Articles | Volume 21, issue 5
https://doi.org/10.5194/os-21-2505-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/os-21-2505-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Amplified warming and marine heatwaves in the North Sea under a warming climate and their impacts
Bayoumy Mohamed
CORRESPONDING AUTHOR
GeoHydrodynamics and Environment Research (GHER), University of Liège, Liège, Belgium
Oceanography Department, Faculty of Science, Alexandria University, 21500 Alexandria, Egypt
Alexander Barth
GeoHydrodynamics and Environment Research (GHER), University of Liège, Liège, Belgium
Dimitry Van der Zande
Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
Aida Alvera-Azcárate
GeoHydrodynamics and Environment Research (GHER), University of Liège, Liège, Belgium
Related authors
Alexander Barth, Julien Brajard, Aida Alvera-Azcárate, Bayoumy Mohamed, Charles Troupin, and Jean-Marie Beckers
Ocean Sci., 20, 1567–1584, https://doi.org/10.5194/os-20-1567-2024, https://doi.org/10.5194/os-20-1567-2024, 2024
Short summary
Short summary
Most satellite observations have gaps, for example, due to clouds. This paper presents a method to reconstruct missing data in satellite observations of the chlorophyll a concentration in the Black Sea. Rather than giving a single possible reconstructed field, the discussed method provides an ensemble of possible reconstructions using a generative neural network. The resulting ensemble is validated using techniques from numerical weather prediction and ocean modelling.
Matjaž Zupančič Muc, Vitjan Zavrtanik, Alexander Barth, Aida Alvera-Azcarate, Matjaž Ličer, and Matej Kristan
Geosci. Model Dev., 18, 5549–5573, https://doi.org/10.5194/gmd-18-5549-2025, https://doi.org/10.5194/gmd-18-5549-2025, 2025
Short summary
Short summary
Accurate sea surface temperature data (SST) are crucial for weather forecasting and climate modeling, but satellite observations are often incomplete. We developed a new method called CRITER, which uses machine learning to fill in the gaps in SST data. Our two-stage approach reconstructs large-scale patterns and refines details. Tested on Mediterranean, Adriatic, and Atlantic sea data, CRITER outperforms current methods, reducing errors by up to 44 %.
Aida Alvera-Azcárate, Dimitry Van der Zande, Alexander Barth, Antoine Dille, Joppe Massant, and Jean-Marie Beckers
Ocean Sci., 21, 787–805, https://doi.org/10.5194/os-21-787-2025, https://doi.org/10.5194/os-21-787-2025, 2025
Short summary
Short summary
This work presents an approach for increasing the spatial resolution of satellite data and interpolating gaps due to cloud cover, using a method called DINEOF (data-interpolating empirical orthogonal functions). The method is tested on turbidity and chlorophyll-a concentration data in the Belgian coastal zone and the North Sea. The results show that we are able to improve the spatial resolution of these data in order to perform analyses of spatial and temporal variability in coastal regions.
Cécile Pujol, Alexander Barth, Iván Pérez-Santos, Pamela Muñoz-Linford, and Aida Alvera-Azcárate
EGUsphere, https://doi.org/10.5194/egusphere-2025-1421, https://doi.org/10.5194/egusphere-2025-1421, 2025
Preprint archived
Short summary
Short summary
Marine heatwaves and cold spells are periods of extreme sea temperatures. This study focuses on Chilean Northern Patagonia, a fjord region vulnerable due to its aquaculture. It aims to understand these events' distribution and identify the most affected basins. Results show higher intensity in enclosed areas like Reloncaví Sound and Puyuhuapi Fjord. Marine heatwaves are becoming more frequent over time, while cold spells are decreasing.
Ehsan Mehdipour, Hongyan Xi, Alexander Barth, Aida Alvera-Azcárate, Adalbert Wilhelm, and Astrid Bracher
EGUsphere, https://doi.org/10.5194/egusphere-2025-112, https://doi.org/10.5194/egusphere-2025-112, 2025
Short summary
Short summary
Phytoplankton are vital for marine ecosystems and nutrient cycling, detectable by optical satellites. Data gaps caused by clouds and other non-optimal conditions limit comprehensive analyses like trend monitoring. This study evaluated DINCAE and DINEOF gap-filling methods for reconstructing chlorophyll-a datasets, including total chlorophyll-a and five major phytoplankton groups. Both methods showed robust reconstruction capabilities, aiding pattern detection and long-term ocean colour analysis.
Alexander Barth, Julien Brajard, Aida Alvera-Azcárate, Bayoumy Mohamed, Charles Troupin, and Jean-Marie Beckers
Ocean Sci., 20, 1567–1584, https://doi.org/10.5194/os-20-1567-2024, https://doi.org/10.5194/os-20-1567-2024, 2024
Short summary
Short summary
Most satellite observations have gaps, for example, due to clouds. This paper presents a method to reconstruct missing data in satellite observations of the chlorophyll a concentration in the Black Sea. Rather than giving a single possible reconstructed field, the discussed method provides an ensemble of possible reconstructions using a generative neural network. The resulting ensemble is validated using techniques from numerical weather prediction and ocean modelling.
Manal Hamdeno, Aida Alvera-Azcárate, George Krokos, and Ibrahim Hoteit
Ocean Sci., 20, 1087–1107, https://doi.org/10.5194/os-20-1087-2024, https://doi.org/10.5194/os-20-1087-2024, 2024
Short summary
Short summary
Our study focuses on the characteristics of MHWs in the Red Sea during the last 4 decades. Using satellite-derived sea surface temperatures (SSTs), we found a clear warming trend in the Red Sea since 1994, which has intensified significantly since 2016. This SST rise was associated with an increase in the frequency and days of MHWs. In addition, a correlation was found between the frequency of MHWs and some climate modes, which was more pronounced in some years of the study period.
Pamela Linford, Iván Pérez-Santos, Paulina Montero, Patricio A. Díaz, Claudia Aracena, Elías Pinilla, Facundo Barrera, Manuel Castillo, Aida Alvera-Azcárate, Mónica Alvarado, Gabriel Soto, Cécile Pujol, Camila Schwerter, Sara Arenas-Uribe, Pilar Navarro, Guido Mancilla-Gutiérrez, Robinson Altamirano, Javiera San Martín, and Camila Soto-Riquelme
Biogeosciences, 21, 1433–1459, https://doi.org/10.5194/bg-21-1433-2024, https://doi.org/10.5194/bg-21-1433-2024, 2024
Short summary
Short summary
The Patagonian fjords comprise a world region where low-oxygen water and hypoxia conditions are observed. An in situ dataset was used to quantify the mechanism involved in the presence of these conditions in northern Patagonian fjords. Water mass analysis confirmed the contribution of Equatorial Subsurface Water in the advection of the low-oxygen water, and hypoxic conditions occurred when the community respiration rate exceeded the gross primary production.
Francesca Doglioni, Robert Ricker, Benjamin Rabe, Alexander Barth, Charles Troupin, and Torsten Kanzow
Earth Syst. Sci. Data, 15, 225–263, https://doi.org/10.5194/essd-15-225-2023, https://doi.org/10.5194/essd-15-225-2023, 2023
Short summary
Short summary
This paper presents a new satellite-derived gridded dataset, including 10 years of sea surface height and geostrophic velocity at monthly resolution, over the Arctic ice-covered and ice-free regions, up to 88° N. We assess the dataset by comparison to independent satellite and mooring data. Results correlate well with independent satellite data at monthly timescales, and the geostrophic velocity fields can resolve seasonal to interannual variability of boundary currents wider than about 50 km.
Alexander Barth, Aida Alvera-Azcárate, Charles Troupin, and Jean-Marie Beckers
Geosci. Model Dev., 15, 2183–2196, https://doi.org/10.5194/gmd-15-2183-2022, https://doi.org/10.5194/gmd-15-2183-2022, 2022
Short summary
Short summary
Earth-observing satellites provide routine measurement of several ocean parameters. However, these datasets have a significant amount of missing data due to the presence of clouds or other limitations of the employed sensors. This paper describes a method to infer the value of the missing satellite data based on a convolutional autoencoder (a specific type of neural network architecture). The technique also provides a reliable error estimate of the interpolated value.
Malek Belgacem, Katrin Schroeder, Alexander Barth, Charles Troupin, Bruno Pavoni, Patrick Raimbault, Nicole Garcia, Mireno Borghini, and Jacopo Chiggiato
Earth Syst. Sci. Data, 13, 5915–5949, https://doi.org/10.5194/essd-13-5915-2021, https://doi.org/10.5194/essd-13-5915-2021, 2021
Short summary
Short summary
The Mediterranean Sea exhibits an anti-estuarine circulation, responsible for its low productivity. Understanding this peculiar character is still a challenge since there is no exact quantification of nutrient sinks and sources. Because nutrient in situ observations are generally infrequent and scattered in space and time, climatological mapping is often applied to sparse data in order to understand the biogeochemical state of the ocean. The dataset presented here partly addresses these issues.
Estrella Olmedo, Verónica González-Gambau, Antonio Turiel, Cristina González-Haro, Aina García-Espriu, Marilaure Gregoire, Aida Álvera-Azcárate, Luminita Buga, and Marie-Hélène Rio
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-364, https://doi.org/10.5194/essd-2021-364, 2021
Revised manuscript not accepted
Short summary
Short summary
We present the first dedicated satellite salinity product in the Black Sea. We use the measurements provided by the European Soil Moisture and Ocean Salinity mission. We introduce enhanced algorithms for dealing with the contamination produced by the Radio Frequency Interferences that strongly affect this basin. We also provide a complete quality assessment of the new product and give an estimated accuracy of it.
Cited articles
Alheit, J., Gröger, J., Licandro, P., McQuinn, I. H., Pohlmann, T., and Tsikliras, A. C.: What happened in the mid-1990s? The coupled ocean-atmosphere processes behind climate-induced ecosystem changes in the Northeast Atlantic and the Mediterranean, Deep Sea Research Part II: Topical Studies in Oceanography, 159, 130–142, https://doi.org/10.1016/J.DSR2.2018.11.011, 2019.
Alvera-Azcárate, A., Van der Zande, D., Barth, A., Troupin, C., Martin, S., and Beckers, J. M.: Analysis of 23 Years of Daily Cloud-Free Chlorophyll and Suspended Particulate Matter in the Greater North Sea, Front. Mar. Sci., 8, 707632, https://doi.org/10.3389/fmars.2021.707632, 2021.
Amaya, D., Jacox, M. G., Fewings, M. R., Saba, V. S., Stuecker, M. F., Rykaczewski, R. R., Ross, A. C., Stock, C. A., Capotondi, A., Petrik, C. M., Bograd, S. J., Alexander, M. A., Cheng, W., Hermann, A. J., Kearney, K. A., and Powell, B. S.: Marine heatwaves need clear definitions so coastal communities can adapt, Nature, 616, 29–32, https://doi.org/10.1038/d41586-023-00924-2, 2023.
Amorim, F. D. L. L. D., Balkoni, A., Sidorenko, V., and Wiltshire, K. H.: Analyses of sea surface chlorophyll a trends and variability from 1998 to 2020 in the German Bight (North Sea), Ocean Sci., 20, 1247–1265, https://doi.org/10.5194/os-20-1247-2024, 2024
Atkins, J. R. C., Tinker, J., Graham, J. A., Scaife, A. A., and Halloran, P. R.: Seasonal forecasting of the European North-West shelf seas: limits of winter and summer sea surface temperature predictability, Clim. Dyn., 62, 10113–10130, https://doi.org/10.1007/S00382-024-07439-0, 2024.
Berthou, S., Renshaw, R., Smyth, T., Tinker, J., Grist, J. P., Wihsgott, J. U., Jones, S., Inall, M., Nolan, G., Berx, B., Arnold, A., Blunn, L. P., Castillo, J. M., Cotterill, D., Daly, E., Dow, G., Gómez, B., Fraser-Leonhardt, V., Hirschi, J. J. M., Lewis, H. W., Mahmood, S., and Worsfold, M.: Exceptional atmospheric conditions in June 2023 generated a northwest European marine heatwave which contributed to breaking land temperature records, Communications Earth & Environment, 5, 1–11, https://doi.org/10.1038/s43247-024-01413-8, 2024.
Biguino, B., Antunes, C., Lamas, L., Jenkins, L. J., Dias, J. M., Haigh, I. D., and Brito, A. C.: 40 years of changes in sea surface temperature along the Western Iberian Coast, Science of The Total Environment, 888, 164193, https://doi.org/10.1016/j.scitotenv.2023.164193, 2023.
Capotondi, A., Rodrigues, R. R., Sen Gupta, A., Benthuysen, J. A., Deser, C., Frölicher, T. L., Lovenduski, N. S., Amaya, D. J., Le Grix, N., Xu, T., Hermes, J., Holbrook, N. J., Martinez-Villalobos, C., Masina, S., Roxy, M. K., Schaeffer, A., Schlegel, R. W., Smith, K. E., and Wang, C.: A global overview of marine heatwaves in a changing climate, Communications Earth & Environment, 5, 1–17, https://doi.org/10.1038/s43247-024-01806-9, 2024.
Chen, W. and Staneva, J.: Characteristics and trends of marine heatwaves in the northwest European Shelf and the impacts on density stratification, in: 8th edition of the Copernicus Ocean State Report (OSR8), edited by: von Schuckmann, K., Moreira, L., Grégoire, M., Marcos, M., Staneva, J., Brasseur, P., Garric, G., Lionello, P., Karstensen, J., and Neukermans, G., Copernicus Publications, State Planet, 4-osr8, 7, https://doi.org/10.5194/sp-4-osr8-7-2024, 2024.
Chen, W., Staneva, J., Grayek, S., Schulz-Stellenfleth, J., and Greinert, J.: The role of heat wave events in the occurrence and persistence of thermal stratification in the southern North Sea, Nat. Hazards Earth Syst. Sci., 22, 1683–1698, https://doi.org/10.5194/nhess-22-1683-2022, 2022.
Cheng, L., Foster, G., Hausfather, Z., Trenberth, K. E., and Abraham, J.: Improved Quantification of the Rate of Ocean Warming, J. Clim., 35, https://doi.org/10.1175/JCLI-D-21-0895.1, 2022.
Desmit, X., Nohe, A., Borges, A. V., Prins, T., De Cauwer, K., Lagring, R., Van der Zande, D., and Sabbe, K.: Changes in chlorophyll concentration and phenology in the North Sea in relation to de-eutrophication and sea surface warming, Limnol. Oceanogr., 65, 828–847, https://doi.org/10.1002/LNO.11351, 2020.
Ducrotoy, J. P., Elliott, M., and De Jonge, V. N.: The North Sea, Mar. Pollut. Bull., 41, 5–23, https://doi.org/10.1016/S0025-326X(00)00099-0, 2000.
Fan, H., Pein, J., Chen, W., Staneva, J., and Cheng, H.: Effects of heatwave events on dissolved oxygen in the Elbe Estuary, Water Res., 286, 124125, https://doi.org/10.1016/j.watres.2025.124125, 2025.
Frölicher, T. L. and Laufkötter, C.: Emerging risks from marine heat waves, Nature Communications, 9, 1–4, https://doi.org/10.1038/s41467-018-03163-6, 2018.
Frölicher, T. L., Fischer, E. M., and Gruber, N.: Marine heatwaves under global warming, Nature, 560, 360–364, https://doi.org/10.1038/s41586-018-0383-9, 2018.
Greene, C. A., Thirumalai, K., Kearney, K. A., Delgado, J. M., Schwanghart, W., Wolfenbarger, N. S., Thyng, K. M., Gwyther, D. E., Gardner, A. S., and Blankenship, D. D.: The Climate Data Toolbox for MATLAB, Geochemistry, Geophysics, Geosystems, 20, 3774–3781, https://doi.org/10.1029/2019GC008392, 2019.
Hamdeno, M., Alvera-Azcárate, A., Krokos, G., and Hoteit, I.: Investigating the long-term variability of the Red Sea marine heatwaves and their relationship to different climate modes: focus on 2010 events in the northern basin, Ocean Sci., 20, 1087–1107, https://doi.org/10.5194/os-20-1087-2024, 2024.
Hamed, K. H. and Ramachandra Rao, A.: A modified Mann-Kendall trend test for autocorrelated data, J. Hydrol. (Amst.), 204, 182–196, https://doi.org/10.1016/S0022-1694(97)00125-X, 1998.
Harris, R. M. B., Beaumont, L. J., Vance, T. R., Tozer, C. R., Remenyi, T. A., Perkins-Kirkpatrick, S. E., Mitchell, P. J., Nicotra, A. B., McGregor, S., Andrew, N. R., Letnic, M., Kearney, M. R., Wernberg, T., Hutley, L. B., Chambers, L. E., Fletcher, M. S., Keatley, M. R., Woodward, C. A., Williamson, G., Duke, N. C., and Bowman, D. M. J. S.: Biological responses to the press and pulse of climate trends and extreme events, Nature Climate Change, 8, 579–587, https://doi.org/10.1038/s41558-018-0187-9, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C. J., Benthuysen, J. A., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Moore, P. J., Scannell, H. A., Sen Gupta, A., and Wernberg, T.: A hierarchical approach to defining marine heatwaves, Prog. Oceanogr., 141, 227–238, https://doi.org/10.1016/j.pocean.2015.12.014, 2016.
Hobday, A. J., Oliver, E. C. J., Sen Gupta, A., Benthuysen, J. A., Burrows, M. T., Donat, M. G., Holbrook, N. J., Moore, P. J., Thomsen, M. S., Wernberg, T., and Smale, D. A.: Categorizing and naming marine heatwaves, Oceanography, 31, 162–173, https://doi.org/10.5670/oceanog.2018.205, 2018.
Holbrook, N. J., Scannell, H. A., Sen Gupta, A., Benthuysen, J. A., Feng, M., Oliver, E. C. J., Alexander, L. V., Burrows, M. T., Donat, M. G., Hobday, A. J., Moore, P. J., Perkins-Kirkpatrick, S. E., Smale, D. A., Straub, S. C., and Wernberg, T.: A global assessment of marine heatwaves and their drivers, Nature Communications, 10, 1–13, https://doi.org/10.1038/s41467-019-10206-z, 2019.
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T., and Zhang, H. M.: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1, J. Clim., 34, 2923–2939, https://doi.org/10.1175/JCLI-D-20-0166.1, 2021.
Huang, B., Yin, X., Carton, J. A., Chen, L., Graham, G., Hogan, P., Smith, T., and Zhang, H.: Record High Sea Surface Temperatures in 2023, Geophys. Res. Lett., 51, https://doi.org/10.1029/2024GL108369, 2024.
Hughes, S. L., Holliday, N. P., and Gaillard, F.: Variability in the ICES/NAFO region between 1950 and 2009: Observations from the ICES Report on Ocean Climate, ICES Journal of Marine Science, 69, 706–719, https://doi.org/10.1093/icesjms/fss044, 2012.
IPCC: Summary for policymakers, in: Climate change 2021: The physical science basis. Contribution of working group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, https://www.ipcc.ch/report/ar6/wg1/chapter/summary-for-policymakers/ (last access: 10 August 2025), 2021.
Jacobs, Z. L., Jebri, F., Wakelin, S., Strong, J., Popova, E., Srokosz, M., and Loveridge, A.: Marine heatwaves and cold spells in the Northeast Atlantic: what should the UK be prepared for?, Front. Mar. Sci., 11, 1434365, https://doi.org/10.3389/fmars.2024.1434365, 2024.
Jin, Z. F. and Zhang, W. Z.: Statistical Characteristics of Remote Sensing Extreme Temperature Anomaly Events in the Taiwan Strait, Remote Sensing, 16, 3091, https://doi.org/10.3390/RS16163091, 2024.
Kirby, R. R., Beaugrand, G., Lindley, J. A., Richardson, A. J., Edwards, M., and Reid, P. C.: Climate effects and benthic–pelagic coupling in the North Sea, Mar. Ecol. Prog. Ser., 330, 31–38, https://doi.org/10.3354/MEPS330031, 2007.
Lee, S., Park, M. S., Kwon, M., Park, Y. G., Kim, Y. H., and Choi, N.: Rapidly Changing East Asian Marine Heatwaves Under a Warming Climate, J. Geophys. Res. Oceans, 128, e2023JC019761, https://doi.org/10.1029/2023JC019761, 2023.
Li, Y., Ren, G., Wang, Q., and Mu, L.: Changes in marine hot and cold extremes in the China Seas during 1982–2020, Weather Clim. Extrem., 39, 100553, https://doi.org/10.1016/J.WACE.2023.100553, 2023.
Marin, M., Feng, M., Phillips, H. E., and Bindoff, N. L.: A Global, Multiproduct Analysis of Coastal Marine Heatwaves: Distribution, Characteristics, and Long-Term Trends, J. Geophys. Res. Oceans, 126, e2020JC016708, https://doi.org/10.1029/2020JC016708, 2021.
Marzocchi, A., Hirschi, J. J. M., Holliday, N. P., Cunningham, S. A., Blaker, A. T., and Coward, A. C.: The North Atlantic subpolar circulation in an eddy-resolving global ocean model, Journal of Marine Systems, 142, 126–143, https://doi.org/10.1016/J.JMARSYS.2014.10.007, 2015.
Mohamed, B. and Skliris, N.: Recent sea level changes in the Red Sea: Thermosteric and halosteric contributions, and impacts of natural climate variability, Prog. Oceanogr., 231, 103416, https://doi.org/10.1016/J.POCEAN.2025.103416, 2025.
Mohamed, B., Nilsen, F., and Skogseth, R.: Marine Heatwaves Characteristics in the Barents Sea Based on High Resolution Satellite Data (1982–2020), Front. Mar. Sci., 9, https://doi.org/10.3389/FMARS.2022.821646, 2022.
Mohamed, B., Barth, A., and Alvera-Azcárate, A.: Extreme marine heatwaves and cold-spells events in the Southern North Sea: classifications, patterns, and trends, Front. Mar. Sci., 10, 1258117, https://doi.org/10.3389/fmars.2023.1258117, 2023.
Noh, K. M., Lim, H. G., and Kug, J. S.: Global chlorophyll responses to marine heatwaves in satellite ocean color, Environmental Research Letters, 17, 064034, https://doi.org/10.1088/1748-9326/AC70EC, 2022.
Oliver, E. C. J.: Mean warming not variability drives marine heatwave trends, Climate Dynamics, 53, 1653–1659, https://doi.org/10.1007/S00382-019-04707-2, 2019.
Pärn, O., Friedland, R., Rjazin, J., and Stips, A.: Regime shift in sea-ice characteristics and impact on the spring bloom in the Baltic Sea, Oceanologia, https://doi.org/10.1016/J.OCEANO.2021.12.004, 2021.
Pecuchet, L., Mohamed, B., Hayward, A., Alvera-Azcárate, A., Dörr, J., Filbee-Dexter, K., Kuletz, K. J., Luis, K., Manizza, M., Miller, C. E., U Staehr, P. A., Szymkowiak, M., Wernberg, T., Fauchald, P., Ma, J., Clement Kinney, J., and Pau, S.: Arctic and Subarctic marine heatwaves and their ecological impacts, Front. Environ. Sci., 13, 1473890, https://doi.org/10.3389/FENVS.2025.1473890, 2025.
Pettitt, A. N.: A Non-Parametric Approach to the Change-Point Problem, Appl. Stat., 28, 126, https://doi.org/10.2307/2346729, 1979.
Pujol, C., Pérez-Santos, I., Barth, A., and Alvera-Azcárate, A.: Marine Heatwaves Offshore Central and South Chile: Understanding Forcing Mechanisms During the Years 2016–2017, Front. Mar. Sci., 9, 800325, https://doi.org/10.3389/fmars.2022.800325, 2022.
Rebstock, G. A.: Climatic regime shifts and decadal-scale variability in calanoid copepod populations off southern California, Glob. Chang. Biol., 8, 71–89, https://doi.org/10.1046/J.1365-2486.2002.00456.X, 2002.
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and Schlax, M. G.: Daily High-Resolution-Blended Analyses for Sea Surface Temperature, J. Clim., 20, 5473–5496, https://doi.org/10.1175/2007JCLI1824.1, 2007.
Robson, J., Lohmann, K., Smith, D., and Palmer, M. D.: Causes of the Rapid Warming of the North Atlantic Ocean in the Mid-1990s, J. Clim., 25, 4116–4134, https://doi.org/10.1175/JCLI-D-11-00443.1, 2012.
Rodionov, S. N.: A sequential algorithm for testing climate regime shifts, Geophys. Res. Lett., 31, https://doi.org/10.1029/2004GL019448, 2004.
Semmouri, I., De Schamphelaere, K. A. C., Mortelmans, J., Mees, J., Asselman, J., and Janssen, C. R.: Decadal decline of dominant copepod species in the North Sea is associated with ocean warming: Importance of marine heatwaves, Mar. Pollut. Bull., 193, 115159, https://doi.org/10.1016/J.MARPOLBUL.2023.115159, 2023.
Simon, A., Pires, C., Frölicher, T. L., and Russo, A.: Long-term warming and interannual variability contributions' to marine heatwaves in the Mediterranean, Weather Clim. Extrem., 42, 100619, https://doi.org/10.1016/J.WACE.2023.100619, 2023a.
Simon, A., Poppeschi, C., Plecha, S., Charria, G., and Russo, A.: Coastal and regional marine heatwaves and cold spells in the northeastern Atlantic, Ocean Sci., 19, 1339–1355, https://doi.org/10.5194/os-19-1339-2023, 2023b.
Smale, D. A., Wernberg, T., Oliver, E. C. J., Thomsen, M., Harvey, B. P., Straub, S. C., Burrows, M. T., Alexander, L. V., Benthuysen, J. A., Donat, M. G., Feng, M., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Sen Gupta, A., Payne, B. L., and Moore, P. J.: Marine heatwaves threaten global biodiversity and the provision of ecosystem services, Nat. Clim. Chang., 9, 306–312, https://doi.org/10.1038/s41558-019-0412-1, 2019.
Smith, K. E., Sen Gupta, A., Amaya, D., Benthuysen, J. A., Burrows, M. T., Capotondi, A., Filbee-Dexter, K., Frölicher, T. L., Hobday, A. J., Holbrook, N. J., Malan, N., Moore, P. J., Oliver, E. C. J., Richaud, B., Salcedo-Castro, J., Smale, D. A., Thomsen, M., and Wernberg, T.: Baseline matters: Challenges and implications of different marine heatwave baselines, Prog. Oceanogr., 231, 103404, https://doi.org/10.1016/J.POCEAN.2024.103404, 2025.
Villeneuve, A. R. and White, E. R.: Predicting organismal response to marine heatwaves using dynamic thermal tolerance landscape models, Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.14120, 2024.
Wang, F., Shao, W., Yu, H., Kan, G., He, X., Zhang, D., Ren, M., and Wang, G.: Re-evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series, Front Earth Sci. (Lausanne), 8, 14, https://doi.org/10.3389/feart.2020.00014, 2020.
Wilson, R. J., Artioli, Y., Galli, G., Harle, J., Holt, J., Queirós, A. M., and Wakelin, S.: Seafloor marine heatwaves outpace surface events in the future on the northwestern European shelf, Ocean Sci., 21, 1255–1270, https://doi.org/10.5194/os-21-1255-2025, 2025.
Xu, T., Newman, M., Capotondi, A., Stevenson, S., Di Lorenzo, E., and Alexander, M. A.: An increase in marine heatwaves without significant changes in surface ocean temperature variability, Nature Communications, 13, 1–12, https://doi.org/10.1038/s41467-022-34934-x, 2022.
Zeileis, A., Kleiber, C., Walter, K., and Hornik, K.: Testing and dating of structural changes in practice, Comput. Stat. Data Anal., 44, 109–123, https://doi.org/10.1016/S0167-9473(03)00030-6, 2003.
Zhao, Z. and Marin, M.: A MATLAB toolbox to detect and analyze marine heatwaves, J Open Source Softw., 4, 1124, https://doi.org/10.21105/joss.01124, 2019.
Short summary
We quantified the role of climate change and internal variability in marine heatwaves (MHWs) in the North Sea over more than 4 decades (1982–2024). A key finding is the 2013 climate shift, which was associated with increased warming and MHWs. Long-term warming accounted for 80 % of the observed trend in MHW frequency. The most intense MHW event in May 2024 was attributed to an anomalous anticyclonic atmospheric circulation. We also explored the impact of MHWs on chlorophyll concentration.
We quantified the role of climate change and internal variability in marine heatwaves (MHWs) in...