Articles | Volume 21, issue 5
https://doi.org/10.5194/os-21-2463-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-2463-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Leading dynamical processes of global marine heatwaves in an ocean state estimate
Department of Atmospheric and Oceanic Sciences, University of Colorado – Boulder, Boulder, CO, USA
Donata Giglio
Department of Atmospheric and Oceanic Sciences, University of Colorado – Boulder, Boulder, CO, USA
Antonietta Capotondi
NOAA Physical Sciences Laboratory, CIRES, University of Colorado Boulder – Boulder, CO, USA
Thea Sukianto
Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
Mikael Kuusela
Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
Related authors
Jacopo Sala, Donata Giglio, Addison Hu, Mikael Kuusela, Kimberly M. Wood, and Ann B. Lee
Ocean Sci., 20, 1441–1455, https://doi.org/10.5194/os-20-1441-2024, https://doi.org/10.5194/os-20-1441-2024, 2024
Short summary
Short summary
As Earth’s climate warms, cyclone intensity and rain may increase. Cyclones, like hurricanes, gain strength from warm ocean waters. Understanding how oceans react to strong winds is vital. We highlight ocean responses to pre-storm salinity. Changes in salinity affect oceans during storms: salinity rises, temperature falls, and density increases. We suggest that mixing of near-surface with deeper water may impact heat exchange between the ocean and atmosphere during and after a weather event.
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024, https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Short summary
A CESM–MOM6 regional configuration of the Caribbean Sea was developed in response to the rising need for high-resolution models for climate impact studies. The configuration is validated for the period 2000–2020 and improves significant errors in a low-resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon River are well captured, and the mean flows of ocean waters across multiple passages in the Caribbean Sea agree with observations.
Jacopo Sala, Donata Giglio, Addison Hu, Mikael Kuusela, Kimberly M. Wood, and Ann B. Lee
Ocean Sci., 20, 1441–1455, https://doi.org/10.5194/os-20-1441-2024, https://doi.org/10.5194/os-20-1441-2024, 2024
Short summary
Short summary
As Earth’s climate warms, cyclone intensity and rain may increase. Cyclones, like hurricanes, gain strength from warm ocean waters. Understanding how oceans react to strong winds is vital. We highlight ocean responses to pre-storm salinity. Changes in salinity affect oceans during storms: salinity rises, temperature falls, and density increases. We suggest that mixing of near-surface with deeper water may impact heat exchange between the ocean and atmosphere during and after a weather event.
Michael Stanley, Mikael Kuusela, Brendan Byrne, and Junjie Liu
Atmos. Chem. Phys., 24, 9419–9433, https://doi.org/10.5194/acp-24-9419-2024, https://doi.org/10.5194/acp-24-9419-2024, 2024
Short summary
Short summary
To serve the uncertainty quantification (UQ) needs of 4D-Var data assimilation (DA) practitioners, we describe and justify a UQ algorithm from carbon flux inversion and incorporate its sampling uncertainty into the final reported UQ. The algorithm is mathematically proved, and its performance is shown for a carbon flux observing system simulation experiment. These results legitimize and generalize this algorithm's current use and make available this effective algorithm to new DA domains.
Addison J. Hu, Mikael Kuusela, Ann B. Lee, Donata Giglio, and Kimberly M. Wood
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 69–93, https://doi.org/10.5194/ascmo-10-69-2024, https://doi.org/10.5194/ascmo-10-69-2024, 2024
Short summary
Short summary
We introduce a new statistical framework to estimate the change in subsurface ocean temperature following the passage of a tropical cyclone (TC). Our approach combines tools handling seasonal variations and spatial dependence in the data, culminating in a three-dimensional characterization of the interaction between TCs and the ocean. Our work allows us to obtain new scientific insights, and we expect it to be generally applicable to studying the impact of TCs on other ocean phenomena.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Cited articles
Amaya, D. J., Jacox, M. G., Fewings, M. R., Saba, V. S., Stuecker, M. F., Rykaczewski, R. R., Ross, A. C., Stock, C. A., Capotondi, A., Petrik, C. M., Bograd, S. J., Alexander, M. A., Cheng, W., Hermann, A. J., Kearney, K. A., and Powell, B. S.: Marine heatwaves need clear definitions so coastal communities can adapt, Nature, 616, 29–32, https://doi.org/10.1038/d41586-023-00924-2, 2023. a
Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S., and Fasullo, J.: The 2011 La Niña: So strong, the oceans fell, Geophysical Research Letters, 39, https://doi.org/10.1029/2012GL053055, 2012. a
Bond, N. A., Cronin, M. F., Freeland, H., and Mantua, N.: Causes and impacts of the 2014 warm anomaly in the NE Pacific, Geophysical Research Letters, 42, 3414–3420, https://doi.org/10.1002/2015GL063306, 2015. a
Brown, B.: Coral bleaching: causes and consequences, Coral Reefs, 16, S129–S138, https://doi.org/10.1007/s003380050249, 1997. a
Burrows, M.: Marine heatwaves: definition duel heats up, Nature, 617, 465–465, https://doi.org/10.1038/d41586-023-01619-4, 2023. a
Capotondi, A.: ENSO diversity in the NCAR CCSM4 climate model, Journal of Geophysical Research: Oceans, 118, 4755–4770, https://doi.org/10.1002/jgrc.20335, 2013. a
Capotondi, A., Newman, M., Xu, T., and Di Lorenzo, E.: An optimal precursor of northeast Pacific marine heatwaves and central Pacific El Niño events, Geophysical Research Letters, 49, e2021GL097350, https://doi.org/10.1029/2021GL097350, 2022. a, b, c
Capotondi, A., Rodrigues, R. R., Sen Gupta, A., Benthuysen, J. A., Deser, C., Frölicher, T. L., Lovenduski, N. S., Amaya, D. J., Le Grix, N., Xu, T., Hermes, J., Holbrook, N. J., Martinez-Villalobos, C., Masina, S., Roxy, M. K., Schaeffer, A., Schlegel, R. W., Smith, K. E., and Wang, C.: A global overview of marine heatwaves in a changing climate, Communications Earth & Environment, 5, 701, https://doi.org/10.1038/s43247-024-01806-9, 2024. a, b, c
Cooper, F. C.: Optimisation of an idealised primitive equation ocean model using stochastic parameterization, Ocean Modelling, 113, 187–200, https://doi.org/10.1016/j.ocemod.2016.12.010, 2017. a
Deser, C., Phillips, A. S., Alexander, M. A., Amaya, D. J., Capotondi, A., Jacox, M. G., and Scott, J. D.: Future Changes in the Intensity and Duration of Marine Heat and Cold Waves: Insights from Coupled Model Initial-Condition Large Ensembles, Journal of Climate, 37, 1877–1902, https://doi.org/10.1175/JCLI-D-23-0278.1, 2024. a, b
Di Lorenzo, E. and Mantua, N.: Multi-year persistence of the 2014/15 North Pacific marine heatwave, Nature Climate Change, 6, 1042–1047, https://doi.org/10.1038/nclimate3082, 2016. a, b
Donovan, M. K., Burkepile, D. E., Kratochwill, C., Shlesinger, T., Sully, S., Oliver, T. A., Hodgson, G., Freiwald, J., and van Woesik, R.: Local conditions magnify coral loss after marine heatwaves, Science, 372, 977–980, https://doi.org/10.1126/science.abd9464, 2021. a
Dutheil, C., Lal, S., Lengaigne, M., Cravatte, S., Menkès, C., Receveur, A., Börgel, F., Gröger, M., Houlbreque, F., Le Gendre, R., Mangolte, I., Peltier, A., and Meier, H. E. M.: The massive 2016 marine heatwave in the Southwest Pacific: An “El Niño–Madden-Julian Oscillation” compound event, Science Advances, 10, eadp2948, https://doi.org/10.1126/sciadv.adp2948, 2024. a
ECCO Consortium, Fukumori, I., Wang, O., Fenty, I., Forget, G., Heimbach, P., and Ponte, R. M.: ECCO Central Estimate (Version 4 Release 4), https://podaac.jpl.nasa.gov/ECCO?sections=data (last access: 12 April 2022), 2022. a
ECCO Consortium, Fukumori, I., Wang, O., Fenty, I., Forget, G., Heimbach, P., and Ponte, R. M.: Synopsis of the ECCO Central Production Global Ocean and Sea-Ice State Estimate (Version 4 Release 4), Zenodo [data set], https://doi.org/10.5281/zenodo.4533349, 2021. a
Evans, R., Lea, M.-A., Hindell, M., and Swadling, K.: Significant shifts in coastal zooplankton populations through the 2015/16 Tasman Sea marine heatwave, Estuarine, Coastal and Shelf Science, 235, 106 538, https://doi.org/10.1016/j.ecss.2019.106538, 2020. a
Forget, G., Campin, J.-M., Heimbach, P., Hill, C., Ponte, R., and Wunsch, C.: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015. a, b, c
Frölicher, T. L. and Laufkötter, C.: Emerging risks from marine heat waves, Nature communications, 9, 650, https://doi.org/10.1038/s41467-018-03163-6, 2018. a, b
Giglio, D., Sukianto, T., and Kuusela, M.: Global Ocean Heat Content Anomalies and Ocean Heat Uptake based on mapping Argo data using local Gaussian processes (3.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.10182972, 2024. a
Gregory, C. H., Holbrook, N. J., Marshall, A. G., and Spillman, C. M.: Atmospheric drivers of Tasman Sea marine heatwaves, Journal of Climate, 36, 5197–5214, https://doi.org/10.1175/JCLI-D-22-0538.1, 2023. a
Gregory, C. H., Artana, C., Lama, S., León-FonFay, D., Sala, J., Xiao, F., Xu, T., Capotondi, A., Martinez-Villalobos, C., and Holbrook, N. J.: Global marine heatwaves under different flavors of ENSO, Geophysical Research Letters, 51, e2024GL110399, https://doi.org/10.1029/2024GL110399, 2024a. a, b
Gregory, C. H., Holbrook, N. J., Marshall, A. G., and Spillman, C. M.: Sub-seasonal to seasonal drivers of regional marine heatwaves around Australia, Climate Dynamics, 1–25, https://doi.org/10.1007/s00382-024-07226-x, 2024b. a
Guo, X., Gao, Y., Zhang, S., Wu, L., Chang, P., Cai, W., Zscheischler, J., Leung, L. R., Small, J., Danabasoglu, G., Thompson, L., and Gao, H.: Threat by marine heatwaves to adaptive large marine ecosystems in an eddy-resolving model, Nature climate change, 12, 179–186, https://doi.org/10.1038/s41558-021-01266-5, 2022. a
Hartmann, D. L.: Pacific sea surface temperature and the winter of 2014, Geophysical Research Letters, 42, 1894–1902, https://doi.org/10.1002/2015GL063083, 2015. a
Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C. J., Benthuysen, J. A., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Moore, P. J., Scannell, H. A., Sen Gupta, A., and Wernberg, T.: A hierarchical approach to defining marine heatwaves, Progress in Oceanography, 141, 227–238, https://doi.org/10.1016/j.pocean.2015.12.014, 2016. a, b, c, d
Holbrook, N. J., Scannell, H. A., Sen Gupta, A., Benthuysen, J. A., Feng, M., Oliver, E. C. J., Alexander, L. V., Burrows, M. T., Donat, M. G., Hobday, A. J., Moore, P. J., Perkins-Kirkpatrick, S. E., Smale, D. A., Straub, S. C., and Wernberg, T.: A global assessment of marine heatwaves and their drivers, Nature Communications, 10, 2624, https://doi.org/10.1038/s41467-019-10206-z, 2019. a, b
Holbrook, N. J., Sen Gupta, A., Oliver, E. C., Hobday, A. J., Benthuysen, J. A., Scannell, H. A., Smale, D. A., and Wernberg, T.: Keeping pace with marine heatwaves, Nature Reviews Earth & Environment, 1, 482–493, https://doi.org/10.1038/s43017-020-0068-4, 2020. a
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T., and Zhang, H.-M.: Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1, Journal of Climate, 34, 2923–2939, https://doi.org/10.1175/JCLI-D-20-0166.1, 2021. a
Jin, F.-F.: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model, Journal of the Atmospheric Sciences, 54, 811–829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2, 1997. a
Kajtar, J. B., Bachman, S. D., Holbrook, N. J., and Pilo, G. S.: Drivers, dynamics, and persistence of the 2017/2018 Tasman Sea marine heatwave, Journal of Geophysical Research: Oceans, 127, e2022JC018931, https://doi.org/10.1029/2022JC018931, 2022. a
Kuusela, M. and Stein, M. L.: Locally stationary spatio-temporal interpolation of Argo profiling float data, Proceedings of the Royal Society A, 474, 20180400, https://doi.org/10.1098/rspa.2018.0400, 2018. a
Li, J., Roughan, M., and Kerry, C.: Drivers of ocean warming in the western boundary currents of the Southern Hemisphere, Nature Climate Change, 12, 901–909, https://doi.org/10.1038/s41558-022-01473-8, 2022. a
Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A., and Lorda, J.: Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018, Marine Biodiversity Records, 12, 1–15, https://doi.org/10.1186/s41200-019-0171-8, 2019. a
Marin, M., Feng, M., Bindoff, N. L., and Phillips, H. E.: Local drivers of extreme upper ocean marine heatwaves assessed using a global ocean circulation model, Frontiers in Climate, 4, 788390, https://doi.org/10.3389/fclim.2022.788390, 2022. a
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, Journal of Geophysical Research: Oceans, 102, 5753–5766, https://doi.org/10.1029/96JC02775, 1997. a
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox, Scor/iapso WG, 127, 1–28, 2011. a
Myers, T. A., Mechoso, C. R., Cesana, G. V., DeFlorio, M. J., and Waliser, D. E.: Cloud feedback key to marine heatwave off Baja California, Geophysical Research Letters, 45, 4345–4352, https://doi.org/10.1029/2018GL078242, 2018. a
Nadimpalli, J. R., Sanikommu, S., Subramanian, A. C., Giglio, D., and Hoteit, I.: Subsurface marine heat waves and coral bleaching in the southern red sea linked to remote forcing, Weather and Climate Extremes, 100771, https://doi.org/10.1016/j.wace.2025.100771, 2025. a
Oliver, E. C.: Mean warming not variability drives marine heatwave trends, Climate Dynamics, 53, 1653–1659, https://doi.org/10.1007/s00382-019-04707-2, 2019. a
Oliver, E. C., Benthuysen, J. A., Bindoff, N. L., Hobday, A. J., Holbrook, N. J., Mundy, C. N., and Perkins-Kirkpatrick, S. E.: The unprecedented 2015/16 Tasman Sea marine heatwave, Nature Communications, 8, 16101, https://doi.org/10.1038/ncomms16101, 2017. a, b
Oliver, E. C., Benthuysen, J. A., Darmaraki, S., Donat, M. G., Hobday, A. J., Holbrook, N. J., Schlegel, R. W., and Sen Gupta, A.: Marine heatwaves, Annual review of marine science, 13, 313–342, https://doi.org/10.1146/annurev-marine-032720-095144, 2021. a
Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V., Benthuysen, J. A., Feng, M., Sen Gupta, A., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Straub, S. C., and Wernberg, T.: Longer and more frequent marine heatwaves over the past century, Nature Communications, 9, 1–12, https://doi.org/10.1038/s41467-018-03732-9, 2018. a, b
Pearce, A. F., Lenanton, R., Jackson, G., Moore, J., Feng, M., and Gaughan, D.: The `marine heat wave” off Western Australia during the summer of 2010/11, Western Australian Fisheries and Marine Research Laboratories, https://library.dpird.wa.gov.au/fr_rr/15/ (last access: 12 January 2025), 2011. a
Pilo, G. S., Holbrook, N. J., Kiss, A. E., and Hogg, A. M.: Sensitivity of marine heatwave metrics to ocean model resolution, Geophysical Research Letters, 46, 14604–14612, https://doi.org/10.1029/2019GL084928, 2019. a, b, c
Pujol, C., Pérez-Santos, I., Barth, A., and Alvera-Azcarate, A.: Marine heatwaves offshore central and south Chile: Understanding forcing mechanisms during the years 2016–2017, Frontiers in Marine Science, 9, 800325, https://doi.org/10.3389/fmars.2022.800325, 2022. a
Ren, X., Liu, W., Capotondi, A., Amaya, D. J., and Holbrook, N. J.: The Pacific Decadal Oscillation modulated marine heatwaves in the Northeast Pacific during past decades, Communications Earth & Environment, 4, 218, https://doi.org/10.1038/s43247-023-00863-w, 2023. a
Scannell, H. A., Pershing, A. J., Alexander, M. A., Thomas, A. C., and Mills, K. E.: Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950, Geophysical Research Letters, 43, 2069–2076, https://doi.org/10.1002/2015GL067308, 2016. a
Schmeisser, L., Bond, N. A., Siedlecki, S. A., and Ackerman, T. P.: The role of clouds and surface heat fluxes in the maintenance of the 2013–2016 Northeast Pacific marine heatwave, Journal of Geophysical Research: Atmospheres, 124, 10772–10783, https://doi.org/10.1029/2019JD030780, 2019. a
Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S. M., Wehner, M., and Zhou, B.: Weather and Climate Extreme Events in a Changing Climate, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1513–1766, https://doi.org/10.1017/9781009157896.013, 2021. a
Sen Gupta, A., Thomsen, M., Benthuysen, J. A., Hobday, A. J., Oliver, E., Alexander, L. V., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Perkins-Kirkpatrick, S., Moore, P. J., Rodrigues, R. R., Scannell, H. A., Taschetto, A. S., Ummenhofer, C. C., Wernberg, T., and Smale, D. A.: Drivers and impacts of the most extreme marine heatwave events, Scientific Reports, 10, 19359, https://doi.org/10.1038/s41598-020-75445-3, 2020. a, b
Smale, D. A., Wernberg, T., Oliver, E. C. J., Thomsen, M., Harvey, B. P., Straub, S. C., Burrows, M. T., Alexander, L. V., Benthuysen, J. A., Donat, M. G., Feng, M., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Sen Gupta, A., Payne, B. L., and Moore, P. J.: Marine heatwaves threaten global biodiversity and the provision of ecosystem services, Nature Climate Change, 9, 306–312, https://doi.org/10.1038/s41558-019-0412-1, 2019. a
Smith, K. E., Burrows, M. T., Hobday, A. J., Sen Gupta, A., Moore, P. J., Thomsen, M., Wernberg, T., and Smale, D. A.: Socioeconomic impacts of marine heatwaves: Global issues and opportunities, Science, 374, eabj3593, https://doi.org/10.1126/science.abj3593, 2021. a
Smith, K. E., Burrows, M. T., Hobday, A. J., King, N. G., Moore, P. J., Sen Gupta, A., Thomsen, M. S., Wernberg, T., and Smale, D. A.: Biological impacts of marine heatwaves, Annual Review of Marine Science, 15, 119–145, https://doi.org/10.1146/annurev-marine-032122-121437, 2023. a
Smith, K. E., Sen Gupta, A., Amaya, D., Benthuysen, J. A., Burrows, M. T., Capotondi, A., Filbee-Dexter, K., Frölicher, T. L., Hobday, A. J., Holbrook, N. J., Malan, N., Moore, P. J., Oliver, E. C. J., Richaud, B., Salcedo-Castro, J., Smale, D. A., Thomsen, M., and Wernberg, T.: Baseline matters: Challenges and implications of different marine heatwave baselines, Progress in Oceanography, 103404, https://doi.org/10.1016/j.pocean.2024.103404, 2024. a, b
Vogt, L., Burger, F. A., Griffies, S. M., and Frölicher, T. L.: Local drivers of marine heatwaves: a global analysis with an earth system model, Frontiers in Climate, 4, 847995, https://doi.org/10.3389/fclim.2022.847995, 2022. a, b, c
Wigley, T. M.: The effect of changing climate on the frequency of absolute extreme events, Climatic Change, 97, 67–76, https://doi.org/10.1007/s10584-009-9654-7, 2009. a
Wong, A. P. S., Wijffels, S. E., Riser, S. C., Pouliquen, S., Hosoda, S., Roemmich, D., Gilson, J., Johnson, G. C., Martini, K., Murphy, D. J., Scanderbeg, M., Udaya Bhaskar, T. V. S., Buck, J. J. H., Merceur, F., Carval, T., Maze, G., Cabanes, C., André, X., Poffa, N., Yashayaev, I., Barker, P. M., Guinehut, S., Belbéoch, M., Baringer, M. O., Schmid, C., Lyman, J. M., McTaggart, K. E., Purkey, S. G., Zilberman, N., Alkire, M. B., Swift, D., Owens, W. B., Jayne, S. R., Hersh, C., Robbins, P., West-Mack, D., Bahr, F., Yoshida, S., Sutton, P. J. H., Cancouët, R., Coatanoan, C., Dobbler, D., Garcia Juan, A., Gourrion, J., Kolodziejczyk, N., Bernard, V., Bourlès, B., Claustre, H., D'Ortenzio, F., Le Reste, S., Le Traon, P.-Y., Rannou, J.-P., Saout-Grit, C., Speich, S., Thierry, V., Verbrugge, N., Angel-Benavides, I. M., Klein, B., Notarstefano, G., Poulain, P.-M., Vélez-Belchí, P., Suga, T., Ando, K., Iwasaska, N., Kobayashi, T., Masuda, S., Oka, E., Sato, K., Nakamura, T., Sato, K., Takatsuki, Y., Yoshida, T., Cowley, R., Lovell, J. L., Oke, P. R., van Wijk, E. M., Carse, F., Donnelly, M., Gould, W. J., Gowers, K., King, B. A., Loch, S. G., Mowat, M., Turton, J., Rama Rao, E. P., Ravichandran, M., Freeland, H. J., Gaboury, I., Gilbert, D., Greenan, B. J. W., Ouellet, M., Ross, T., Tran, A., Dong, M., Liu, Z., Xu, J., Kang, K., Jo, H., Kim, S.-D., and Park, H.-M.: Argo data 1999–2019: Two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats, Frontiers in Marine Science, 7, 700, https://doi.org/10.3389/fmars.2020.00700, 2020. a
Wu, L., Cai, W., Zhang, L., Nakamura, H., Timmermann, A., Joyce, T., McPhaden, M. J., Alexander, M., Qiu, B., Visbeck, M., Chang, P., and Giese, B.: Enhanced warming over the global subtropical western boundary currents, Nature Climate Change, 2, 161–166, https://doi.org/10.1038/nclimate1353, 2012. a
Wulff, C. O., Vitart, F., and Domeisen, D. I.: Influence of trends on subseasonal temperature prediction skill, Quarterly Journal of the Royal Meteorological Society, 148, 1280–1299, https://doi.org/10.1002/qj.4259, 2022. a
Xie, S.-P.: Ocean warming pattern effect on global and regional climate change, AGU Advances, 1, e2019AV000130, https://doi.org/10.1029/2019AV000130, 2020. a, b
Xu, T., Newman, M., Capotondi, A., and Di Lorenzo, E.: The continuum of northeast Pacific marine heatwaves and their relationship to the tropical Pacific, Geophysical Research Letters, 48, 2020GL090661, https://doi.org/10.1029/2020GL090661, 2021. a
Xu, T., Newman, M., Capotondi, A., Stevenson, S., Di Lorenzo, E., and Alexander, M. A.: An increase in marine heatwaves without significant changes in surface ocean temperature variability, Nature Communications, 13, 7396, https://doi.org/10.1038/s41467-022-34934-x, 2022. a, b, c, d
Zhang, Y., Du, Y., Feng, M., and Hobday, A. J.: Vertical structures of marine heatwaves, Nature Communications, 14, 6483, https://doi.org/10.1038/s41467-023-42219-0, 2023. a
Short summary
Marine heatwaves (MHWs) are extreme ocean warming events that can harm marine life, but their causes are not fully understood. We studied MHWs worldwide using ocean observations, satellite data, and a high-quality ocean model. Our results show that changes in the atmosphere are the main cause of these events, although ocean currents play a key role in some regions. A better understanding of MHWs will help predict them and support efforts to protect marine ecosystems and coastal communities.
Marine heatwaves (MHWs) are extreme ocean warming events that can harm marine life, but their...