Articles | Volume 21, issue 2
https://doi.org/10.5194/os-21-749-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-749-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Operational hydrodynamic service as a tool for coastal flood assessment
Xavier Sánchez-Artús
CORRESPONDING AUTHOR
Universitat Politècnica de Catalunya – BarcelonaTech (UPC), Laboratori d'Enginyeria Marítima (LIM), C/Jordi Girona, 31, 08034, Barcelona, Spain
Vicente Gracia
Universitat Politècnica de Catalunya – BarcelonaTech (UPC), Laboratori d'Enginyeria Marítima (LIM), C/Jordi Girona, 31, 08034, Barcelona, Spain
Manuel Espino
Universitat Politècnica de Catalunya – BarcelonaTech (UPC), Laboratori d'Enginyeria Marítima (LIM), C/Jordi Girona, 31, 08034, Barcelona, Spain
Manel Grifoll
Universitat Politècnica de Catalunya – BarcelonaTech (UPC), Laboratori d'Enginyeria Marítima (LIM), C/Jordi Girona, 31, 08034, Barcelona, Spain
Gonzalo Simarro
Institute of Marine Sciences (CSIC), Passeig Marítim de la Barceloneta 37–49, Barcelona, Spain
Jorge Guillén
Institute of Marine Sciences (CSIC), Passeig Marítim de la Barceloneta 37–49, Barcelona, Spain
Marta González
Institut Cartogràfic i Geològic de Catalunya (ICGC), Barcelona, Spain
Agustín Sanchez-Arcilla
Universitat Politècnica de Catalunya – BarcelonaTech (UPC), Laboratori d'Enginyeria Marítima (LIM), C/Jordi Girona, 31, 08034, Barcelona, Spain
Related authors
No articles found.
Jiangyue Jin, Manuel Espino, Daniel Fernández, and Albert Folch
EGUsphere, https://doi.org/10.5194/egusphere-2024-3384, https://doi.org/10.5194/egusphere-2024-3384, 2024
Short summary
Short summary
Coastal zones are crucial ecological areas, yet our understanding of groundwater-ocean interactions remains limited. Ocean and groundwater models typically operate independently, with ocean models ignoring submarine groundwater discharge and groundwater models viewing the ocean as a static boundary. This separation impedes accurate simulations. By integrating these models, we can capture real-time water flow and salt movement while considering factors such as tides.
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024, https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
Short summary
The sensitivity to the wave and sea-level forcing sources in predicting a 6-month embayed beach evolution is assessed using two different morphodynamic models. After a successful model calibration using in situ data, other sources are applied. The wave source choice is critical: hindcast data provide wrong results due to an angle bias, whilst the correct dynamics are recovered with the wave conditions from an offshore buoy. The use of different sea-level sources gives no significant differences.
Ivan Hernandez, Leidy M. Castro-Rosero, Manuel Espino, and Jose M. Alsina Torrent
Geosci. Model Dev., 17, 2221–2245, https://doi.org/10.5194/gmd-17-2221-2024, https://doi.org/10.5194/gmd-17-2221-2024, 2024
Short summary
Short summary
The LOCATE numerical model was developed to conduct Lagrangian simulations of the transport and dispersion of marine debris at coastal scales. High-resolution hydrodynamic data and a beaching module that used particle distance to the shore for land–water boundary detection were used on a realistic debris discharge scenario comparing hydrodynamic data at various resolutions. Coastal processes and complex geometric structures were resolved when using nested grids and distance-to-shore beaching.
Marta F.-Pedrera Balsells, Manel Grifoll, Margarita Fernández-Tejedor, Manuel Espino, Marc Mestres, and Agustín Sánchez-Arcilla
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-322, https://doi.org/10.5194/bg-2021-322, 2021
Revised manuscript not accepted
Short summary
Short summary
Phytoplankton in coastal bays is influenced by physical variables (wind or freshwater inputs) that can influence the composition of phytoplankton. A numerical model has been applied to understand this variability. The simulations show that during weak wind events there is physical separation between surface and deep layers, penalising phytoplankton growth. During intense wind, mixing of the water column occurs, increasing the phytoplankton biomass in the lower layers.
Verónica Morales-Márquez, Alejandro Orfila, Gonzalo Simarro, and Marta Marcos
Ocean Sci., 16, 1385–1398, https://doi.org/10.5194/os-16-1385-2020, https://doi.org/10.5194/os-16-1385-2020, 2020
Short summary
Short summary
This is a study of long-term changes in extreme waves and in the synoptic patterns related to them on European coasts. The interannual variability of extreme waves in the North Atlantic Ocean is controlled by the atmospheric patterns of the North Atlantic Oscillation and Scandinavian indices. In the Mediterranean Sea, it is governed by the East Atlantic and East Atlantic/Western Russia modes acting strongly during their negative phases.
Manel Grifoll, Pablo Cerralbo, Jorge Guillén, Manuel Espino, Lars Boye Hansen, and Agustín Sánchez-Arcilla
Ocean Sci., 15, 307–319, https://doi.org/10.5194/os-15-307-2019, https://doi.org/10.5194/os-15-307-2019, 2019
Short summary
Short summary
In this paper we investigate the origin of the variability in
near-bottom turbidity observations in Alfacs Bay (in the northwestern Mediterranean Sea). The observations of turbidity peaks are consistent with the seiche phenomenon. We suggest that the sequence of resuspension events plays an important role in the suspended sediment concentration, meaning that previous sediment resuspension events may influence the increase in suspended sediment in subsequent events.
Pablo Cerralbo, Marta F.-Pedrera Balsells, Marc Mestres, Margarita Fernandez, Manuel Espino, Manel Grifoll, and Agustin Sanchez-Arcilla
Ocean Sci., 15, 215–226, https://doi.org/10.5194/os-15-215-2019, https://doi.org/10.5194/os-15-215-2019, 2019
Short summary
Short summary
In this contribution we investigate the hydrodynamic response in Alfacs Bay (Delta Ebro, NW Mediterranean Sea) to freshwater flows and inner bay to open sea connections. The numerical model ROMS is applied nested to Copernicus models and validated with in situ data. Considering the results, only the modification of freshwater flows is recommended due to its lower impact on the environment and associated economic costs. None of the proposed solutions solve the problem related to warm waters.
Agustín Sánchez-Arcilla, Jue Lin-Ye, Manuel García-León, Vicente Gràcia, and Elena Pallarès
Ocean Sci., 15, 113–126, https://doi.org/10.5194/os-15-113-2019, https://doi.org/10.5194/os-15-113-2019, 2019
Short summary
Short summary
A quantitative definition for the coastal border isotropy of met-ocean processes is proposed. Wind velocity and significant wave height anisotropies are examined along four transects at the north-western Mediterranean coast. Both decrease offshore, determining a coastal fringe of width of 2–4 km. The joint probability structure reflects a decoupling near the coast and a stronger dependence in the bay-like part, where the wave field is being more actively generated by the overlaying wind.
Laura Ràfols, Manel Grifoll, and Manuel Espino
Ocean Sci., 15, 1–20, https://doi.org/10.5194/os-15-1-2019, https://doi.org/10.5194/os-15-1-2019, 2019
Short summary
Short summary
This study investigates the effects of the wave–current interactions in a region where episodes of strong cross-shelf wind occur. To do so, a coupled system between two numerical models has been implemented. The results do not show substantial differences in the water current patterns, but a clear effect on the water column stratification has been found. Additionally, stronger impact is observed for the wave period rather than the wave height.
Verónica Morales-Márquez, Alejandro Orfila, Gonzalo Simarro, Lluís Gómez-Pujol, Amaya Álvarez-Ellacuría, Daniel Conti, Álvaro Galán, Andrés F. Osorio, and Marta Marcos
Nat. Hazards Earth Syst. Sci., 18, 3211–3223, https://doi.org/10.5194/nhess-18-3211-2018, https://doi.org/10.5194/nhess-18-3211-2018, 2018
Short summary
Short summary
This work analyzes the response of a beach under a series of storms using a numerical model, in situ measurements and video imaging.
Time recovery after storms is a key issue for local beach managers, who are pressed by tourism stakeholders to nourish the beach
after energetic processes in order to reach the quality standards required by beach users.
Manel Grifoll, Jorge Navarro, Elena Pallares, Laura Ràfols, Manuel Espino, and Ana Palomares
Nonlin. Processes Geophys., 23, 143–158, https://doi.org/10.5194/npg-23-143-2016, https://doi.org/10.5194/npg-23-143-2016, 2016
Short summary
Short summary
In this contribution the wind jet dynamics in the northern margin of the Ebro River shelf (NW Mediterranean Sea) are investigated using coupled numerical models. The study area is characterized by persistent and energetic offshore winds during autumn and winter. However, the coupling effect in the wind resource assessment may be relevant due to the cubic relation between the wind intensity and power.
M. Grifoll, A. L. Aretxabaleta, J. L. Pelegrí, and M. Espino
Ocean Sci., 12, 137–151, https://doi.org/10.5194/os-12-137-2016, https://doi.org/10.5194/os-12-137-2016, 2016
Short summary
Short summary
We investigate the rapidly changing equilibrium between the momentum sources and sinks during the passage of a single two-peak storm over the Catalan inner shelf (NW Mediterranean Sea). At 24m water depth, a primary momentum balance between acceleration, pressure gradient and frictional forces (surface and bottom) is established. The frictional adjustment timescale was around 10h, consistent with the e-folding time obtained from bottom drag parameterizations.
J. P. Sierra, M. Casas-Prat, M. Virgili, C. Mösso, and A. Sánchez-Arcilla
Nat. Hazards Earth Syst. Sci., 15, 1695–1709, https://doi.org/10.5194/nhess-15-1695-2015, https://doi.org/10.5194/nhess-15-1695-2015, 2015
P. Cerralbo, M. Grifoll, J. Moré, M. Bravo, A. Sairouní Afif, and M. Espino
Adv. Sci. Res., 12, 11–21, https://doi.org/10.5194/asr-12-11-2015, https://doi.org/10.5194/asr-12-11-2015, 2015
Short summary
Short summary
Wind spatial heterogeneity in a coastal area (Alfacs Bay, northwestern Mediterranean Sea) is described using a set of observations and modelling results. Observations during 2012–2013 reveal that both N–NW winds and sea breezes appear to be affected by the local orography promoting high wind variability in relatively short spatial scales. The importance of wind models’ spatial resolution is also assessed and used to describe the spatial variability of the typical winds in the region.
A. Sánchez-Arcilla, M. García-León, and V. Gracia
Nat. Hazards Earth Syst. Sci., 14, 2993–3004, https://doi.org/10.5194/nhess-14-2993-2014, https://doi.org/10.5194/nhess-14-2993-2014, 2014
Related subject area
Approach: Operational Oceanography | Properties and processes: Coastal and near-shore processes
Integration of microseism, wavemeter buoy, HF radar and hindcast data to analyze the Mediterranean cyclone Helios
Alfio Marco Borzì, Vittorio Minio, Raphael De Plaen, Thomas Lecocq, Salvatore Alparone, Salvatore Aronica, Flavio Cannavò, Fulvio Capodici, Giuseppe Ciraolo, Sebastiano D'Amico, Danilo Contrafatto, Giuseppe Di Grazia, Ignazio Fontana, Giovanni Giacalone, Graziano Larocca, Carlo Lo Re, Giorgio Manno, Gabriele Nardone, Arianna Orasi, Marco Picone, Giovanni Scicchitano, and Andrea Cannata
Ocean Sci., 20, 1–20, https://doi.org/10.5194/os-20-1-2024, https://doi.org/10.5194/os-20-1-2024, 2024
Short summary
Short summary
In this work, we study a Mediterranean cyclone that occurred in February 2023 and its relationship with a particular seismic signal called microseism. By integrating the data recorded by seismic stations, satellites, HF radar and wavemeter buoy we are able to obtain information about this event. We show how an innovative monitoring system of the Mediterranean cyclones can be designed by integrating microseism information with other techniques routinely used to study meteorological phenomena.
Cited articles
Armenio, E., De Serio, F., Mossa, M., and Petrillo, A. F.: Coastline evolution based on statistical analysis and modeling, Nat. Hazards Earth Syst. Sci., 19, 1937–1953, https://doi.org/10.5194/nhess-19-1937-2019, 2019. a
Arriaga, J., Medellin, G., Ojeda, E., and Salles, P.: Shoreline Detection Accuracy from Video Monitoring Systems, J. Mar. Sci. Eng., 10, 95, https://doi.org/10.3390/jmse10010095, 2022. a
Aznar, R., Sotillo, M., Cailleau, S., Lorente, P., Levier, B., Amo-Baladrón, A., Reffray, G., and Álvarez-Fanjul, E.: Strengths and weaknesses of the CMEMS forecasted and reanalyzed solutions for the Iberia–Biscay–Ireland (IBI) waters, J. Marine Syst., 159, 1–14, https://doi.org/10.1016/j.jmarsys.2016.02.007, 2016. a
Baschek, B., Schroeder, F., Brix, H., Riethmüller, R., Badewien, T. H., Breitbach, G., Brügge, B., Colijn, F., Doerffer, R., Eschenbach, C., Friedrich, J., Fischer, P., Garthe, S., Horstmann, J., Krasemann, H., Metfies, K., Merckelbach, L., Ohle, N., Petersen, W., Pröfrock, D., Röttgers, R., Schlüter, M., Schulz, J., Schulz-Stellenfleth, J., Stanev, E., Staneva, J., Winter, C., Wirtz, K., Wollschläger, J., Zielinski, O., and Ziemer, F.: The Coastal Observing System for Northern and Arctic Seas (COSYNA), Ocean Sci., 13, 379–410, https://doi.org/10.5194/os-13-379-2017, 2017. a
Basher, R.: Global early warning systems for natural hazards: systematic and people-centred, Philos. T. Roy. Soc. A, 364, 2167–2182, 2006. a
Bogden, P., Allen, G., Stone, G., MacLaren, J., Creager, G., Flournoy, L., Zhao, W., Graber, H., Graves, S., Conover, H., Luettich, R., Perrie, W., Ramkrishnan, L., Reed, D., Sheng, P., and Wang, H.: The SURA coastal ocean observing and prediction program (SCOOP) service-oriented architecture, in: OCEANS 2006, IEEE, 1–6, https://doi.org/10.1109/OCEANS.2006.306830, 2006. a
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions: 1. Model description and validation, J. Geophys. Res.-Oceans, 104, 7649–7666, https://doi.org/10.1029/98JC02622, 1999. a
Bosom, E. and Jiménez, J. A.: Probabilistic coastal vulnerability assessment to storms at regional scale – application to Catalan beaches (NW Mediterranean), Nat. Hazards Earth Syst. Sci., 11, 475–484, https://doi.org/10.5194/nhess-11-475-2011, 2011. a
Brignone, M., Schiaffino, C. F., Isla, F. I., and Ferrari, M.: A system for beach video-monitoring: Beachkeeper plus, Comput. Geosci., 49, 53–61, https://doi.org/10.1016/j.cageo.2012.06.008, 2012. a
Buckley, M., Lowe, R., and Hansen, J.: Evaluation of nearshore wave models in steep reef environments, Ocean Dynam., 64, 847–862, https://doi.org/10.1007/s10236-014-0713-x, 2014. a
Capet, A., Fernández, V., She, J., Dabrowski, T., Umgiesser, G., Staneva, J., Mészáros, L., Campuzano, F., Ursella, L., Nolan, G., and El Serafy, G.: Operational modeling capacity in European Seas – an EuroGOOS perspective and recommendations for improvement, Front. Mar. Sci., 7, 129, https://doi.org/10.3389/fmars.2020.00129, 2020. a
Carrion-Bertran, N., Falqués, A., Ribas, F., Calvete, D., de Swart, R., Durán, R., Marco-Peretó, C., Marcos, M., Amores, A., Toomey, T., Fernández-Mora, À., and Guillén, J.: Role of the forcing sources in morphodynamic modelling of an embayed beach, Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024, 2024. a
Chondros, M., Metallinos, A., Papadimitriou, A., Memos, C., and Tsoukala, V.: A coastal flood early-warning system based on offshore sea state forecasts and artificial neural networks, J. Mar. Sci. Eng., 9, 1272, https://doi.org/10.3390/jmse9111272, 2021. a
Cid, A., Menéndez, M., Castanedo, S., Abascal, A. J., Méndez, F. J., and Medina, R.: Long-term changes in the frequency, intensity and duration of extreme storm surge events in southern Europe, Clim. Dynam., 46, 1503–1516, https://doi.org/10.1007/s00382-015-2659-1, 2016. a
Copernicus Marine Service Information (CMEMS): Atlantic-Iberian Biscay Irish- Ocean Wave Analysis and Forecast, Marine Data Store (MDS), https://doi.org/10.48670/moi-00025, 2024a. a
Copernicus Marine Service Information (CMEMS): Atlantic-Iberian Biscay Irish- Ocean Physics Analysis and Forecast, Marine Data Store (MDS), https://doi.org/10.48670/moi-00027, 2024b. a
De Beer, A., McCall, R., Long, J., Tissier, M., and Reniers, A.: Simulating wave runup on an intermediate–reflective beach using a wave-resolving and a wave-averaged version of XBeach, Coast. Eng., 163, 103788, https://doi.org/10.1016/j.coastaleng.2020.103788, 2021. a
De Mey-Frémaux, P., Ayoub, N., Barth, A., Brewin, R., Charria, G., Campuzano, F., Ciavatta, S., Cirano, M., Edwards, C. A., Federico, I., Gao, S., Garcia Hermosa, I., Garcia Sotillo, M., Hewitt, H., Robert Hole, L., Holt, J., King, R., Kourafalou, V., Lu, Y., Mourre, B., Pascual, A., Staneva, J., Stanev, E., Wang, H., and Zhu, X.: Model-observations synergy in the coastal ocean, Front. Mar. Sci., 6, 436, https://doi.org/10.3389/fmars.2019.00436, 2019. a
Fernandez-Moran, R., Gómez-Chova, L., Alonso, L., Mateo-García, G., and López-Puigdollers, D.: Towards a novel approach for Sentinel-3 synergistic OLCI/SLSTR cloud and cloud shadow detection based on stereo cloud-top height estimation, ISPRS J. Photogramm., 181, 238–253, 2021. a
Franz, G., Delpey, M. T., Brito, D., Pinto, L., Leitão, P., and Neves, R.: Modelling of sediment transport and morphological evolution under the combined action of waves and currents, Ocean Sci., 13, 673–690, https://doi.org/10.5194/os-13-673-2017, 2017. a
Grifoll, M., Aretxabaleta, A. L., Espino, M., and Warner, J. C.: Along-shelf current variability on the Catalan inner-shelf (NW Mediterranean), J. Geophys. Res.-Oceans, 117, C09027, https://doi.org/10.1029/2012JC008182, 2012. a
Harley, M. D. and Kinsela, M. A.: CoastSnap: A global citizen science program to monitor changing coastlines, Cont. Shelf Res., 245, 104796, https://doi.org/10.1016/j.csr.2022.104796, 2022. a
Holman, R. A. and Stanley, J.: The history and technical capabilities of Argus, Coast. Eng., 54, 477–491, https://doi.org/10.1016/j.coastaleng.2007.01.003, 2007. a
Idier, D., Aurouet, A., Bachoc, F., Baills, A., Betancourt, J., Gamboa, F., Klein, T., López-Lopera, A. F., Pedreros, R., Rohmer, J., and Thibault, A.: A user-oriented local coastal flooding early warning system using metamodelling techniques, J. Mar.Sci. Eng., 9, 1191, https://doi.org/10.3390/jmse9111191, 2021. a
IPCC: Climate Change 2022: Impacts, Adaptation and Vulnerability, Summary for Policymakers, Cambridge University Press, Cambridge, UK and New York, USA, ISBN 9781009325844, 2022. a
Japkowicz, N.: Learning from imbalanced data sets: a comparison of various strategies, in: AAAI workshop on learning from imbalanced data sets, AAAI Press, Menlo Park, vol. 68, 10–15, 2000. a
Jongman, B.: Effective adaptation to rising flood risk, Nat. Commun., 9, 1986, https://doi.org/10.1038/s41467-018-04396-1, 2018. a
Kelman, I. and Glantz, M. H.: Early warning systems defined, Reducing disaster: Early warning systems for climate change, Springer, 89–108, https://doi.org/10.1007/978-94-017-8598-3_5, 2014. a
Koroglu, A., Ranasinghe, R., Jiménez, J. A., and Dastgheib, A.: Comparison of coastal vulnerability index applications for Barcelona Province, Ocean Coast. Manage., 178, 104799, https://doi.org/10.1016/j.ocecoaman.2019.05.001, 2019. a
Kourafalou, V., De Mey, P., Staneva, J., Ayoub, N., Barth, A., Chao, Y., Cirano, M., Fiechter, J., Herzfeld, M., Kurapov, A., Moore, A. M., Oddo, P., Pullen, J., van der Westhuysen, A., and Weisberg, R. H.: Coastal Ocean Forecasting: science foundation and user benefits, J. Oper. Oceanogr., 8, s147–s167, https://doi.org/10.1080/1755876X.2015.1022348, 2015. a
Li, Z., Shen, H., Weng, Q., Zhang, Y., Dou, P., and Zhang, L.: Cloud and cloud shadow detection for optical satellite imagery: Features, algorithms, validation, and prospects, ISPRS J. Photogramm., 188, 89–108, https://doi.org/10.1016/j.isprsjprs.2022.03.020, 2022. a
Liria, P., Epelde, I., De Santiago, I., Garnier, R., Abalia, A., and Mader, J.: KOSTASystem, a coastal videometry technology: development and applications, in: 9th EuroGOOS International conference, 485–491, https://hal.science/hal-03329155v2 (last access: 15 May 2024), 2021. a
Lorente, P., García-Sotillo, M., Amo-Baladrón, A., Aznar, R., Levier, B., Sánchez-Garrido, J. C., Sammartino, S., de Pascual-Collar, Á., Reffray, G., Toledano, C., and Álvarez-Fanjul, E.: Skill assessment of global, regional, and coastal circulation forecast models: evaluating the benefits of dynamical downscaling in IBI (Iberia–Biscay–Ireland) surface waters, Ocean Sci., 15, 967–996, https://doi.org/10.5194/os-15-967-2019, 2019. a
Mankins, J. C.: Technology readiness levels, White Paper, 6 April 1995. a
MARLIT: Means of assessing and mitigating local coastal risks due to storm surges, https://www.azti.es/en/proyectos/marlit/ (last access: 2 July 2024), 2021. a
Mateus, M., Riflet, G., Chambel, P., Fernandes, L., Fernandes, R., Juliano, M., Campuzano, F., de Pablo, H., and Neves, R.: An operational model for the West Iberian coast: products and services, Ocean Sci., 8, 713–732, https://doi.org/10.5194/os-8-713-2012, 2012. a
Matheen, N., Turner, I. L., Harley, M. D., Splinter, K. D., and Simmons, J. A.: How sensitive is storm erosion modelling to prior knowledge of pre-storm surf zone and nearshore bathymetry?, in: Australasian Coasts and Ports 2019 Conference: Future directions from 40 [degrees] S and beyond, Hobart, 10–13 September 2019, Engineers Australia Hobart, 819–824, ISBN 9781925627237, 2019. a
Matheen, N., Harley, M. D., Turner, I. L., Splinter, K. D., Simmons, J. A., and Thran, M. C.: Bathymetric data requirements for operational coastal erosion forecasting using XBeach, J. Mar. Sci. Eng., 9, 1053, https://doi.org/10.3390/jmse9101053, 2021. a
Matias, A., Carrasco, A. R., Loureiro, C., Masselink, G., Andriolo, U., McCall, R., Ferreira, Ó., Plomaritis, T. A., Pacheco, A., and Guerreiro, M.: Field measurements and hydrodynamic modelling to evaluate the importance of factors controlling overwash, Coast. Eng., 152, 103523, https://doi.org/10.1016/j.coastaleng.2019.103523, 2019. a
McCall, R., Masselink, G., Poate, T., Roelvink, J., Almeida, L., Davidson, M., and Russell, P.: Modelling storm hydrodynamics on gravel beaches with XBeach-G, Coast. Eng., 91, 231–250, https://doi.org/10.1016/j.coastaleng.2014.06.007, 2014. a, b
McGranahan, G., Balk, D., and Anderson, B.: The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones, Environ. Urban., 19, 17–37, https://doi.org/10.1177/0956247807076960, 2007. a
Mickey, R. C., Dalyander, P. S., McCall, R., and Passeri, D. L.: Sensitivity of storm response to antecedent topography in the XBeach model, J. Mar. Sci. Eng., 8, 829, https://doi.org/10.3390/jmse8100829, 2020. a
Nieto, M. A., Garau, B., Balle, S., Simarro, G., Zarruk, G. A., Ortiz, A., Tintoré, J., Álvarez-Ellacuría, A., Gómez-Pujol, L., and Orfila, A.: An open source, low cost video-based coastal monitoring system, Earth Surf. Proc. Land., 35, 1712–1719, https://doi.org/10.1002/esp.2025, 2010. a
Ojeda, E. and Guillén, J.: Shoreline dynamics and beach rotation of artificial embayed beaches, Mar. Geol., 253, 51–62, https://doi.org/10.1016/j.margeo.2008.03.010, 2008. a, b
Oliveira, J. N. C., Oliveira, F. S., Neves, M. G., Clavero, M., and Trigo-Teixeira, A. A.: Modeling wave overtopping on a seawall with XBeach, IH2VOF, and mase formulas, Water, 12, 2526, https://doi.org/10.3390/w12092526, 2020. a
Oliver, H. J., Shin, M., and Sanders, O.: Cylc: A workflow engine for cycling systems, J. Open Source Softw., 3, 737, https://doi.org/10.21105/joss.00737, 2018. a
Pérez Gómez, B., Vilibić, I., Šepić, J., Međugorac, I., Ličer, M., Testut, L., Fraboul, C., Marcos, M., Abdellaoui, H., Álvarez Fanjul, E., Barbalić, D., Casas, B., Castaño-Tierno, A., Čupić, S., Drago, A., Fraile, M. A., Galliano, D. A., Gauci, A., Gloginja, B., Martín Guijarro, V., Jeromel, M., Larrad Revuelto, M., Lazar, A., Keskin, I. H., Medvedev, I., Menassri, A., Meslem, M. A., Mihanović, H., Morucci, S., Niculescu, D., Quijano de Benito, J. M., Pascual, J., Palazov, A., Picone, M., Raicich, F., Said, M., Salat, J., Sezen, E., Simav, M., Sylaios, G., Tel, E., Tintoré, J., Zaimi, K., and Zodiatis, G.: Coastal sea level monitoring in the Mediterranean and Black seas, Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, 2022. a
Pinardi, N. and Woods, J.: Ocean forecasting: conceptual basis and applications, Springer Science & Business Media, https://doi.org/10.1007/978-3-662-22648-3, 2002. a
Quansah, J. E., Engel, B., and Rochon, G. L.: Early warning systems: a review, Journal of Terrestrial Observation, 2, p. 5, 2010. a
Ribas, F., Ojeda, E., Price, T. D., and Guillén, J.: Assessing the suitability of video imaging for studying the dynamics of nearshore sandbars in tideless beaches, IEEE T. Geosci. Remote, 48, 2482–2497, https://doi.org/10.1109/TGRS.2009.2039576, 2010. a
Roelvink, D., Reniers, A., Van Dongeren, A., De Vries, J. V. T., McCall, R., and Lescinski, J.: Modelling storm impacts on beaches, dunes and barrier islands, Coast. Eng., 56, 1133–1152, https://doi.org/10.1016/j.coastaleng.2009.08.006, 2009. a, b
Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel de Vries, J., Lescinski, J., and McCall, R.: XBeach model description and manual, Unesco-IHE Institute for Water Education, Deltares and Delft University of Technology, Report 21 June 2010. a
Romero-Martín, R., Caballero-Leiva, I., Llasat, M. C., Llasat-Botija, M., Rigo, T., Valdemoro, H. I., Gilabert, J., Cortès, M., and Jiménez, J. A.: Mapping cumulative compound hydrometeorological and marine-induced risks on the NW Mediterranean coast, Sci. Rep., 14, 3237, https://doi.org/10.1038/s41598-024-53899-z, 2024. a
Sánchez-Artús, X., Gracia Garcia, V., Espino Infantes, M., Sierra Pedrico, J. P., Pinyol Guamis, J., and Sánchez-Arcilla Conejo, A.: Present and future flooding and erosion along the NW Spanish Mediterranean Coast, Front. Mar. Sci., 10, 1125138, https://doi.org/10.3389/fmars.2023.1125138, 2023. a
Sánchez-Artús, X., Subbiah, B., Gracia, V., Espino, M., Grifoll, M., Espanya, A., and Sánchez-Arcilla, A.: Evaluating barrier beach protection with numerical modelling. A practical case, Coast. Eng., 191, 104522, https://doi.org/10.1016/j.coastaleng.2024.104522, 2024. a
Schiller, A., Mourre, B., Drillet, Y., and Brassington, G.: Overview of operational oceanography, in: New frontiers in operational oceanography, edited by: Pascual, A., Tintoré, J., and Verron, J., GODAE OceanView, 1–26, https://doi.org/10.17125/gov2018.ch01, 2018. a
Schweiger, C., Koldrack, N., Kaehler, C., and Schuettrumpf, H.: Influence of nearshore bathymetry changes on the numerical modelling of dune erosion, J. Coast. Res., 36, 545–558, https://doi.org/10.2112/JCOASTRES-D-19-00067.1, 2020. a
Scott, T., Austin, M., Masselink, G., and Russell, P.: Dynamics of rip currents associated with groynes – field measurements, modelling and implications for beach safety, Coast. Eng., 107, 53–69, https://doi.org/10.1016/j.coastaleng.2015.09.013, 2016. a
She, J., Allen, I., Buch, E., Crise, A., Johannessen, J. A., Le Traon, P.-Y., Lips, U., Nolan, G., Pinardi, N., Reißmann, J. H., Siddorn, J., Stanev, E., and Wehde, H.: Developing European operational oceanography for Blue Growth, climate change adaptation and mitigation, and ecosystem-based management, Ocean Sci., 12, 953–976, https://doi.org/10.5194/os-12-953-2016, 2016. a
Shen, H., Li, X., Cheng, Q., Zeng, C., Yang, G., Li, H., and Zhang, L.: Missing information reconstruction of remote sensing data: A technical review, IEEE Geosci. Remote S. Mag., 3, 61–85, https://doi.org/10.1109/MGRS.2015.2441912, 2015. a
Simarro, G., Ribas, F., Álvarez, A., Guillén, J., Chic, Ò., and Orfila, A.: ULISES: An open source code for extrinsic calibrations and planview generations in coastal video monitoring systems, J. Coast. Res., 33, 1217–1227, 2017. a
Simarro, G., Calvete, D., Luque, P., Orfila, A., and Ribas, F.: UBathy: A new approach for bathymetric inversion from video imagery, Remote Sens., 11, 2722, https://doi.org/10.3390/rs11232722, 2019. a
Simarro, G., Calvete, D., and Souto, P.: UCalib: Cameras Autocalibration on Coastal Video Monitoring Systems, Remote Sens., 13, 2795, https://doi.org/10.3390/rs13142795, 2021. a
Sotillo, M. G., Mourre, B., Mestres, M., Lorente, P., Aznar, R., García-León, M., Liste, M., Santana, A., Espino, M., and Álvarez, E.: Evaluation of the operational CMEMS and coastal downstream ocean forecasting services during the storm Gloria (January 2020), Front. Mar. Sci., 8, 644525, https://doi.org/10.3389/fmars.2021.644525, 2021. a, b
Stanev, E. V., Schulz-Stellenfleth, J., Staneva, J., Grayek, S., Grashorn, S., Behrens, A., Koch, W., and Pein, J.: Ocean forecasting for the German Bight: from regional to coastal scales, Ocean Sci., 12, 1105–1136, https://doi.org/10.5194/os-12-1105-2016, 2016. a
Taborda, R. and Silva, A.: COSMOS: A lightweight coastal video monitoring system, Comput. Geosci., 49, 248–255, https://doi.org/10.1016/j.cageo.2012.07.013, 2012. a
Turki, I., Medina, R., Gonzalez, M., and Coco, G.: Natural variability of shoreline position: Observations at three pocket beaches, Mar. Geol., 338, 76–89, https://doi.org/10.1016/j.margeo.2012.10.007, 2013. a
Van Dongeren, A., Ciavola, P., Martinez, G., Viavattene, C., Bogaard, T., Ferreira, O., Higgins, R., and McCall, R.: Introduction to RISC-KIT: Resilience-increasing strategies for coasts, Coast. Eng., 134, 2–9, https://doi.org/10.1016/j.coastaleng.2017.10.007, 2018. a
Walstad, L. J. and McGillicuddy, D. J.: Data assimilation for coastal observing systems, Oceanography, 13, 47–53, 2000. a
Wilkin, J., Rosenfeld, L., Allen, A., Baltes, R., Baptista, A., He, R., Hogan, P., Kurapov, A., Mehra, A., Quintrell, J., Schwab, D., Signell, R., and Smith, J.: Advancing coastal ocean modelling, analysis, and prediction for the US Integrated Ocean Observing System, J. Oper. Oceanogr., 10, 115–126, https://doi.org/10.1080/1755876X.2017.1322026, 2017. a
Williams, J. J. and Esteves, L. S.: Guidance on setup, calibration, and validation of hydrodynamic, wave, and sediment models for shelf seas and estuaries, Adv. Civil Eng., 2017, 5251902, https://doi.org/10.1155/2017/5251902, 2017. a
Willmott, C. J.: On the validation of models, Phys. Geogr., 2, 184–194, https://doi.org/10.1080/02723646.1981.10642213, 1981. a
Zhou, Y., Feng, X., Liu, M., and Wang, W.: Influence of beach erosion during wave action in designed artificial sandy beach using XBeach model: profiles and shoreline, J. Mar. Sci. Eng., 11, 984, https://doi.org/10.3390/jmse11050984, 2023. a
Short summary
The study presents an operational service that forecasts flood impacts during extreme conditions at three beaches in Barcelona, Spain. The architecture is designed for efficient use on standard desktop computers, using data from the Copernicus Marine Environment Monitoring Service, task automation tools, Python scripts, and the XBeach model to deliver timely results. Extensive validation, including field campaigns and video analysis, ensures accuracy and reliability.
The study presents an operational service that forecasts flood impacts during extreme conditions...