Articles | Volume 21, issue 2
https://doi.org/10.5194/os-21-701-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-701-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Internal-wave-induced dissipation rates in the Weddell Sea Bottom Water gravity current
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
Friederike Pollmann
CEN – Center for Earth System Research and Sustainability, Universität Hamburg, Bundesstraße 53, 20146 Hamburg, Germany
Markus Janout
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
Gunnar Voet
Scripps Institution of Oceanography, UC San Diego, 9500 Gilman Drive, La Jolla, CA, USA
Torsten Kanzow
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
Department of Physics and Electrical Engineering, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
Related authors
No articles found.
Shenjie Zhou, Pierre Dutrieux, Claudia F. Giulivi, Adrian Jenkins, Alessandro Silvano, Christopher Auckland, E. Povl Abrahamsen, Michael P. Meredith, Irena Vaňková, Keith W. Nicholls, Peter E. D. Davis, Svein Østerhus, Arnold L. Gordon, Christopher J. Zappa, Tiago S. Dotto, Theodore A. Scambos, Kathyrn L. Gunn, Stephen R. Rintoul, Shigeru Aoki, Craig Stevens, Chengyan Liu, Sukyoung Yun, Tae-Wan Kim, Won Sang Lee, Markus Janout, Tore Hattermann, Julius Lauber, Elin Darelius, Anna Wåhlin, Leo Middleton, Pasquale Castagno, Giorgio Budillon, Karen J. Heywood, Jennifer Graham, Stephen Dye, Daisuke Hirano, and Una Kim Miller
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-54, https://doi.org/10.5194/essd-2025-54, 2025
Preprint under review for ESSD
Short summary
Short summary
We created the first standardised dataset of in-situ ocean measurements time series from around Antarctica collected since 1970s. This includes temperature, salinity, pressure, and currents recorded by instruments deployed in icy, challenging conditions. Our analysis highlights the dominance of tidal currents and separates these from other patterns to study regional energy distribution. This unique dataset offers a foundation for future research on Antarctic ocean dynamics and ice interactions.
Ivan Kuznetsov, Benjamin Rabe, Alexey Androsov, Ying-Chih Fang, Mario Hoppmann, Alejandra Quintanilla-Zurita, Sven Harig, Sandra Tippenhauer, Kirstin Schulz, Volker Mohrholz, Ilker Fer, Vera Fofonova, and Markus Janout
Ocean Sci., 20, 759–777, https://doi.org/10.5194/os-20-759-2024, https://doi.org/10.5194/os-20-759-2024, 2024
Short summary
Short summary
Our research introduces a tool for dynamically mapping the Arctic Ocean using data from the MOSAiC experiment. Incorporating extensive data into a model clarifies the ocean's structure and movement. Our findings on temperature, salinity, and currents reveal how water layers mix and identify areas of intense water movement. This enhances understanding of Arctic Ocean dynamics and supports climate impact studies. Our work is vital for comprehending this key region in global climate science.
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
EGUsphere, https://doi.org/10.5194/egusphere-2024-757, https://doi.org/10.5194/egusphere-2024-757, 2024
Short summary
Short summary
The Greenland Ice Sheet represents the second-largest contributor to global sea-level rise. We quantify atmosphere, ice and ocean-based processes related to the mass balance of glaciers in Northeast Greenland, focusing on Greenland’s largest floating ice tongue, the 79N Glacier. We find that together, the different in situ and remote sensing observations and model simulations to reveal a consistent picture of a coupled atmosphere-ice sheet-ocean system, that has entered a phase of major change.
Lukrecia Stulic, Ralph Timmermann, Stephan Paul, Rolf Zentek, Günther Heinemann, and Torsten Kanzow
Ocean Sci., 19, 1791–1808, https://doi.org/10.5194/os-19-1791-2023, https://doi.org/10.5194/os-19-1791-2023, 2023
Short summary
Short summary
In the southern Weddell Sea, the strong sea ice growth in coastal polynyas drives formation of dense shelf water. By using a sea ice–ice shelf–ocean model with representation of the changing icescape based on satellite data, we find that polynya sea ice growth depends on both the regional atmospheric forcing and the icescape. Not just strength but also location of the sea ice growth in polynyas affects properties of the dense shelf water and the basal melting of the Filchner–Ronne Ice Shelf.
Elin Darelius, Vår Dundas, Markus Janout, and Sandra Tippenhauer
Ocean Sci., 19, 671–683, https://doi.org/10.5194/os-19-671-2023, https://doi.org/10.5194/os-19-671-2023, 2023
Short summary
Short summary
Antarctica's ice shelves are melting from below as ocean currents bring warm water into the ice shelf cavities. The melt rates of the large Filchner–Ronne Ice Shelf in the southern Weddell Sea are currently low, as the water in the cavity is cold. Here, we present data from a scientific cruise to the region in 2021 and show that the warmest water at the upper part of the continental slope is now about 0.1°C warmer than in previous observations, while the surface water is fresher than before.
Francesca Doglioni, Robert Ricker, Benjamin Rabe, Alexander Barth, Charles Troupin, and Torsten Kanzow
Earth Syst. Sci. Data, 15, 225–263, https://doi.org/10.5194/essd-15-225-2023, https://doi.org/10.5194/essd-15-225-2023, 2023
Short summary
Short summary
This paper presents a new satellite-derived gridded dataset, including 10 years of sea surface height and geostrophic velocity at monthly resolution, over the Arctic ice-covered and ice-free regions, up to 88° N. We assess the dataset by comparison to independent satellite and mooring data. Results correlate well with independent satellite data at monthly timescales, and the geostrophic velocity fields can resolve seasonal to interannual variability of boundary currents wider than about 50 km.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Jens A. Hölemann, Bennet Juhls, Dorothea Bauch, Markus Janout, Boris P. Koch, and Birgit Heim
Biogeosciences, 18, 3637–3655, https://doi.org/10.5194/bg-18-3637-2021, https://doi.org/10.5194/bg-18-3637-2021, 2021
Short summary
Short summary
The Arctic Ocean receives large amounts of river water rich in terrestrial dissolved organic matter (tDOM), which is an important component of the Arctic carbon cycle. Our analysis shows that mixing of three major freshwater sources is the main factor that regulates the distribution of tDOM concentrations in the Siberian shelf seas. In this context, the formation and melting of the land-fast ice in the Laptev Sea and the peak spring discharge of the Lena River are of particular importance.
Francesca Doglioni, Robert Ricker, Benjamin Rabe, and Torsten Kanzow
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-170, https://doi.org/10.5194/essd-2021-170, 2021
Manuscript not accepted for further review
Short summary
Short summary
This paper presents a new satellite-derived gridded dataset of sea surface height and geostrophic velocity, over the Arctic ice-covered and ice-free regions up to 88° N. The dataset includes velocities north of 82° N, which were not available before. We assess the dataset by comparison to one independent satellite dataset and to independent mooring data. Results show that the geostrophic velocity fields can resolve seasonal to interannual variability of boundary currents wider than about 50 km.
Josefine Herrford, Peter Brandt, Torsten Kanzow, Rebecca Hummels, Moacyr Araujo, and Jonathan V. Durgadoo
Ocean Sci., 17, 265–284, https://doi.org/10.5194/os-17-265-2021, https://doi.org/10.5194/os-17-265-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important component of the climate system. Understanding its structure and variability is a key priority for many scientists. Here, we present the first estimate of AMOC variations for the tropical South Atlantic from the TRACOS array at 11° S. Over the observed period, the AMOC was dominated by seasonal variability. We investigate the respective mechanisms with an ocean model and find that different wind-forced waves play a big role.
H. Jakob Belter, Thomas Krumpen, Stefan Hendricks, Jens Hoelemann, Markus A. Janout, Robert Ricker, and Christian Haas
The Cryosphere, 14, 2189–2203, https://doi.org/10.5194/tc-14-2189-2020, https://doi.org/10.5194/tc-14-2189-2020, 2020
Short summary
Short summary
The validation of satellite sea ice thickness (SIT) climate data records with newly acquired moored sonar SIT data shows that satellite products provide modal rather than mean SIT in the Laptev Sea region. This tendency of satellite-based SIT products to underestimate mean SIT needs to be considered for investigations of sea ice volume transports. Validation of satellite SIT in the first-year-ice-dominated Laptev Sea will support algorithm development for more reliable SIT records in the Arctic.
Eike E. Köhn, Sören Thomsen, Damian L. Arévalo-Martínez, and Torsten Kanzow
Ocean Sci., 13, 1017–1033, https://doi.org/10.5194/os-13-1017-2017, https://doi.org/10.5194/os-13-1017-2017, 2017
Amelie Driemel, Eberhard Fahrbach, Gerd Rohardt, Agnieszka Beszczynska-Möller, Antje Boetius, Gereon Budéus, Boris Cisewski, Ralph Engbrodt, Steffen Gauger, Walter Geibert, Patrizia Geprägs, Dieter Gerdes, Rainer Gersonde, Arnold L. Gordon, Hannes Grobe, Hartmut H. Hellmer, Enrique Isla, Stanley S. Jacobs, Markus Janout, Wilfried Jokat, Michael Klages, Gerhard Kuhn, Jens Meincke, Sven Ober, Svein Østerhus, Ray G. Peterson, Benjamin Rabe, Bert Rudels, Ursula Schauer, Michael Schröder, Stefanie Schumacher, Rainer Sieger, Jüri Sildam, Thomas Soltwedel, Elena Stangeew, Manfred Stein, Volker H Strass, Jörn Thiede, Sandra Tippenhauer, Cornelis Veth, Wilken-Jon von Appen, Marie-France Weirig, Andreas Wisotzki, Dieter A. Wolf-Gladrow, and Torsten Kanzow
Earth Syst. Sci. Data, 9, 211–220, https://doi.org/10.5194/essd-9-211-2017, https://doi.org/10.5194/essd-9-211-2017, 2017
Short summary
Short summary
Our oceans are always in motion – huge water masses are circulated by winds and by global seawater density gradients resulting from different water temperatures and salinities. Measuring temperature and salinity of the world's oceans is crucial e.g. to understand our climate. Since 1983, the research icebreaker Polarstern has been the basis of numerous water profile measurements in the Arctic and the Antarctic. We report on a unique collection of 33 years of polar salinity and temperature data.
K. A. Reeve, O. Boebel, T. Kanzow, V. Strass, G. Rohardt, and E. Fahrbach
Earth Syst. Sci. Data, 8, 15–40, https://doi.org/10.5194/essd-8-15-2016, https://doi.org/10.5194/essd-8-15-2016, 2016
Short summary
Short summary
We present spatially gridded, time-composite mapped data of temperature and salinity of the upper 2000m of the Weddell Gyre through the objective mapping of Argo float data. This was realized on fixed-pressure surfaces ranging from 50 to 2000 dbar. Pressure, temperature and salinity are also available at the level of the sub-surface temperature maximum, which represents the core of Warm Deep Water, the primary heat source of the Weddell Gyre. A detailed description of the methods is provided.
P. Brandt, H. W. Bange, D. Banyte, M. Dengler, S.-H. Didwischus, T. Fischer, R. J. Greatbatch, J. Hahn, T. Kanzow, J. Karstensen, A. Körtzinger, G. Krahmann, S. Schmidtko, L. Stramma, T. Tanhua, and M. Visbeck
Biogeosciences, 12, 489–512, https://doi.org/10.5194/bg-12-489-2015, https://doi.org/10.5194/bg-12-489-2015, 2015
Short summary
Short summary
Our observational study looks at the structure of the eastern tropical North Atlantic (ETNA) oxygen minimum zone (OMZ) in comparison with the less-ventilated, eastern tropical South Pacific OMZ. We quantify the OMZ’s oxygen budget composed of consumption, advection, lateral and vertical mixing. Substantial oxygen variability is observed on interannual to multidecadal timescales. The deoxygenation of the ETNA OMZ during the last decades represents a substantial imbalance of the oxygen budget.
I. A. Dmitrenko, S. A. Kirillov, N. Serra, N. V. Koldunov, V. V. Ivanov, U. Schauer, I. V. Polyakov, D. Barber, M. Janout, V. S. Lien, M. Makhotin, and Y. Aksenov
Ocean Sci., 10, 719–730, https://doi.org/10.5194/os-10-719-2014, https://doi.org/10.5194/os-10-719-2014, 2014
T. Krumpen, M. Janout, K. I. Hodges, R. Gerdes, F. Girard-Ardhuin, J. A. Hölemann, and S. Willmes
The Cryosphere, 7, 349–363, https://doi.org/10.5194/tc-7-349-2013, https://doi.org/10.5194/tc-7-349-2013, 2013
C. Wegner, D. Bauch, J. A. Hölemann, M. A. Janout, B. Heim, A. Novikhin, H. Kassens, and L. Timokhov
Biogeosciences, 10, 1117–1129, https://doi.org/10.5194/bg-10-1117-2013, https://doi.org/10.5194/bg-10-1117-2013, 2013
Related subject area
Approach: In situ Observations | Properties and processes: Internal waves, turbulence and mixing
Technical note: Spectral slopes in a deep, weakly stratified ocean and coupling between sub-mesoscale motion and small-scale mechanisms
Enhanced bed shear stress and mixing in the tidal wake of an offshore wind turbine monopile
Parameter Sensitivity Study of Energy Transfer Between Mesoscale Eddies and Wind-Induced Near-Inertial Oscillations
Overlapping turbulent boundary layers in an energetic coastal sea
Turbulent erosion of a subducting intrusion in the Western Mediterranean Sea
Dissipation ratio and eddy diffusivity of turbulent and salt finger mixing derived from microstructure measurements
Internal-tide vertical structure and steric sea surface height signature south of New Caledonia revealed by glider observations
Observations of strong turbulence and mixing impacting water exchange between two basins in the Baltic Sea
Hans van Haren
Ocean Sci., 21, 555–565, https://doi.org/10.5194/os-21-555-2025, https://doi.org/10.5194/os-21-555-2025, 2025
Short summary
Short summary
Ocean circulations include small-scale processes like transport through sub-mesoscale eddies and turbulence by internal wave breaking. Knowledge is lacking on the interaction between the different processes. In deep, weakly stratified waters, continuous spectral slopes are observed that extend from sub-mesoscales across the internal wave band to the turbulence range. Such correspondence is suggested as being a potential feedback mechanism stabilizing large-scale ocean circulations.
Martin J. Austin, Christopher A. Unsworth, Katrien J. J. Van Landeghem, and Ben J. Lincoln
Ocean Sci., 21, 81–91, https://doi.org/10.5194/os-21-81-2025, https://doi.org/10.5194/os-21-81-2025, 2025
Short summary
Short summary
Novel hydrodynamic observations 40 m from an offshore wind turbine monopile show that the turbulent tidal lee wake doubles the drag acting on the seabed, potentially enhancing sediment transport and impacting the seabed habitat and the organisms that utilise it. It also enhances the vertical mixing of the water column, which drives the transport of heat, nutrients and oxygen. As offshore wind farms rapidly expand into deeper waters, array-scale wakes may have significant ecological impacts.
Yu Zhang, Jintao Gu, Shengli Chen, Jianyu Hu, Jinyu Sheng, and Jiuxing Xing
EGUsphere, https://doi.org/10.5194/egusphere-2024-3457, https://doi.org/10.5194/egusphere-2024-3457, 2024
Short summary
Short summary
Current observations at two moorings in the northern South China Sea reveal that mesoscale eddies can transfer energy with near-inertial oscillations (NIOs). Numerical experiments are conducted to investigate important parameters affecting energy transfer between mesoscale eddies and NIOs, which demonstrate that the energy transferred by mesoscale eddies is larger with stronger winds and higher strength of the mesoscale eddy. Anticyclonic eddies can transfer more energy than cyclonic eddies.
Arnaud F. Valcarcel, Craig L. Stevens, Joanne M. O'Callaghan, and Sutara H. Suanda
EGUsphere, https://doi.org/10.5194/egusphere-2024-3311, https://doi.org/10.5194/egusphere-2024-3311, 2024
Short summary
Short summary
This paper describes results from an underwater robot (glider) deployment in the energetic waters of Te-Moana-o-Raukawa. The glider data showed how energy is transferred from winds and tides to turbulent processes. We found that boundary layers of strong turbulence typically can impact the water from surface to seafloor, except when pockets of fresher or warmer water move into the region. Numerical simulations showed that turbulent energy transport was crucial for boundary layers to interact.
Giovanni Testa, Mathieu Dever, Mara Freilich, Amala Mahadevan, T. M. Shaun Johnston, Lorenzo Pasculli, and Francesco M. Falcieri
EGUsphere, https://doi.org/10.5194/egusphere-2024-3294, https://doi.org/10.5194/egusphere-2024-3294, 2024
Short summary
Short summary
In the Western Alboran Gyre, waters from the Atlantic and Mediterranean meet, creating density differences that cause some water to sink, affecting ocean ventilation and nutrient cycles. We collected data showing patches of water with higher oxygen and chlorophyll levels moving towards the gyre's center, with active mixing at their edges. This mixing diluted the patches, and other factors like water density and light penetration likely played a role in these dynamics.
Jianing Li, Qingxuan Yang, and Hui Sun
EGUsphere, https://doi.org/10.5194/egusphere-2024-2749, https://doi.org/10.5194/egusphere-2024-2749, 2024
Short summary
Short summary
Osborn relation is widely used to estimate diapycnal mixing rate, but its accuracy is questioned due to the assumed constant dissipation ratio (Γ) and without identifying mixing types. We identify salt finger and turbulence in the western Pacific and midlatitude Atlantic, and find Γ is highly variable and is related to turbulence-related parameters, by which we improve mixing rate estimates. Thus, identifying mixing types and refining Γ are necessary to improve mixing parameterization accuracy.
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Luc Rainville, Clément Vic, Guillaume Sérazin, Fabien Durand, Frédéric Marin, and Jean-Luc Fuda
Ocean Sci., 20, 945–964, https://doi.org/10.5194/os-20-945-2024, https://doi.org/10.5194/os-20-945-2024, 2024
Short summary
Short summary
A unique dataset of glider observations reveals tidal beams south of New Caledonia – an internal-tide-generation hot spot in the southwestern tropical Pacific. Observations are in good agreement with numerical modeling output, highlighting the glider's capability to infer internal tides while assessing the model's realism of internal-tide dynamics. Discrepancies are in large part linked to eddy–internal-tide interactions. A methodology is proposed to deduce the internal-tide surface signature.
Julia Muchowski, Martin Jakobsson, Lars Umlauf, Lars Arneborg, Bo Gustafsson, Peter Holtermann, Christoph Humborg, and Christian Stranne
Ocean Sci., 19, 1809–1825, https://doi.org/10.5194/os-19-1809-2023, https://doi.org/10.5194/os-19-1809-2023, 2023
Short summary
Short summary
We show observational data of highly increased mixing and vertical salt flux rates in a sparsely sampled region of the northern Baltic Sea. Co-located acoustic observations complement our in situ measurements and visualize turbulent mixing with high spatial resolution. The observed mixing is generally not resolved in numerical models of the area but likely impacts the exchange of water between the adjacent basins as well as nutrient and oxygen conditions in the Bothnian Sea.
Cited articles
Alford, M. H., Gregg, M. C., and Merrifield, M. A.: Structure, Propagation, and Mixing of Energetic Baroclinic Tides in Mamala Bay, Oahu, Hawaii, J. Phys. Oceanogr., 36, 997–1018, https://doi.org/10.1175/JPO2877.1, 2006. a
Alford, M. H., Simmons, H. L., Marques, O. B., and Girton, J. B.: Internal Tide Attenuation in the North Pacific, Geophys. Res. Lett., 46, 8205–8213, https://doi.org/10.1029/2019GL082648, 2019. a
Baumann, T. M., Fer, I., Schulz, K., and Mohrholz, V.: Validating Finescale Parameterizations for the Eastern Arctic Ocean Internal Wave Field, J. Geophys. Res.-Oceans, 128, e2022JC018668, https://doi.org/10.1029/2022JC018668, 2023. a, b
Boebel, O.: The Expedition PS103 of the Research Vessel POLARSTERN to the Weddell Sea in 2016/2017, Tech. rep., Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, https://doi.org/10.2312/BZPM_0710_2017, 2017. a
Boebel, O.: The Expedition PS117 of the Research Vessel POLARSTERN to the Weddell Sea in 2018/2019, Tech. rep., Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, https://doi.org/10.2312/BZPM_0732_2019, 2019. a
Bray, N. A. and Fofonoff, N. P.: Available Potential Energy for MODE Eddies, J. Phys. Oceanogr., 11, 30–47, https://doi.org/10.1175/1520-0485(1981)011<0030:APEFME>2.0.CO;2, 1981. a
Brüggemann, N., Losch, M., Scholz, P., Pollmann, F., Danilov, S., Gutjahr, O., Jungclaus, J., Koldunov, N., Korn, P., Olbers, D., and Eden, C.: Parameterized Internal Wave Mixing in Three Ocean General Circulation Models, J. Adv. Model. Earth Syst., 16, e2023MS003768, https://doi.org/10.1029/2023MS003768, 2024. a, b
Buijsman, M. C., Stephenson, G. R., Ansong, J. K., Arbic, B. K., Green, J. M., Richman, J. G., Shriver, J. F., Vic, C., Wallcraft, A. J., and Zhao, Z.: On the Interplay between Horizontal Resolution and Wave Drag and Their Effect on Tidal Baroclinic Mode Waves in Realistic Global Ocean Simulations, Ocean Model., 152, 101656, https://doi.org/10.1016/j.ocemod.2020.101656, 2020. a
Chave, A. D., Luther, D. S., and Thomson, D. J.: High-Q Spectral Peaks and Nonstationarity in the Deep Ocean Infragravity Wave Band: Tidal Harmonics and Solar Normal Modes, J. Geophys. Res.=Oceans, 124, 2072–2087, https://doi.org/10.1029/2018JC014586, 2019. a
Cokelaer, T. and Hasch, J.: `Spectrum': Spectral Analysis in Python, J. Open Source Softw., 2, 348, https://doi.org/10.21105/joss.00348, 2017. a
Crawford, W. R.: A Comparison of Length Scales and Decay Times of Turbulence in Stably Stratified Flows, J. Phys. Oceanogr., 16, 1847–1854, https://doi.org/10.1175/1520-0485(1986)016<1847:ACOLSA>2.0.CO;2, 1986. a
de Lavergne, C.: Global Tidal Mixing Maps, SEANOE [data set], https://doi.org/10.17882/73082, 2020. a
de Lavergne, C., Falahat, S., Madec, G., Roquet, F., Nycander, J., and Vic, C.: Toward Global Maps of Internal Tide Energy Sinks, Ocean Model., 137, 52–75, https://doi.org/10.1016/j.ocemod.2019.03.010, 2019. a, b, c, d
de Lavergne, C., Vic, C., Madec, G., Roquet, F., Waterhouse, A. F., Whalen, C. B., Cuypers, Y., Bouruet-Aubertot, P., Ferron, B., and Hibiya, T.: A Parameterization of Local and Remote Tidal Mixing, J. Adv. Model. Earth Syst., 12, e2020MS002065, https://doi.org/10.1029/2020MS002065, 2020. a
Dematteis, G. and Lvov, Y. V.: Downscale Energy Fluxes in Scale-Invariant Oceanic Internal Wave Turbulence, J. Fluid Mech., 915, A129, https://doi.org/10.1017/jfm.2021.99, 2021. a
Dillon, T. M.: Vertical Overturns: A Comparison of Thorpe and Ozmidov Length Scales, J. Geophys. Res.-Oceans, 87, 9601–9613, https://doi.org/10.1029/JC087iC12p09601, 1982. a, b, c, d
Dorschel, B., Hehemann, L., Viquerat, S., Warnke, F., Dreutter, S., Schulze Tenberge, Y., Accettella, D., An, L., Barrios, F., Bazhenova, E. A., Black, J., Bohoyo, F., Davey, C., de Santis, L., Escutia Dotti, C., Fremand, A. C., Fretwell, P. T., Gales, J. A., Gao, J., Gasperini, L., Greenbaum, J. S., Henderson Jencks, J., Hogan, K. A., Hong, J. K., Jakobsson, M., Jensen, L., Kool, J., Larin, S., Larter, R. D., Leitchenkov, G. L., Loubrieu, B., Mackay, K., Mayer, L., Millan, R., Morlighem, M., Navidad, F., Nitsche, F.-O., Nogi, Y., Pertuisot, C., Post, A. L., Pritchard, H. D., Purser, A., Rebesco, M., Rignot, E., Roberts, J. L., Rovere, M., Ryzhov, I., Sauli, C., Schmitt, T., Silvano, A., Smith, J. E., Snaith, H., Tate, A. J., Tinto, K., Vandenbossche, P., Weatherall, P., Wintersteller, P., Yang, C., Zhang, T., and Arndt, J. E.: The International Bathymetric Chart of the Southern Ocean Version 2 (IBCSO V2), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.937574, 2022. a
Dotto, T. S., Kerr, R., Mata, M. M., Azaneu, M., Wainer, I., Fahrbach, E., and Rohardt, G.: Assessment of the Structure and Variability of Weddell Sea Water Masses in Distinct Ocean Reanalysis Products, Ocean Sci., 10, 523–546, https://doi.org/10.5194/os-10-523-2014, 2014. a, b
Eden, C., Pollmann, F., and Olbers, D.: Numerical Evaluation of Energy Transfers in Internal Gravity Wave Spectra of the Ocean, J. Phys. Oceanogr., 49, 737–749, https://doi.org/10.1175/JPO-D-18-0075.1, 2019. a
Eden, C., Olbers, D., and Eriksen, T.: A Closure for Lee Wave Drag on the Large-Scale Ocean Circulation, J. Phys. Oceanogr., 51, 3573–3588, https://doi.org/10.1175/JPO-D-20-0230.1, 2021. a
Egbert, G. D. and Ray, R. D.: Semi-diurnal and Diurnal Tidal Dissipation from TOPEX/Poseidon Altimetry, Geophys. Res. Lett., 30, 2003GL017676, https://doi.org/10.1029/2003GL017676, 2003. a
Fahrbach, E. and Rohardt, G.: Physical Oceanography during POLARSTERN Cruise ANT-VIII/2 (WWGS) on Section SR02 and SR04, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.742580, 1990. a
Fahrbach, E. and Rohardt, G.: Physical Oceanography during POLARSTERN Cruise ANT-IX/2 on Section SR04, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.735277, 1991. a
Fahrbach, E. and Rohardt, G.: Physical Oceanography during POLARSTERN Cruise ANT-X/7 on Section SR04, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.742651, 1993. a
Fahrbach, E. and Rohardt, G.: Physical Oceanography during POLARSTERN Cruise ANT-XIII/4 on Section S04A, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.738489, 1996. a
Fahrbach, E. and Rohardt, G.: Physical Oceanography during POLARSTERN Cruise ANT-XV/4 (DOVETAIL) on Section SR04, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.742626, 1998. a
Fahrbach, E. and Rohardt, G.: Physical Oceanography during POLARSTERN Cruise ANT-XXIV/3, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.733414, 2008. a
Fahrbach, E., Harms, S., Rohardt, G., Schröder, M., and Woodgate, R. A.: Flow of Bottom Water in the Northwestern Weddell Sea, J. Geophys. Res.-Oceans, 106, 2761–2778, https://doi.org/10.1029/2000jc900142, 2001. a
Falahat, S. and Nycander, J.: On the Generation of Bottom-Trapped Internal Tides, J. Phys. Oceanogr., 45, 526–545, https://doi.org/10.1175/JPO-D-14-0081.1, 2015. a, b
Falahat, S., Nycander, J., Roquet, F., and Zarroug, M.: Global Calculation of Tidal Energy Conversion into Vertical Normal Modes, J. Phys. Oceanogr., 44, 3225–3244, https://doi.org/10.1175/JPO-D-14-0002.1, 2014. a, b, c, d
Fer, I., Skogseth, R., and Haugan, P. M.: Mixing of the Storfjorden Overflow (Svalbard Archipelago) Inferred from Density Overturns, J. Geophys. Res.-Oceans, 109, 2003JC001968, https://doi.org/10.1029/2003JC001968, 2004. a
Fer, I., Voet, G., Seim, K. S., Rudels, B., and Latarius, K.: Intense Mixing of the Faroe Bank Channel Overflow, Geophys. Res. Lett., 37, L02604, https://doi.org/10.1029/2009GL041924, 2010. a, b
Fer, I., Darelius, E., and Daae, K. B.: Observations of Energetic Turbulence on the Weddell Sea Continental Slope, Geophys. Res. Lett., 43, 760–766, https://doi.org/10.1002/2015GL067349, 2016. a, b
Fernández Castro, B., Peña, M., Nogueira, E., Gilcoto, M., Broullón, E., Comesaña, A., Bouffard, D., Naveira Garabato, A. C., and Mouriño-Carballido, B.: Intense Upper Ocean Mixing Due to Large Aggregations of Spawning Fish, Nat. Geosci., 15, 287–292, https://doi.org/10.1038/s41561-022-00916-3, 2022. a, b
Ferron, B., Mercier, H., Speer, K., Gargett, A., and Polzin, K.: Mixing in the Romanche Fracture Zone, J. Phys. Oceanogr., 28, 1929–1945, https://doi.org/10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2, 1998. a, b, c
Fine, E. C., Alford, M. H., MacKinnon, J. A., and Mickett, J. B.: Microstructure Mixing Observations and Finescale Parameterizations in the Beaufort Sea, J. Phys. Oceanogr., 51, 19–35, https://doi.org/10.1175/JPO-D-19-0233.1, 2021. a, b
Firing, E., Fernandes, F., Barna, A., and Abernathey, R.: TEOS-10/GSW-Python: V3.4.1.Post0, Zenodo [code], https://doi.org/10.5281/ZENODO.5214122, 2021. a
Foldvik, A., Middleton, J. H., and Foster, T. D.: The Tides of the Southern Weddell Sea, Deep-Sea Res. Pt. A, 37, 1345–1362, https://doi.org/10.1016/0198-0149(90)90047-Y, 1990. a, b
Foldvik, A., Gammelsrød, T., Øterhus, S., Fahrbach, E., Rohardt, G., Schröder, M., Nicholls, K. W., Padman, L., and Woodgate, R. A.: Ice Shelf Water Overflow and Bottom Water Formation in the Southern Weddell Sea, J. Geophys. Res.-Oceans, 109, C02015, https://doi.org/10.1029/2003jc002008, 2004. a
Gargett, A. and Garner, T.: Determining Thorpe Scales from Ship-Lowered CTD Density Profiles, J. Atmos. Ocean. Tech., 25, 1657–1670, https://doi.org/10.1175/2008JTECHO541.1, 2008. a
Garrett, C. and Munk, W.: Space-Time Scales of Internal Waves, Geophys. Fluid Dynam., 3, 225–264, https://doi.org/10.1080/03091927208236082, 1972. a, b
Garrett, C. and Munk, W.: Space-Time Scales of Internal Waves: A Progress Report, J. Geophys. Res., 80, 291–297, https://doi.org/10.1029/JC080i003p00291, 1975. a, b
Greene, C. A., Erofeeva, S., Padman, L., Howard, S. L., Sutterley, T., and Egbert, G.: Tide Model Driver for MATLAB, J. Open Sour. Softw., 9, 6018, https://doi.org/10.21105/joss.06018, 2024. a
Gregg, M., D'Asaro, E., Riley, J., and Kunze, E.: Mixing Efficiency in the Ocean, Annu. Rev. Mar. Sci., 10, 443–473, https://doi.org/10.1146/annurev-marine-121916-063643, 2018. a, b
Gregg, M. C.: Scaling Turbulent Dissipation in the Thermocline, J. Geophys. Res., 94, 9686, https://doi.org/10.1029/JC094iC07p09686, 1989. a, b
Gregg, M. C., Seim, H. E., and Percival, D. B.: Statistics of Shear and Turbulent Dissipation Profiles in Random Internal Wave Fields, J. Phys. Oceanogr., 23, 1777–1799, https://doi.org/10.1175/1520-0485(1993)023<1777:SOSATD>2.0.CO;2, 1993. a
Gregg, M. C., Sanford, T. B., and Winkel, D. P.: Reduced Mixing from the Breaking of Internal Waves in Equatorial Waters, Nature, 422, 513–515, https://doi.org/10.1038/nature01507, 2003. a, b
Hellmer, H. H. and Beckmann, A.: The Southern Ocean: A Ventilation Contributor with Multiple Sources, Geophys. Res. Lett., 28, 2927–2930, https://doi.org/10.1029/2001GL013054, 2001. a
Henyey, F. S., Wright, J., and Flatté, S. M.: Energy and Action Flow through the Internal Wave Field: An Eikonal Approach, J.Geophys. Res.- Oceans, 91, 8487–8495, https://doi.org/10.1029/JC091iC07p08487, 1986. a, b
Heuzé, C.: Antarctic Bottom Water and North Atlantic Deep Water in CMIP6 Models, Ocean Sci., 17, 59–90, https://doi.org/10.5194/os-17-59-2021, 2021. a, b
Hirano, D., Kitade, Y., Ohshima, K. I., and Fukamachi, Y.: The Role of Turbulent Mixing in the Modified Shelf Water Overflows That Produce Cape Darnley Bottom Water, J. Geophys. Res.-Oceans, 120, 910–922, https://doi.org/10.1002/2014JC010059, 2015. a
Hogg, C. A. R., Egan, G. C., Ouellette, N. T., and Koseff, J. R.: Shoaling Internal Waves May Reduce Gravity Current Transport, Environ. Fluid Mech., 18, 383–394, https://doi.org/10.1007/s10652-017-9554-8, 2018. a
Howard, S. L., Erofeeva, S., and Padman, L.: CATS2008: Circum-Antarctic Tidal Simulation Version 2008, US Antarctic Program (USAP) Data Center [data set], https://doi.org/10.15784/601235, 2019. a, b
Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Jackett, D. R. and McDougall, T. J.: A Neutral Density Variable for the World's Oceans, J. Phys. Oceanogr., 27, 237–263, https://doi.org/10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2, 1997. a, b
Jackett, D. R., Barker, P., and McDougall, T. J.: Eos80_legacy_gamma_n, http://www.teos-10.org/preteos10_software/neutral_density.html#4 (last access: 25 March 2025), 2018. a
Johnson, G. C., Purkey, S. G., Zilberman, N. V., and Roemmich, D.: Deep Argo Quantifies Bottom Water Warming Rates in the Southwest Pacific Basin, Geophys. Res. Lett., 46, 2662–2669, https://doi.org/10.1029/2018GL081685, 2019. a
Johnson, H. L. and Garrett, C.: Effects of Noise on Thorpe Scales and Run Lengths, J. Phys. Oceanogr., 34, 2359–2372, https://doi.org/10.1175/JPO2641.1, 2004. a
Knust, R.: Polar Research and Supply Vessel POLARSTERN Operated by the Alfred-Wegener-Institute, J. Large-scale Res. Facil., 3, A119, https://doi.org/10.17815/jlsrf-3-163, 2017. a
Le Boyer, A. and Alford, M. H.: Variability and Sources of the Internal Wave Continuum Examined from Global Moored Velocity Records, J. Phys. Oceanogr., 51, 2807–2823, https://doi.org/10.1175/JPO-D-20-0155.1, 2021. a, b, c
Legg, S.: Scattering of Low-Mode Internal Waves at Finite Isolated Topography, J. Phys. Oceanogr., 44, 359–383, https://doi.org/10.1175/JPO-D-12-0241.1, 2014. a
Legg, S., Briegleb, B., Chang, Y., Chassignet, E. P., Danabasoglu, G., Ezer, T., Gordon, A. L., Griffies, S., Hallberg, R., Jackson, L., Large, W., Özgükmen, T. M., Peters, H., Price, J., Riemenschneider, U., Wu, W., Xu, X., and Yang, J.: Improving Oceanic Overflow Representation in Climate Models: The Gravity Current Entrainment Climate Process Team, B. Am. Meteorol. Soc., 90, 657–670, https://doi.org/10.1175/2008BAMS2667.1, 2009. a, b
Lemke, P., Rohardt, G., and Krüger, M.: Physical Oceanography during POLARSTERN Cruise ANT-XXIX/6 (AWECS), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.819714, 2013. a
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and Schellnhuber, H. J.: Tipping Elements in the Earth's Climate System, P. Natl. Acad. Sci. USA, 105, 1786–1793, https://doi.org/10.1073/pnas.0705414105, 2008. a
Levine, M. D., Padman, L., Muench, R. D., and Morison, J. H.: Internal Waves and Tides in the Western Weddell Sea: Observations from Ice Station Weddell, J. Geophys. Res.-Oceans, 102, 1073–1089, https://doi.org/10.1029/96jc03013, 1997. a
Llanillo, P. J., Kanzow, T., Janout, M. A., and Rohardt, G.: The Deep-Water Plume in the Northwestern Weddell Sea, Antarctica: Mean State, Seasonal Cycle and Interannual Variability Influenced by Climate Modes, J. Geophys. Res.-Oceans, 128, e2022JC019375, https://doi.org/10.1029/2022JC019375, 2023. a, b, c, d, e
Mashayek, A., Caulfield, C. P., and Peltier, W. R.: Role of Overturns in Optimal Mixing in Stratified Mixing Layers, J. Fluid Mech., 826, 522–552, https://doi.org/10.1017/jfm.2017.374, 2017. a
Mater, B. D., Venayagamoorthy, S. K., St. Laurent, L., and Moum, J. N.: Biases in Thorpe-Scale Estimates of Turbulence Dissipation. Part I: Assessments from Large-Scale Overturns in Oceanographic Data, J. Phys. Oceanogr., 45, 2497–2521, https://doi.org/10.1175/JPO-D-14-0128.1, 2015. a
McComas, C. H. and Müller, P.: The Dynamic Balance of Internal Waves, J. Phys. Oceanogr., 11, 970–986, https://doi.org/10.1175/1520-0485(1981)011<0970:TDBOIW>2.0.CO;2, 1981. a, b
McDougall, T. J. and Barker, P. M.: Getting Started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, Trevor J McDougall, Battery Point, Tas., SCOR/IAPSO WG127, 28 pp., ISBN 978-0-646-55621-5, 2011. a
Menezes, V. V., Macdonald, A. M., and Schatzman, C.: Accelerated Freshening of Antarctic Bottom Water over the Last Decade in the Southern Indian Ocean, Sci. Adv., 3, e1601426, https://doi.org/10.1126/SCIADV.1601426, 2017. a
Meredith, M. and Naveira Garabato, A.: Ocean Mixing: Drivers, Mechanisms and Impacts, Elsevier, Amsterdam, https://doi.org/10.1016/C2019-0-03674-6, 2022. a
Meredith, M. P., Garabato, A. C. N., Gordon, A. L., and Johnson, G. C.: Evolution of the Deep and Bottom Waters of the Scotia Sea, Southern Ocean, during 1995–2005, J. Climate, 21, 3327–3343, https://doi.org/10.1175/2007JCLI2238.1, 2008. a, b
Met Office: Cartopy: A Cartographic Python Library with a Matplotlib Interface, Exeter, Devon, https://scitools.org.uk/cartopy (last access: 25 March 2025), 2010/2015. a
Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M. J., Terrel, A. R., Roučka, Š., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and Scopatz, A.: SymPy: Symbolic Computing in Python, Peer J. Comput. Sci., 3, e103, https://doi.org/10.7717/peerj-cs.103, 2017. a
Meyer, A., Sloyan, B. M., Polzin, K. L., Phillips, H. E., and Bindoff, N. L.: Mixing Variability in the Southern Ocean, J. Phys. Oceanogr., 45, 966–987, https://doi.org/10.1175/JPO-D-14-0110.1, 2015. a
Moum, J. N., Gregg, M. C., Lien, R. C., and Carr, M. E.: Comparison of Turbulence Kinetic Energy Dissipation Rate Estimates from Two Ocean Microstructure Profilers, J. Atmos. Ocean. Tech., 12, 346–366, https://doi.org/10.1175/1520-0426(1995)012<0346:COTKED>2.0.CO;2, 1995. a
Musgrave, R., Pollmann, F., Kelly, S., and Nikurashin, M.: The Lifecycle of Topographically-Generated Internal Waves, in: Ocean Mixing, Elsevier, 117–144, https://doi.org/10.1016/B978-0-12-821512-8.00013-X, 2022. a, b, c
Nash, J. D., Peters, H., Kelly, S. M., Pelegrí, J. L., Emelianov, M., and Gasser, M.: Turbulence and High-frequency Variability in a Deep Gravity Current Outflow, Geophys. Res. Lett., 39, 2012GL052899, https://doi.org/10.1029/2012GL052899, 2012. a
Naveira Garabato, A. C., Heywood, K. J., and Stevens, D. P.: Modification and Pathways of Southern Ocean Deep Waters in the Scotia Sea, Deep-Sea Res. Pt. I, 49, 681–705, https://doi.org/10.1016/S0967-0637(01)00071-1, 2002a. a
Naveira Garabato, A. C., Frajka-Williams, E. E., Spingys, C. P., Legg, S., Polzin, K. L., Forryan, A., Abrahamsen, E. P., Buckingham, C. E., Griffies, S. M., McPhail, S. D., Nicholls, K. W., Thomas, L. N., and Meredith, M. P.: Rapid Mixing and Exchange of Deep-Ocean Waters in an Abyssal Boundary Current, P. Natl. Acad. Sci. USA, 116, 13233–13238, https://doi.org/10.1073/pnas.1904087116, 2019. a
Nicholls, K. W., Østerhus, S., Makinson, K., Gammelsrød, T., and Fahrbach, E.: Ice-Ocean Processes over the Continental Shelf of the Southern Weddell Sea, Antarctica: A Review, Rev. Geophys., 47, RG3003, https://doi.org/10.1029/2007RG000250, 2009. a
North, R. P., Jochumsen, K., and Moritz, M.: Entrainment and Energy Transfer Variability Along the Descending Path of the Denmark Strait Overflow Plume, J. Geophys. Res.-Oceans, 123, 2795–2807, https://doi.org/10.1002/2018JC013821, 2018. a, b, c, d
Olbers, D. and Eden, C.: A Global Model for the Diapycnal Diffusivity Induced by Internal Gravity Waves, J. Phys. Oceanogr., 43, 1759–1779, https://doi.org/10.1175/JPO-D-12-0207.1, 2013. a, b
Olbers, D., Willebrand, J., and Eden, C.: Ocean Dynamics, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-23450-7, 2012. a, b
Olbers, D., Pollmann, F., and Eden, C.: On PSI Interactions in Internal Gravity Wave Fields and the Decay of Baroclinic Tides, J. Phys. Oceanogr., 50, 751–771, https://doi.org/10.1175/JPO-D-19-0224.1, 2020. a, b, c
Olbers, D. J.: Nonlinear Energy Transfer and the Energy Balance of the Internal Wave Field in the Deep Ocean, J. Fluid Mech., 74, 375–399, https://doi.org/10.1017/S0022112076001857, 1976. a, b
Olbers, D. J.: Models of the Oceanic Internal Wave Field, Rev. Geophys., 21, 1567, https://doi.org/10.1029/RG021i007p01567, 1983. a, b
Osborn, T. R.: Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements, J. Phys. Oceanogr., 10, 83–89, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2, 1980. a
Padman, L., Fricker, H. A., Coleman, R., Howard, S., and Erofeeva, L.: A New Tide Model for the Antarctic Ice Shelves and Seas, Ann. Glaciol., 34, 247–254, https://doi.org/10.3189/172756402781817752, 2002. a, b, c
Paka, V., Zhurbas, V., Rudels, B., Quadfasel, D., Korzh, A., and Delisi, D.: Microstructure Measurements and Estimates of Entrainment in the Denmark Strait Overflow Plume, Ocean Sci., 9, 1003–1014, https://doi.org/10.5194/os-9-1003-2013, 2013. a
Peters, H. and Johns, W. E.: Bottom Layer Turbulence in the Red Sea Outflow Plume, J. Phys. Oceanogr., 36, 1763–1785, https://doi.org/10.1175/JPO2939.1, 2006. a, b, c
Pinner, O.: Analysis Code to: Pinner et al., 2025, Internal-wave-induced Dissipation Rates in the Weddell Sea Bottom Water Gravity Current, Zenodo [code], https://doi.org/10.5281/zenodo.13134608, 2025. a
Pollmann, F. and Nycander, J.: Resolving the Horizontal Direction of Internal Tide Generation: Global Application for the M2 Tide's First Mode, J. Phys. Oceanogr., 53, 1251–1267, https://doi.org/10.1175/JPO-D-22-0144.1, 2023. a
Pollmann, F., Eden, C., and Olbers, D.: Evaluating the Global Internal Wave Model IDEMIX Using Finestructure Methods, J. Phys. Oceanogr., 47, 2267–2289, https://doi.org/10.1175/JPO-D-16-0204.1, 2017. a, b
Pollmann, F., Eden, C., and Olbers, D.: Global Finestructure Estimates of Internal Wave Energy Levels and Wave-Induced Mixing from Argo Float Profiles, SEANOE [data set], https://doi.org/10.17882/95327, 2023. a
Polzin, K. L. and Lvov, Y. V.: Toward Regional Characterizations of the Oceanic Internal Wavefield, Rev. Geophys., 49, RG4003, https://doi.org/10.1029/2010RG000329, 2011. a
Prieto, G. A.: The Multitaper Spectrum Analysis Package in Python, Seismol. Res. Lett., 93, 1922–1929, https://doi.org/10.1785/0220210332, 2022. a
Purkey, S. G. and Johnson, G. C.: Antarctic Bottom Water Warming and Freshening: Contributions to Sea Level Rise, Ocean Freshwater Budgets, and Global Heat Gain, J. Climate, 26, 6105–6122, https://doi.org/10.1175/JCLI-D-12-00834.1, 2013. a
Rainville, L. and Pinkel, R.: Propagation of Low-Mode Internal Waves through the Ocean, J. Phys. Oceanogr., 36, 1220–1236, https://doi.org/10.1175/JPO2889.1, 2006. a
Rippeth, T. P., Vlasenko, V., Stashchuk, N., Scannell, B. D., Green, J. A. M., Lincoln, B. J., and Bacon, S.: Tidal Conversion and Mixing Poleward of the Critical Latitude (an Arctic Case Study), Geophys. Res. Lett., 44, 12349–12357, https://doi.org/10.1002/2017GL075310, 2017. a
Robertson, R.: Internal Tides and Baroclinicity in the Southern Weddell Sea: 1. Model Description, J. Geophys. Res.-Oceans, 106, 27001–27016, https://doi.org/10.1029/2000JC000475, 2001a. a
Robertson, R.: Internal Tides and Baroclinicity in the Southern Weddell Sea: 2. Effects of the Critical Latitude and Stratification, J. Geophys. Res.-Oceans, 106, 27017–27034, https://doi.org/10.1029/2000JC000476, 2001b. a
Robertson, R., Padman, L., and Egbert, G. D.: Tides in the Weddell Sea, in: Antarctic Research Series, edited by: Jacobs, S. S. and Weiss, R. F., American Geophysical Union, Washington, D.C., 341–369, https://doi.org/10.1029/AR075p0341, 1998. a
Robertson, R., Dong, J., and Hartlipp, P.: Diurnal Critical Latitude and the Latitude Dependence of Internal Tides, Internal Waves, and Mixing Based on Barcoo Seamount: Critical Latitude, Tides, And Mixing, J. Geophys. Res.-Oceans, 122, 7838–7866, https://doi.org/10.1002/2016JC012591, 2017. a
Rohardt, G.: Physical Oceanography during POLARSTERN Cruise ANT-XXII/3, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.733664, 2010. a
Rohardt, G.: Physical Oceanography during POLARSTERN Cruise ANT-XXIX/2, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.817255, 2013. a
Rohardt, G. and Boebel, O.: Physical Oceanography during POLARSTERN Cruise PS103 (ANT-XXXII/2), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.881076, 2017. a
Rohardt, G. and Boebel, O.: Physical Oceanography and Current Meter Data from Mooring AWI262-1, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.898794, 2019a. a
Rohardt, G. and Boebel, O.: Physical Oceanography and Current Meter Data from Mooring AWI261-1, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.898793, 2019b. a
Rohardt, G. and Boebel, O.: Physical Oceanography and Current Meter Data from Mooring AWI207-10, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.898777, 2019c. a
Rohardt, G. and Boebel, O.: Physical Oceanography and Current Meter Data from Mooring AWI260-1, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.898792, 2019d. a
Rohardt, G. and Boebel, O.: Physical Oceanography and Current Meter Data from Mooring AWI259-1, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.898791, 2019e. a
Rohardt, G. and Boebel, O.: Physical Oceanography and Current Meter Data from Mooring AWI258-1, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.898762, 2019f. a
Rohardt, G. and Boebel, O.: Physical Oceanography and Current Meter Data from Mooring AWI257-1, PANGAEA[data set], https://doi.org/10.1594/PANGAEA.898718, 2019g. a
Rohardt, G., Fahrbach, E., and Wisotzki, A.: Physical Oceanography during POLARSTERN Cruise ANT-XXVII/2, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.772244, 2011. a
Rohardt, G., Boebel, O., and Middag, R.: Physical Oceanography during POLARSTERN Cruise PS117 Measured with Ultra-Clean-CTD, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.940209, 2022. a
Schaffer, J., Kanzow, T., Jochumsen, K., Lackschewitz, K., Tippenhauer, S., Zhurbas, V. M., and Quadfasel, D.: Enhanced Turbulence Driven by Mesoscale Motions and Flow-Topography Interaction in the Denmark Strait Overflow Plume: Enhanced Turbulence in the DSO Plume, J. Geophys. Res.-Oceans, 121, 7650–7672, https://doi.org/10.1002/2016JC011653, 2016. a, b, c
Scotti, A.: Biases in Thorpe-Scale Estimates of Turbulence Dissipation. Part II: Energetics Arguments and Turbulence Simulations, J. Phys. Oceanogr., 45, 2522–2543, https://doi.org/10.1175/JPO-D-14-0092.1, 2015. a
Silvano, A., Purkey, S., Gordon, A. L., Castagno, P., Stewart, A. L., Rintoul, S. R., Foppert, A., Gunn, K. L., Herraiz-Borreguero, L., Aoki, S., Nakayama, Y., Naveira Garabato, A. C., Spingys, C., Akhoudas, C. H., Sallée, J.-B., de Lavergne, C., Abrahamsen, E. P., Meijers, A. J. S., Meredith, M. P., Zhou, S., Tamura, T., Yamazaki, K., Ohshima, K. I., Falco, P., Budillon, G., Hattermann, T., Janout, M. A., Llanillo, P., Bowen, M. M., Darelius, E., Østerhus, S., Nicholls, K. W., Stevens, C., Fernandez, D., Cimoli, L., Jacobs, S. S., Morrison, A. K., Hogg, A. M., Haumann, F. A., Mashayek, A., Wang, Z., Kerr, R., Williams, G. D., and Lee, W. S.: Observing Antarctic Bottom Water in the Southern Ocean, Front. Mar. Sci., 10, 1221701, https://doi.org/10.3389/fmars.2023.1221701, 2023. a
Stansfield, K., Garrett, C., and Dewey, R.: The Probability Distribution of the Thorpe Displacement within Overturns in Juan de Fuca Strait, J. Phys. Oceanogr., 31, 3421–3434, https://doi.org/10.1175/1520-0485(2001)031<3421:TPDOTT>2.0.CO;2, 2001. a
St. Laurent, L. C., Simmons, H. L., and Jayne, S. R.: Estimating Tidally Driven Mixing in the Deep Ocean, Geophys. Res. Lett., 29, 21-1–21-4, https://doi.org/10.1029/2002GL015633, 2002. a
Strass, V. H., Rohardt, G., Kanzow, T., Hoppema, M., and Boebel, O.: Multidecadal Warming and Density Loss in the Deep Weddell Sea, Antarctica, J. Climate, 33, 9863–9881, https://doi.org/10.1175/JCLI-D-20-0271.1, 2020. a
Sun, W., Zhou, X., Zhou, D., and Sun, Y.: Advances and Accuracy Assessment of Ocean Tide Models in the Antarctic Ocean, Front. Earth Sci., 10, 757821, https://doi.org/10.3389/feart.2022.757821, 2022. a
Tanimoto, Y., Ouellette, N. T., and Koseff, J. R.: Secondary Generation of Breaking Internal Waves in Confined Basins by Gravity Currents, J. Fluid Mech., 917, A49, https://doi.org/10.1017/jfm.2021.309, 2021. a
Tanimoto, Y., Ouellette, N. T., and Koseff, J. R.: On the Interaction between Oncoming Internal Waves and a Dense Gravity Current in a Two-Layer Stratification, J. Fluid Mech., 932, A28, https://doi.org/10.1017/JFM.2021.1006, 2022. a
The Matplotlib Development Team: Matplotlib: Visualization with Python, Zenodo [code], https://doi.org/10.5281/ZENODO.14249941, 2024. a
Thompson, A. F. and Heywood, K. J.: Frontal Structure and Transport in the Northwestern Weddell Sea, Deep-Sea Res. Pt.-I, 55, 1229–1251, https://doi.org/10.1016/j.dsr.2008.06.001, 2008. a
Thomson, D.: Spectrum Estimation and Harmonic Analysis, Proc. IEEE, 70, 1055–1096, https://doi.org/10.1109/PROC.1982.12433, 1982. a, b
Thyng, K., Greene, C., Hetland, R., Zimmerle, H., and DiMarco, S.: True Colors of Oceanography: Guidelines for Effective and Accurate Colormap Selection, Oceanography, 29, 9–13, https://doi.org/10.5670/oceanog.2016.66, 2016. a
Umlauf, L. and Arneborg, L.: Dynamics of Rotating Shallow Gravity Currents Passing through a Channel. Part I: Observation of Transverse Structure, J. Phys. Oceanogr., 39, 2385–2401, https://doi.org/10.1175/2009JPO4159.1, 2009. a
Umlauf, L., Arneborg, L., Burchard, H., Fiekas, V., Lass, H. U., Mohrholz, V., and Prandke, H.: Transverse Structure of Turbulence in a Rotating Gravity Current, Geophys. Res. Lett., 34, L08601, https://doi.org/10.1029/2007GL029521, 2007. a
van Haren, H., Maas, L., and van Aken, H.: On the Nature of Internal Wave Spectra near a Continental Slope, Geophys. Res. Lett., 29, 1615, https://doi.org/10.1029/2001GL014341, 2002. a
Vic, C., Naveira Garabato, A. C., Green, J. A. M., Waterhouse, A. F., Zhao, Z., Melet, A., de Lavergne, C., Buijsman, M. C., and Stephenson, G. R.: Deep-Ocean Mixing Driven by Small-Scale Internal Tides, Nat. Commun., 10, 2099, https://doi.org/10.1038/s41467-019-10149-5, 2019. a, b
Voet, G., Girton, J. B., Alford, M. H., Carter, G. S., Klymak, J. M., and Mickett, J. B.: Pathways, Volume Transport, and Mixing of Abyssal Water in the Samoan Passage, J. Phys. Oceanogr., 45, 562–588, https://doi.org/10.1175/JPO-D-14-0096.1, 2015. a
Voet, G., Drake, H., and Cusack, J.: Modscripps/Mixsea: V0.1.2, Zenodo [code], https://doi.org/10.5281/ZENODO.10636077, 2023. a, b
Waterhouse, A. F., MacKinnon, J. A., Nash, J. D., Alford, M. H., Kunze, E., Simmons, H. L., Polzin, K. L., St. Laurent, L. C., Sun, O. M., Pinkel, R., Talley, L. D., Whalen, C. B., Huussen, T. N., Carter, G. S., Fer, I., Waterman, S., Naveira Garabato, A. C., Sanford, T. B., and Lee, C. M.: Global Patterns of Diapycnal Mixing from Measurements of the Turbulent Dissipation Rate, J. Phys. Oceanog., 44, 1854–1872, https://doi.org/10.1175/JPO-D-13-0104.1, 2014. a
Waterman, S., Polzin, K. L., Naveira Garabato, A. C., Sheen, K. L., and Forryan, A.: Suppression of Internal Wave Breaking in the Antarctic Circumpolar Current near Topography, J. Phys. Oceanogr., 44, 1466–1492, https://doi.org/10.1175/JPO-D-12-0154.1, 2014. a, b
Whalen, C. B.: Best Practices for Comparing Ocean Turbulence Measurements across Spatiotemporal Scales, J. Atmos. Ocean. Tech., 38, 837–841, https://doi.org/10.1175/JTECH-D-20-0175.1, 2021. a, b, c
Whalen, C. B., MacKinnon, J. A., Talley, L. D., and Waterhouse, A. F.: Estimating the Mean Diapycnal Mixing Using a Finescale Strain Parameterization, J. Phys. Oceanogr., 45, 1174–1188, https://doi.org/10.1175/JPO-D-14-0167.1, 2015. a, b
Wijesekera, H., Padman, L., Dillon, T., Levine, M., Paulson, C., and Pinkel, R.: The Application of Internal-Wave Dissipation Models to a Region of Strong Mixing, J. Phys. Oceanogr., 23, 269–286, https://doi.org/10.1175/1520-0485(1993)023<0269:TAOIWD>2.0.CO;2, 1993. a, b
Zhao, Z., Alford, M. H., Girton, J. B., Rainville, L., and Simmons, H. L.: Global Observations of Open-Ocean Mode-1 M2 Internal Tides, J. Phys. Oceanogr., 46, 1657–1684, https://doi.org/10.1175/JPO-D-15-0105.1, 2016. a
Zhou, S., Meijers, A. J. S., Meredith, M. P., Abrahamsen, E. P., Holland, P. R., Silvano, A., Sallée, J.-B., and Østerhus, S.: Slowdown of Antarctic Bottom Water Export Driven by Climatic Wind and Sea-Ice Changes, Nat. Clim. Change, 13, 701–709, https://doi.org/10.1038/s41558-023-01695-4, 2023. a
Short summary
The Weddell Sea Bottom Water gravity current transports dense water from the continental shelf to the deep sea and is crucial for the formation of new deep-sea water. Building on vertical profiles and time series measured in the northwestern Weddell Sea, we apply three methods to distinguish turbulence caused by internal waves from that by other sources. We find that in the upper part of the gravity current, internal waves are important for the mixing of less dense water down into the current.
The Weddell Sea Bottom Water gravity current transports dense water from the continental shelf...