in Eq. (23), and no regularisation terms are considered
for simplicity reasons. Indeed, we rely on the “rigid” struc-
ture of the problem conferred by the low-rank modal decom-
position and the small ratio between the number of param-
eters and the size of the observation space. A regularisation
term could be straightforwardly added.

A first advantage of this method is that the EPOD de-
composition allows the wave to be estimated in configura-
tions where the jet dominates in amplitude. These configu-
rations can be hard for estimating the wave field due to the
low signal-to-noise ratio and also because a strong jet can
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Algorithm 1 Coupled estimation of IT and mesoscale fields

1. Training stage. Compute the POD modes of the jet and the
EPOD modes of the wave field over an initial time window,
and construct the observation operator as the superposition of
the wave and jet components.

(a) Compute the jet POD modes: ψn(qjet).

(b) Compute the wave EPOD modes: χn(q̃ω)=

(χn(q̃ω)v,χn(q̃ω)h)
T (consisting of the velocity

component and SSH).

(c) Construct the observation operator H using N POD–
EPOD modes:

H(q(t))=
(
ĥjet+ ĥω

)
1{(x,y)∈�obs}, (22a)

= <

[
N∑
n=0

an(t)
(
ψn(qjet)h+

χn

(
h̃ω

)
eiωt

)]
1{(x,y)∈�obs}. (22b)

Here, the jet component is approximated by its truncated
POD decomposition:

ĥjet =
N∑
n=0

an(t)ψn(qjet)h,

where the hat symbol ·̂ denotes reconstructed fields. The
wave is expressed by the truncated EPOD decomposition
of its complex amplitude (see Eq. 20):

ĥω =<
[
h̃c,ωe

iωt
]
=<

[
N∑
n=0

an(t)χn

(
h̃ω

)
eiωt

]
.

2. Estimation stage. Minimise a cost function to estimate the
mesoscale and wave fields from single snapshots of SSH at
time t .

(a) Solve the minimisation problem for the observation error
to obtain the jet POD coefficients an:

aLSQ(t)= min
(a0(t),···,aN (t))

‖H(q(t))−Y(t)‖2
L2(�obs)

. (23)

(b) Reconstruct the estimated mesoscale and wave (via its
complex amplitude) fields:

ˆ̃qω(t)=

N∑
n=0

a
LSQ
n (t)χn(q̃ω), (24a)

q̂jet(t)=
N∑
n=0

a
LSQ
n (t)ψn(qjet). (24b)

An estimate of the true wave field can be recovered with
the fast wave part eiωt following Eq. (2).

Table 1. Parameters of the different simulations.

Numerical simulations

Parameters W1 W2 W3 W4 W5
Frequency ω 2f0 3f0 2f0 2f0 2f0
Mode number mx 0 0 1 −1 0
Rossby number Ro 0.2 0.2 0.2 0.2 0.35

lead to a very incoherent wave, like in the Gulf Stream re-
gion (Zaron, 2017). A second advantage is that the estima-
tion relies on single snapshots, with no assumption about
time sampling and/or correlation. Finally, this method also
reconstructs – by correlation – the velocity components from
observations of SSH only.

4 Numerical results

The first part of the discussion of the results (Sect. 4.2) con-
cerns the study of the BBPOD and EPOD modes based on
five idealised numerical simulations. Following this, we fo-
cus on the estimates of the IT and BM fields (Sect. 4.3).

4.1 Numerical configuration

Five numerical simulations of the RSW equations, i.e.
Eq. (1), featuring a plane wave interacting with a zonal jet
have been performed. The parameters that vary from one
simulation to another are the temporal frequency of the in-
coming wave, its direction of propagation, and the Rossby
number of the turbulent jet – see Table 1. The simulations
are labelled W1, which is the reference simulation, and W2
to W5. The Burger number is Bu = 1 for all simulations (the
unit for space coordinates is therefore the Rossby radius of
deformation), and β = 0.05. The wave amplitude is small,
such that wave–wave interactions are negligible. For W1–
W4, the jet has approximately the same spectrum and the
same energy level, and only the impact of different wave pa-
rameters is studied for these runs.

The equations have been discretised using a spectral
method in space and a Runge–Kutta time scheme with the
open-source code Dedalus (Burns et al., 2020). The do-
main � is a rectangular domain of size [0,20]× [−20,20],
discretised on a 128× 256 grid for W1–W4 and on a
256× 1024 grid for W5, which requires a higher resolution.
To simulate open boundaries, “sponge layers” are consid-
ered, in which the various fields are damped at both edges
of the domain in the y direction (grey area in Fig 2). These
regions are a numerical artifice that delimit the “physical” do-
main where |y|< 12. In particular, βy is linear in the physi-
cal domain, and periodicity of the Coriolis term is ensured in
the sponge region through a smooth recovery function, thus
allowing the use of a Fourier basis in a non-homogeneous
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direction. As these regions are not physical, they are not in-
cluded in the different POD calculations.

All simulations are initialised with an eastward zonal jet at
geostrophic equilibrium with a small perturbation superim-
posed to trigger its destabilisation. An eastward-wind forc-
ing term, which is constant in time and follows a Gaussian
function in y, and a radiative-damping term of the form αh

(where α = 10−3) are added to the system in order to main-
tain the balanced current in a statistically stationary state (e.g.
Brunet and Vautard, 1996). To ensure numerical stability, a
small hyperviscosity diffusion term−Ro/Re

1
1+Roh

∇
4 is also

added in the momentum equations, with Re = 2·105, follow-
ing (Ochoa et al., 2011). Furthermore, the wave field is gen-
erated (and re-absorbed in the north) in the sponge layers by
nudging toward the incoming plane wave solution – see the
visualisation given in Fig. 2.

The model is first run without wave forcing. Once station-
arity is reached (after 4000f−1

0 , which corresponds approxi-
mately to 450 d at mid-latitudes), we activate the generation
of a plane wave in the sponge layers at the bottom of the do-
main, which propagates along y before interacting with the
jet. The properties of the wave forcing follow the dispersion
and polarisation relations computed from the harmonic so-
lutions of Eq. (1) linearised around a state at rest. This sec-
ond phase of simulation is 4000f−1

0 long for W1–W4 and
8000f−1

0 long for W5. Snapshots are saved every 1/10th of
a wave period, enabling extraction of the wave field. The
mesoscale part is then extracted (offline) using a low-pass
filter (fourth-order Butterworth) with a cutoff frequency of
2π/10f−1

0 (approximately corresponding to a period of 3 d
at mid-latitudes), and the wave field is extracted by complex
demodulation at frequency ω (and using the same low-pass
filter).

Figure 1 shows the power spectrum of the SSH field, com-
puted using the Welch method, with a Hann window of size
160 f−1

0 (512 snapshots) and with 50 % overlap. It clearly
exhibits two broadband spectral peaks: one around ω = 0,
associated with the jet, and another around ω = 2, associated
with the wave. This highlights the timescale separation be-
tween both flow components that we discussed in Sect. 2. We
point out that sub-mesoscale contributions are also extracted
by means of complex demodulation, but these remain negli-
gible. One may also notice that the SSH contribution of the
wave is only 1 %–2 % of that of the low-frequency turbulent
flow, as well as of the presence of a weak super-harmonic
signal (at ω = 4f0), which we do not consider in this study.

A snapshot of the vorticity field and the complex ampli-
tude of the SSH of the northward-propagating wave for the
reference simulation is displayed in Fig. 2. It shows that the
incident wave to the south of the domain is almost a plane
wave, while more disorganised patterns are visible in the
north of the domain, which is the signature of the loss of
coherence caused by the interaction with the mesoscale flow.

Figure 1. Power spectrum of the SSH field in lin–log scale, in the
centre of the domain at x = 10 and y = 0, for W1. The dotted or-
ange line indicates the filter cut-off frequency.

4.2 BBPOD and EPOD analysis

In this section, we show and discuss how the BBPOD and
EPOD methods perform in extracting the variability of the
wave field, and we provide some information on the under-
lying mechanisms. The modes are computed in the physical
domain, discarding the sponge regions (for |y|> 12).

4.2.1 BBPOD analysis of the wave field

Figure 3 shows the SSH component of the first three
weighted BBPOD modes (

√
λn,ωψn,ω) of the wave field for

every simulation. The first dominant mode (the most ener-
getic), in the first column, corresponds to harmonic waves
propagating in the same direction as the incident wave. It
corresponds to the coherent part of the wave, as confirmed
by the time series of the corresponding projection, which is
nearly constant in time (see Fig. 4b). We should mention that
the fact that the coherent wave is captured by the first BB-
POD mode is not guaranteed a priori. Here, it occurs because
the energy is integrated over the whole domain, including the
lower half of the domain where wave propagation is essen-
tially coherent. We can also note a slight damping of the am-
plitude of the coherent mode for the W2 and W5 simulations,
where the wave is subject to greater interactions. This damp-
ing can be interpreted as resulting from the wave–mesoscale
correction (last right-hand-side term in Eq. 11a).

The sub-optimal modes represent contributions from the
incoherent wave; i.e. they are a residue of the coherent part,
which is decorrelated from the wave forcing. The first two
dominant incoherent modes exhibit nearly plane waves de-
flected by the jet in the upper part of the domain in several
directions (where we can also note weak reflections by the
jet in the lower half of the domain).

These x-wise structures of these waves are very close
to Fourier modes associated with a pair of wavenum-
bers mx = kxLx/2π that are, from top to bottom,
(−2,2), (−2,2), (3,−1), (−3,1). This is a consequence of
the statistical homogeneity of our configuration (periodic do-
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Figure 2. Snapshots of the reference simulation W1 with ω = 2f0, mx = 0: (a) total vorticity field and (b) complex amplitude of the wave
SSH contribution. The sponge layer is included in this visualisation for |y|> 12, with the wave forcing region to the south and the relaxation
layer to the north and south.

main, zonal jet); i.e. the statistics do not depend on x. This
statistical property ensures that the BBPOD modes converge
to Fourier modes in x as the number of snapshots of the cor-
relation matrix increases (Schmidt and Colonius, 2020).

Calculating the eigenvalues of the correlation matrix gives
the average energy contribution of each mode (Eq. 18). We
show (in Fig. 4c) the cumulative energy of the incoherent part
as a function of the number of modes. This corresponds to the
energy contained in the firstN incoherent and/or sub-optimal
modes, equal to

∑N
n=1λn,ω, whereas λ0,ω refers to the energy

of the coherent mode. The figure shows, first of all, that the
W5 simulation represents a more energetic incoherent wave
than in the other simulations. This can be explained by the
fact that the Rossby number is higher, and, therefore, the
contribution of the non-linear terms between the wave and
the jet responsible for the loss of coherence is, a priori, also
higher (Eq. 13). Secondly, the figure shows that the incoher-
ent waves from the W1–W4 simulations have a comparable
energy level as the jet is approximately the same.

4.2.2 EPOD analysis

Figure 5 shows the first three dominant jet POD modes and
the associated wave EPOD modes for simulations W1 to W4.
Akin to the dominant wave BBPOD mode shown previously,
the first POD mode of the jet is approximately the mean field
and has nearly constant projection coefficients (Fig. 4b). The
two sub-optimal modes are meanders in phase quadrature.
The first EPOD mode of the wave, which is correlated with
the mean field, corresponds to the coherent part and has a
spatial structure that is very similar to that of the first BBPOD
mode. The second and third EPOD modes represent the parts

correlated with the meanders of the jet and feature standing-
wave patterns along x, which are also in phase quadrature,
suggesting a slow zonal propagation velocity following the
jet. This is pronounced in simulations where the wave crosses
the jet perpendicularly (W1, W2), with four nodes in the do-
main. For the W5 high-Rossby-number simulation (shown in
Appendix C), the jet’s sub-optimal modes also represent me-
anders, and the wave EPOD modes are standing-wave pat-
terns, both with doubled wavelengths compared to runs W1–
W4.

The correspondence between the wavelengths of the jet
meanders and those of the EPOD modes confirms the an-
alytical link between these structures that we discussed in
Sect. 3.2 (see Eq. 21). The dominant wave EPOD modes ap-
pear to be the response to interactions between the coherent
part and the jet POD modes. The validity of this equivalence
suggests that the multiple-interaction term is weak for all
simulations, which reflects the fact that the mesoscale fluc-
tuations are confined y-wise, such that the scattered wave
rapidly leaves this zone, leaving no room for further inter-
action with the fluctuating jet.

The temporal evolution of the BBPOD wave modes seems
to be related to the EPOD–POD behaviour – see Fig. 4:
the first modes are approximately in phase, and the second
modes are approximately in phase opposition. Indeed, the
standing waves of EPOD modes correspond to the superposi-
tion of the upward and downward deflections extracted by the
BBPOD method. More precisely, BBPOD extracts these two
deviations separately since they are decorrelated and associ-
ated with opposite-sign wave numbers, whereas the EPOD
method extracts the superposition of these deviations in a
single mode by correlation with the jet. It can be noticed
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Figure 3. The three dominant weighted BBPOD modes of SSH (left to right), calculated as
√
λn,ωψn,ω for the runs W1 to W5 (top to

bottom).

in Fig. 4b that there is a slight phase shift from an exact
phase opposition, which corresponds to the slow zonal prop-
agation of the standing wave. By summing these two first
modes, we can conclude that the contribution of these me-
andering modes to the incoherent wave represents between
40 %–50 % of the incoherent energy for W1–W4 and 30 %
for W5 (Fig. 4c).

In conclusion, we have shown that the proposed statisti-
cal methods – BBPOD and EPOD – allow us to extract and
interpret a wave field scattered by mesoscale turbulence. In
particular, they allows us to quantify the energetic contribu-
tion of the dominant modes of variability of the wave field
in connection with the variability of the mesoscale flow. The
EPOD shows that the meanders of the mesoscale jet generate
an incoherent wave in the form of a standing wave, made up
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Figure 4. (a) The three leading POD coefficient of the jet: an = (qjet,ψn)WE . (b) The three leading BBPOD coefficient of the wave an,ω =
(q̃ω,ψn,ω)WE

. These are computed based on the reference run W1, and the respective mean values and root-mean-squared errors are shown.
(c) Modal cumulative incoherent energy

∑N
n=1λn,ω of the different runs.

of deviations in directions determined by the primary inter-
actions.

4.3 Estimation

The second part of this study is dedicated to the problem of
estimation, implementing the algorithm (Algorithm 1) intro-
duced in the previous section. Most of the results are shown
for the W1 reference simulation. The time series are di-
vided into a learning window and a test window, the du-
rations of which (for the W1 run) are ≈ 1300 wave peri-
ods (16 months) and≈ 200 wave periods (50 snapshots sepa-
rated by four wave periods), respectively. For the sake of sim-
plicity, the estimate of the wave is based on the estimate of
its complex amplitude as the total wave can be reconstructed
without losing accuracy (using Eq. 2).

4.3.1 Estimation from a full SSH observation

Figure 6 shows an estimate of the SSH component of the
wave and mesoscale fields, calculated from a complete SSH
observation using 30 POD–EPOD modes. Qualitatively, the
estimation is in good agrement with the reference, and the
error does not exhibit any particular structure or bias.

The accuracy of the estimate (with respect to the num-
ber of modes considered) is quantified via the L2 norm of
the error, averaged over the entire test window, for the com-
plex wave amplitude, 〈‖ ˆ̃qω− q̃ω‖

2
L2〉/〈‖q̃ω‖

2
L2〉, and for the

mesoscale part, 〈‖q̂ jet− q jet‖
2
L2〉/〈‖q jet‖

2
L2〉 (Fig. 7). The es-

timation error is compared with the averaged projection error
performed when the jet is projected onto its POD basis and
when the wave is projected onto its BBPOD basis. Indeed,
the projection error measures the ability of the basis learnt
from the training window to span the observations from the
test window: it indicates the maximum energy that can be
captured by N modes (this is an inherent property of the
POD) and thereby provides a minimal bound for the estima-
tion error. Also shown is the EPOD projection error, which
corresponds to the error between the true complex amplitude
field and a decomposition over N extended modes, wherein

the coefficients are calculated by means of projection of the
jet onto its POD basis.

We see in Fig. 7 that the estimation error decreases over the
first 30 modes for each of the fields. Using 30 modes, 80 %
of the mesoscale energy is captured. For the wave (Fig. 7a),
the estimate captures around 73 % of the total energy and
63 % of the incoherent energy (associated with the norm de-
fined in Eq. 15). The total coherent energy of the test window
corresponds to the energy captured by the projection of the
wave field onto the first BBPOD mode, which is 46 %. The
total incoherent energy corresponds to the residual, and the
incoherent estimate corresponds to the estimate of the sub-
optimal EPOD modes. The error reduction decreases as the
number of modes increases, which is very fast until N = 5,
and then continues to decrease progressively. This indicates
a cost–accuracy trade-off, which is usual in model reduction
and which leaves room for tuning as a function of targeted
model performances. Furthermore, we observe that the two
error estimates (for the mesoscale and the wave) have a sim-
ilar shape, with a clear break in slope from the third mode,
with modes 2 and 3 corresponding to the meandering of the
jet and the associated response in the form of a standing wave
for the wave (see Sect. 4.2), which reflects the fact that the
dynamics of both motions are coupled.

For the mesoscale (Fig. 7a), since the POD basis is op-
timal and the SSH field is mainly dominated by the turbu-
lent jet, the estimation and projection errors collapse. This
suggests that the jet coefficients – including for the velocity
component, included in the error norm – are perfectly esti-
mated. This shows that the SSH is sufficient to estimate the
jet flow, which is consistent with the fact that the jet is al-
most in geostrophic balance. For the wave estimate (Fig. 7b),
one sees a difference between the estimation error and the
BBPOD projection error. Already for the first mode (corre-
sponding to the coherent part), there is approximately 8 %
of the total energy missing in the estimate. There are several
possible explanations for this: firstly, the wave estimate only
contains the part that is correlated with the jet and not the part
that is decorrelated. Also missing is the fraction of the wave
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Figure 5. Three leading POD modes of the jet (a) and the associated EPOD modes of the wave field (b) for simulations W1–W4. They
are weighted by the square root of the respective POD eigenvalue of the jet

√
λn. The first three eigenvalues are λ0 = 22.13, λ1 = 6.09,

λ2 = 5.59 for W1 and λ0 = 22.65, λ1 = 6.77, λ2 = 6.55 for W2.
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Figure 6. Estimate of the SSH contribution of the wave (a) and of the jet (b) for 30 modes from one snapshot for W1.

Figure 7. Time-averaged L2 norm errors (blue) as a function of mode numbers included, together with the projection error of the correspond-
ing POD decompositions, for the turbulent jet (a) and the wave field (b). For the wave, the EPOD decomposition Eq. (20) is also plotted
(dotted line). The results correspond to the W1 run.

field correlated with the residual of the jet estimate over the
30 POD modes (representing 20 % of the jet’s energy). Sec-
ondly, non-stationarity effects in the flow can partially de-
grade the estimation of correlations between the wave and
the jet. Despite the limitations that have been mentioned, we
see that, for a total observation of SSH, one can have confi-

dence in a large number of modes with regard to estimating
the wave and jet fields.

The wave estimation error presented above is calculated
for each simulation, W1–W5, in Table 2. The numbers shown
correspond to the minimum of the error as a function of the
number of modes for the first 30 modes (corresponding to
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Table 2. Highest average energy captured over the first 30 modes for
wave and jet estimation for simulations W1–W5. For W1, this value
can also be seen in Fig. 7, which is reached with a consideration of
the first 30 modes.

W1 (%) W2 (%) W3 (%) W4 (%) W5 (%)

Total wave field 73 64 82 88 75
Incoherent part 63 21 44 63 50
Jet 79 73 83 88 82

the maximum energy captured). With the exception of the
W2 simulation, which represents a wave of higher frequency
compared to the other runs, the method captures more than
73 % of the total wave energy for each of the simulations
and between 44 % and 63 % of the incoherent energy. More-
over, the wave estimate does not diverge as the number of
modes increases for these simulations. However, the method
seems less effective at capturing a higher-frequency wave by
means of correlation in the W2 simulation. The best estimate
is reached in the 12th mode and diverges very slightly. Un-
fortunately, we do not have a clear explanation for this. We
can simply point out that, at high frequencies (with ω = 3f0
being greater than M4 ≈ 2.8f0 at mid-latitudes), the scatter-
ing of waves is more complex and more intense (Ward and
Dewar, 2010). The estimate of the jet remains fairly robust
since its amplitude remains high for all the simulations. We
can also confirm that, by construction of the method, the bet-
ter the estimate of the jet, the better the estimate of the total
wave.

4.3.2 Impact of a partial observation

In the final part of the study, we evaluate the sensitivity of
the method to the spatial coverage of observations. Figure 8
shows an example of a subsampled observation, consisting
of four SSH vertical bands that are approximately homo-
geneously spaced in the domain and one Rossby radius in
width.

Figure 9 shows an estimate over 12 EPOD and POD modes
from the same snapshot as in the full-observation case of
the complex amplitude of the wave and the jet. Since fewer
modes have been taken into account for the estimation, the
wave field is smoother, but the error is still qualitatively quite
small. For the jet, the error is more pronounced, with higher
amplitudes than in the case of total observation. The choice
of 12 modes corresponds approximately to the minimum er-
ror, as shown below.

We calculate (see Fig. 10) the jet and wave estimation er-
rors in the L2 norm averaged temporally over the whole test
window. We evaluate the sensitivity of the error by varying
the observation coverage from four bands (covering 20 %
of the domain) to two bands (10 % of the domain). With
four vertical bands, the algorithm is still able to estimate the
first three modes with little difference compared to the to-

Figure 8. Sparse SSH snapshot observation from the W1 run, cov-
ering 20 % of the full domain.

tal observation. These modes correspond to larger jet struc-
tures and therefore seem to be less affected by the degra-
dation of the spatial sampling. From three modes, the esti-
mate reaches a plateau for the wave and decreases slightly
for the jet. At best, around 60 % of the jet’s energy is cap-
tured, and around 65 % of the wave’s energy is captured. For
three vertical bands, the error deteriorates slightly, but the
curves remain similar to the previous case. Finally, the case
of two bands is more pathological and shows that, when the
observation space is too small and the number of parameters
to be minimised is too large (here > 11 modes), the error in-
creases. In addition, as in the case of total observations, we
note that the coupling of the projection coefficients between
the jet and the wave means that the error curves for the jet
and the wave necessarily follow a similar trajectory, suggest-
ing that a good estimate of the jet is required in order to have
a good estimate of the wave. The increase in the error could
be mitigated by adding regularising terms to the algorithm,
e.g. penalising the amplitude of high modes.

4.4 Discussion

The EPOD-based estimation method presented above relies
on the correlation between the mesoscale fluctuations and the
scattered-wave field to estimate the latter in a regime where
the SSH is dominated by the mesoscale, which is probably
the main advantage of the method. To emphasise this, an at-
tempt is made to estimate and separate the mesoscale and
wave dynamics from single SSH snapshots using a simpler
approach, which is detailed in Appendix B. This involves
considering BBPOD modes (with a specific set of projec-
tion coefficients to be determined by optimisation) instead
of EPOD modes to express the wave. This approach fails
completely in reconstructing the wave field (Fig. B1 in the
Appendix). Although making these two bases independent
could provide a better projection space (which, here, is opti-
mal in terms of energy content), the estimation fails because
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Figure 9. Estimate of the SSH contribution of the wave (a) and of the jet (b) for 12 modes from one sparse snapshot.

Figure 10. Time-averaged L2 norm errors for the jet (a) and the wave (b) for sparse observations. Three types of spatial domain coverages
are considered (10 %–15 %–20 %).
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(i) it subjects the minimisation problem to overfitting; (ii) it
discards the statistical links between the two bases supported
by their dynamical relation, as seen in Eq. (21); and (iii) the
wave is poorly observed due to a large relative amplitude
difference between the SSH contribution of the jet and the
wave. Thus, this comparison highlights the benefit of explic-
itly accounting for the coupling between the mesoscale and
the wave via extended modes.

Let us now discuss the limitations of the proposed ap-
proach. First, the EPOD decomposition of the wave only
provides an estimate of the part of the wave that correlates
with a truncated POD decomposition of the jet. As discussed
above, this contribution is a priori important for an incoher-
ent wave resulting from interaction with a turbulent flow and
if the number of modes included in the decomposition is suf-
ficiently large. Secondly, the decomposition bases should be
able to span future observations that have not been learnt
from the dataset. Some of the errors may, therefore, be due to
errors in projecting the wave and jet observations onto their
respective bases.

Finally, it can be expected that this approach would be-
come inefficient in configurations where the signature of the
IT becomes dominant and, in particular, in regimes with
very weak mesoscale flows as the correlation between the
mesoscale fluctuations and the wave field would be less pro-
nounced. In this case, recourse to a BBPOD-based algorithm
seems more appropriate, provided some improvements are
achieved, such as the use of regularisation techniques in the
minimisation algorithm to avoid overfitting. For example,
Egbert and Erofeeva (2021) showed that a SPOD basis can
be used to estimate part of the incoherent signal off the Ama-
zon using multiple snapshots. Their algorithm estimates the
sea surface height (SSH) contribution of the internal tide by
finding the IT projection coefficients that minimise the error
with multiple observations.

Constructing an algorithm that takes advantage of each
method depending on the dynamical regime is a straightfor-
ward development that is left for future work. In any case,
more sophisticated minimisation algorithms that better con-
strain the temporal coefficients need to be implemented in or-
der to maintain accuracy as observations degrade. This may
include a regularisation term, e.g. that penalises higher mode
amplitudes, depending on the choice of an appropriate norm
and an initial guess regarding the solution. In a sense, the
methods proposed by Egbert and Erofeeva (2021) or Tchili-
bou et al. (2024) are examples of constraints put on the tem-
poral coefficient by using a harmonic function to link obser-
vations at different times.

5 Conclusions and perspectives

In this study, we have proposed new data-driven statistical
decompositions of a (internal) wave scattered by mesoscale
turbulence. These decompositions are derived from the POD

and describe the slow evolution of the complex ampli-
tude of the wave, driven by non-linear interactions with the
mesoscale flow. We first introduced the broadband POD,
which adapts the POD for a scattered-wave field with a
broadband spectrum. Then, we proposed a decomposition of
the wave field that extracts its fraction correlated with the jet
using the extended POD (EPOD) method, which is probably
the most important aspect of this study. We have highlighted
a dynamic link that exists between the extended wave modes
and the mesoscale POD modes, which holds under certain
wave-scattering regimes (dominant and localised primary in-
teractions) and allows for a physical interpretation of the ex-
tended modes.

We have demonstrated, using idealised rotating-shallow-
water simulations, the ability of both decompositions to anal-
yse the scattering of a low-amplitude wave by a zonal jet. For
different wave and mesoscale fields, the dominant BBPOD
modes of the wave result from the interactions between the
dominant mesoscale POD modes and the coherent part of the
wave. A significant part of the incoherent wave is a standing
wave generated by the meanders of the jet, determined by
these primary interactions.

In the second part of this study, we addressed the issue of
the disentanglement of waves and mesoscale flows from a
single SSH snapshot. Our method relies on a simple minimi-
sation algorithm, wherein the SSH observation is expressed
as the sum of a mesoscale contribution, decomposed on a
POD basis, and a wave contribution correlated with the jet,
decomposed based on the extended POD mode. This coupled
POD–EPOD estimation algorithm allows us to estimate a to-
tal wave field, with its velocities, which is of very low am-
plitude (especially compared to the mesoscale contribution)
from isolated SSH snapshots. This allows us to estimate the
incoherent-wave field (we captured between 44 % and 63 %
of the incoherent-wave energy in the idealised RSW simula-
tions), which can potentially give us access to derived quan-
tities such as incoherent-wave energy fluxes.

Although this study was primarily motivated by the issue
of estimating internal tides, the EPOD method has a fairly
general formalism that could be applied to different types of
waves scattered by a time-varying flow, provided we can ex-
tract from data the variable envelope of the scattered wave.
This includes, for example, the scattering of near-inertial
waves propagating in the ocean, as studied in Danioux and
Vanneste (2016); Young and Jelloul (1997), with the propa-
gation of the slowly varying wave envelope being modelled
here, along with the loss of coherence in the barotropic tide
in coastal areas or the scattering of acoustic waves by turbu-
lence (Thomas, 2017). Also, this method could be applied to
waves of large amplitude since they remain correlated with
the turbulent flow, which is a straightforward extension of
this study.

Finally, an extension of this method to the study of a scat-
tered wave in three dimensions, e.g. as in Kafiabad et al.
(2019), may be envisaged. Although EPOD modes can be
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defined in 3D, it seems appropriate to apply our method to a
set of 2D RSW models similar to the ones in this study after
projecting a 3D model onto a vertical-mode basis, which is
widely used and relevant for the study of ITs (Dunphy et al.,
2017; Kelly et al., 2016).

Another important part of this study is the adaptation of
these methods to more realistic cases. A few limitations need
to be addressed in order to achieve this. First, the use of
instantaneous correlation between the jet and the wave is
mainly valid for estimating the wave locally. It is also nec-
essary to develop techniques to improve the convergence of
statistical estimates, which is not achieved when the number
of snapshots in the training time series is limited. One con-
sequence of this convergence problem is that the proposed
decompositions do not generate a space of sufficiently large
dimension to estimate wave and jet observations. In partic-
ular, these techniques would improve the estimation of ob-
servations whose variability has not been sufficiently learnt
from the reduced-size time series and that are not represented
in the set of POD–EPOD modes. These techniques would
also make it possible to extend the estimation of waves and
currents to the scale of an ocean. Localisation techniques,
which broadly consist of defining localised sub-domains to
enable the consideration of localised interactions and an arti-
ficial increase in the number of samples, could address these
issues (Hamill et al., 2001; Farchi and Bocquet, 2019). An-
other methodological challenge with regard to addressing
more realistic configurations is the fact that the internal-tide
field contains several nearby frequencies. How to separate
each coherent peak in the data and adequately describe their
correlation with the turbulent flow remains to be understood.
Therefore, we think that further work on idealised cases is
required before applying this method to a realistic case.

Appendix A: Equivalence between broadband POD and
SPOD

This Appendix presents the algorithmic specificities of the
common SPOD algorithm using the Welch method (Welch,
1967) to estimate the cross-spectral density matrix (CSD)
and its relation to the BBPOD algorithm that is used in this
study. For some well-chosen parameters, we show that the
two algorithms are equivalent.

The following proof is performed with discrete variables,
considering a signal xt with time spacing 1t and tk = k1t .

Proof. The complex demodulation is written as

xte−iωt j =

m∑
k=−m

bkxj−ke
−iωtj−k

=

j+m∑
k=j−m

bj−kxke
−iωtk , (A1)

where (bi)−m≤i≤m denotes the discrete coefficients of the fil-
ter ·.

Besides this, the principle of the Welch method is to sub-
divide xt into possibly overlapping blocks of size N , with an
overlapNo. A fast Fourier transform (FFT) is then performed
on each windowed block to extract the Fourier component at
the tidal frequency, denoted as Xlω, where l is the block in-
dex. So,

Xlω =

N/2∑
k=−N/2

xk+l(N−No)Wke
−iωtk , (A2)

where Wk is a window function defined based on
[−N/2,N/2].

By changing the variable k′ = k+l(N−No), it follows that

Xlω = e
iωtl(N−No)

l(N−No)+N/2∑
k′=l(N−No)−N/2

xk′Wk′−l(N−No)e
−iωtk′ . (A3)

Assuming that the window function is symmetric in the
middle of each block (which is verified for most windows
used in the literature), i.e. Wk =W−k , Eq. (A3) gives

Xlω = e
iωtl(N−No)

l(N−No)+N/2∑
k′=l(N−No)−N/2

Wl(N−No)−k′xk′e
−iωtk′ . (A4)

Finally, by choosing the window function as the filter co-
efficients, i.e. Wk = bk and m= N

2 , in relation to Eq. (A1)
yields

Xlω = e
iωtl(N−No)xte−iωt l(N−No). (A5)

Consequently, up to a phase, the FFT of a block l of sizeN
with overlap No at ω corresponds to the complex demodula-
tion of the signal at time l(N −No). The phase shift is can-
celled when computing the correlation over Nb blocks:

Nb∑
l=0

XlωX
l
ω

∗
=

Nb∑
l=0

xte−iωt l(N−No)xte
−iωt

∗

l(N−No)
. (A6)

Therefore, the Welch method computed with parameters
(N,No,Nb,W) is equivalent to computing the complex de-
modulation of the time series over Nb snapshots sampled ev-
eryN−N0 with a filter chosen as the common window func-
tion W (Hann, Hanning, etc.).

This simple proof highlights the fact that the window func-
tion in the Welch method is playing the role of the filter in
the BBPOD method. Although the two methods are equiva-
lent, they differ in terms of their use and interpretation and
also in terms of the choice of parameters. BBPOD is de-
signed to extract a broadband signal, the width of which is
chosen via a filter using physical timescales. SPOD looks for
an orthonormal basis for the Fourier coefficients at a given
frequency, and the parameters of Welch’s algorithm are cho-
sen to minimise spectral leakage for a given amount of data.
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Techniques for reconstructing a broadband spectrum using
several SPOD modes at each frequency of the spectrum are
possible by reordering the energy contribution of modes at
different frequencies (Nekkanti and Schmidt 2021). On the
other hand, the orthogonality property of the modes is lost
since the SPOD modes are no longer orthogonal at different
frequencies.

Appendix B: Wave estimation using BBPOD instead of
EPOD

A test has been performed in order to show the importance
of informing the correlation between the jet contribution and
the wave through EPOD in the estimation problem. Here, a
“naive” algorithm is implemented, wherein the wave is de-
composed on its optimal basis, BBPOD (instead of EPOD),
while the jet is decomposed on its POD basis. Instead of con-
sidering the same coefficient an(t) for the jet POD mode and
the wave EPOD mode, two independent sets of coefficients –
an for the mesoscale and bn for the wave – are sought through
the optimisation algorithm, which is given by

min
(an,bn)

∣∣∣∣∣ 30∑
n=0

anψn(q jet)h+<
[
bn(ψn,ω)he

iωt
]
−h

∣∣∣∣∣
2

.

As is visible in Fig. B1, to be compared with Fig. 6, the
corresponding estimate is completely wrong. Possible rea-
sons for this failure are provided in the main text.

Figure B1. Estimation of the SSH contribution of the wave for the W1 run, computed from one snapshot, using 30 modes of the optimal
basis of the jet and the wave vectors (POD for the jet and BBPOD for the wave).
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Appendix C: Effect of Rossby number on the modal
decompositions

In this section, we show the POD modes of the jet (Fig. C1a)
and the EPOD modes of the wave (Fig. C1b) for the W5 sim-
ulation. This simulation is characterised by a higher Rossby
number. The consequence is a change in the jet dynamics
and then in the scattered-wave fields. This effect is visible in
the results of the modal decompositions. The jet POD and
wave EPOD modes show similar structures to W1–W4, but
the wavelengths of modes 1 and 2 are twice as long.

Figure C1. Three leading POD modes of the jet (a) and the associated EPOD modes of the wave field (b) for simulation W5. They are
weighted by the square root of the respective POD eigenvalue

√
λn. The first three eigenvalues are λ0 = 8.86,λ1 = 3.29,λ2 = 3.21.

Code and data availability. The subsampled time series of the
low-pass-filtered and complex demodulated outputs of the RSW
W1 simulation are provided at https://gitlab.inria.fr/imaingon/
internal-tide-simulation.git (Maingonnat, 2025), including the
codes to produce data and diagnostics.
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